--- license: mit base_model: allistair99/tinybert-6l-768d-BiLSTM-finetuned-squad-optiparam tags: - generated_from_trainer model-index: - name: tinybert-base-uncased-BiLSTM-Optiparam-ADVQA36K-V1 results: [] --- # tinybert-base-uncased-BiLSTM-Optiparam-ADVQA36K-V1 This model is a fine-tuned version of [allistair99/tinybert-6l-768d-BiLSTM-finetuned-squad-optiparam](https://huggingface.co/allistair99/tinybert-6l-768d-BiLSTM-finetuned-squad-optiparam) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 60 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0036 | 0.0599 | 100 | 2.5920 | | 2.8317 | 0.1198 | 200 | 2.5140 | | 2.7926 | 0.1796 | 300 | 2.5142 | | 2.7339 | 0.2395 | 400 | 2.4734 | | 2.7291 | 0.2994 | 500 | 2.4903 | | 2.7906 | 0.3593 | 600 | 2.4795 | | 2.641 | 0.4192 | 700 | 2.4862 | | 2.5682 | 0.4790 | 800 | 2.5682 | | 2.6871 | 0.5389 | 900 | 2.4674 | | 2.7482 | 0.5988 | 1000 | 2.4033 | | 2.6894 | 0.6587 | 1100 | 2.3723 | | 2.4788 | 0.7186 | 1200 | 2.3302 | | 2.6424 | 0.7784 | 1300 | 2.4048 | | 2.6319 | 0.8383 | 1400 | 2.3805 | | 2.5736 | 0.8982 | 1500 | 2.3620 | | 2.5958 | 0.9581 | 1600 | 2.3191 | | 2.2015 | 1.0180 | 1700 | 2.7917 | | 1.8579 | 1.0778 | 1800 | 2.3981 | | 1.7857 | 1.1377 | 1900 | 2.6140 | | 1.7714 | 1.1976 | 2000 | 2.5079 | | 1.7564 | 1.2575 | 2100 | 2.6297 | | 1.8162 | 1.3174 | 2200 | 2.5810 | | 1.7704 | 1.3772 | 2300 | 2.4192 | | 1.8182 | 1.4371 | 2400 | 2.4714 | | 1.8095 | 1.4970 | 2500 | 2.6516 | | 1.9058 | 1.5569 | 2600 | 2.4050 | | 1.8567 | 1.6168 | 2700 | 2.4032 | | 1.7526 | 1.6766 | 2800 | 2.4313 | | 1.6995 | 1.7365 | 2900 | 2.5849 | | 1.7793 | 1.7964 | 3000 | 2.5520 | | 1.7435 | 1.8563 | 3100 | 2.4718 | | 1.8295 | 1.9162 | 3200 | 2.4131 | | 1.8069 | 1.9760 | 3300 | 2.4696 | | 1.4409 | 2.0359 | 3400 | 2.9758 | | 1.2772 | 2.0958 | 3500 | 2.9478 | | 1.1997 | 2.1557 | 3600 | 2.9533 | | 1.19 | 2.2156 | 3700 | 2.8930 | | 1.1831 | 2.2754 | 3800 | 3.0055 | | 1.1424 | 2.3353 | 3900 | 3.0072 | | 1.1612 | 2.3952 | 4000 | 2.9198 | | 1.242 | 2.4551 | 4100 | 2.9932 | | 1.1113 | 2.5150 | 4200 | 3.0195 | | 1.2147 | 2.5749 | 4300 | 2.9441 | | 1.1773 | 2.6347 | 4400 | 2.9556 | | 1.2346 | 2.6946 | 4500 | 2.9006 | | 1.1443 | 2.7545 | 4600 | 2.9683 | | 1.2002 | 2.8144 | 4700 | 2.9800 | | 1.1385 | 2.8743 | 4800 | 2.9573 | | 1.2266 | 2.9341 | 4900 | 2.9599 | | 1.2089 | 2.9940 | 5000 | 2.9656 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.6.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1