--- license: mit base_model: allistair99/bert-base-uncased-BiLSTM-Optiparam-ADVQA36K-V6-frozen tags: - generated_from_trainer model-index: - name: bert-base-uncased-BiLSTM-Optiparam-ADVQA36K-V17-frozen results: [] --- # bert-base-uncased-BiLSTM-Optiparam-ADVQA36K-V17-frozen This model is a fine-tuned version of [allistair99/bert-base-uncased-BiLSTM-Optiparam-ADVQA36K-V6-frozen](https://huggingface.co/allistair99/bert-base-uncased-BiLSTM-Optiparam-ADVQA36K-V6-frozen) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.9070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 60 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6528 | 0.0599 | 100 | 3.7418 | | 0.6524 | 0.1198 | 200 | 3.7774 | | 0.6187 | 0.1796 | 300 | 3.8111 | | 0.6459 | 0.2395 | 400 | 3.8232 | | 0.6209 | 0.2994 | 500 | 3.8193 | | 0.5822 | 0.3593 | 600 | 3.8461 | | 0.6185 | 0.4192 | 700 | 3.8422 | | 0.5614 | 0.4790 | 800 | 3.8721 | | 0.5595 | 0.5389 | 900 | 3.8921 | | 0.6357 | 0.5988 | 1000 | 3.9008 | | 0.6525 | 0.6587 | 1100 | 3.8820 | | 0.6087 | 0.7186 | 1200 | 3.8966 | | 0.6543 | 0.7784 | 1300 | 3.8788 | | 0.6059 | 0.8383 | 1400 | 3.8911 | | 0.6144 | 0.8982 | 1500 | 3.8987 | | 0.6643 | 0.9581 | 1600 | 3.8843 | | 0.6235 | 1.0180 | 1700 | 3.8767 | | 0.6359 | 1.0778 | 1800 | 3.8895 | | 0.5603 | 1.1377 | 1900 | 3.9057 | | 0.6097 | 1.1976 | 2000 | 3.9029 | | 0.5495 | 1.2575 | 2100 | 3.9160 | | 0.5933 | 1.3174 | 2200 | 3.9189 | | 0.5581 | 1.3772 | 2300 | 3.9328 | | 0.6335 | 1.4371 | 2400 | 3.9183 | | 0.5758 | 1.4970 | 2500 | 3.9175 | | 0.6225 | 1.5569 | 2600 | 3.9148 | | 0.614 | 1.6168 | 2700 | 3.9207 | | 0.6308 | 1.6766 | 2800 | 3.9118 | | 0.6868 | 1.7365 | 2900 | 3.9006 | | 0.6504 | 1.7964 | 3000 | 3.8873 | | 0.6167 | 1.8563 | 3100 | 3.8818 | | 0.6991 | 1.9162 | 3200 | 3.8855 | | 0.6896 | 1.9760 | 3300 | 3.8765 | | 0.5594 | 2.0359 | 3400 | 3.8792 | | 0.4856 | 2.0958 | 3500 | 3.8959 | | 0.4625 | 2.1557 | 3600 | 3.9098 | | 0.5035 | 2.2156 | 3700 | 3.9176 | | 0.5774 | 2.2754 | 3800 | 3.9170 | | 0.5703 | 2.3353 | 3900 | 3.9172 | | 0.5814 | 2.3952 | 4000 | 3.9216 | | 0.606 | 2.4551 | 4100 | 3.9188 | | 0.5638 | 2.5150 | 4200 | 3.9221 | | 0.6057 | 2.5749 | 4300 | 3.9243 | | 0.6336 | 2.6347 | 4400 | 3.9215 | | 0.5966 | 2.6946 | 4500 | 3.9190 | | 0.6996 | 2.7545 | 4600 | 3.9162 | | 0.7667 | 2.8144 | 4700 | 3.9126 | | 0.7258 | 2.8743 | 4800 | 3.9099 | | 0.8214 | 2.9341 | 4900 | 3.9081 | | 0.9071 | 2.9940 | 5000 | 3.9070 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.6.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1