Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/camembert/camembert-large/README.md
README.md
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: fr
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# CamemBERT: a Tasty French Language Model
|
| 6 |
+
|
| 7 |
+
## Introduction
|
| 8 |
+
|
| 9 |
+
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model.
|
| 10 |
+
|
| 11 |
+
It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains.
|
| 12 |
+
|
| 13 |
+
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/)
|
| 14 |
+
|
| 15 |
+
## Pre-trained models
|
| 16 |
+
|
| 17 |
+
| Model | #params | Arch. | Training data |
|
| 18 |
+
|--------------------------------|--------------------------------|-------|-----------------------------------|
|
| 19 |
+
| `camembert-base` | 110M | Base | OSCAR (138 GB of text) |
|
| 20 |
+
| `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) |
|
| 21 |
+
| `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) |
|
| 22 |
+
| `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) |
|
| 23 |
+
| `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) |
|
| 24 |
+
| `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) |
|
| 25 |
+
|
| 26 |
+
## How to use CamemBERT with HuggingFace
|
| 27 |
+
|
| 28 |
+
##### Load CamemBERT and its sub-word tokenizer :
|
| 29 |
+
```python
|
| 30 |
+
from transformers import CamembertModel, CamembertTokenizer
|
| 31 |
+
|
| 32 |
+
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
|
| 33 |
+
tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-large")
|
| 34 |
+
camembert = CamembertModel.from_pretrained("camembert/camembert-large")
|
| 35 |
+
|
| 36 |
+
camembert.eval() # disable dropout (or leave in train mode to finetune)
|
| 37 |
+
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
##### Filling masks using pipeline
|
| 41 |
+
```python
|
| 42 |
+
from transformers import pipeline
|
| 43 |
+
|
| 44 |
+
camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-large", tokenizer="camembert/camembert-large")
|
| 45 |
+
results = camembert_fill_mask("Le camembert est <mask> :)")
|
| 46 |
+
# results
|
| 47 |
+
#[{'sequence': '<s> Le camembert est bon :)</s>', 'score': 0.15560828149318695, 'token': 305},
|
| 48 |
+
#{'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.06821336597204208, 'token': 3497},
|
| 49 |
+
#{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.060438305139541626, 'token': 11661},
|
| 50 |
+
#{'sequence': '<s> Le camembert est ici :)</s>', 'score': 0.02023460529744625, 'token': 373},
|
| 51 |
+
#{'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.01778135634958744, 'token': 876}]
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
##### Extract contextual embedding features from Camembert output
|
| 55 |
+
```python
|
| 56 |
+
import torch
|
| 57 |
+
# Tokenize in sub-words with SentencePiece
|
| 58 |
+
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
|
| 59 |
+
# ['▁J', "'", 'aime', '▁le', '▁cam', 'ember', 't', '▁!']
|
| 60 |
+
|
| 61 |
+
# 1-hot encode and add special starting and end tokens
|
| 62 |
+
encoded_sentence = tokenizer.encode(tokenized_sentence)
|
| 63 |
+
# [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6]
|
| 64 |
+
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
|
| 65 |
+
|
| 66 |
+
# Feed tokens to Camembert as a torch tensor (batch dim 1)
|
| 67 |
+
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
|
| 68 |
+
embeddings, _ = camembert(encoded_sentence)
|
| 69 |
+
# embeddings.detach()
|
| 70 |
+
# torch.Size([1, 10, 1024])
|
| 71 |
+
#tensor([[[-0.1284, 0.2643, 0.4374, ..., 0.1627, 0.1308, -0.2305],
|
| 72 |
+
# [ 0.4576, -0.6345, -0.2029, ..., -0.1359, -0.2290, -0.6318],
|
| 73 |
+
# [ 0.0381, 0.0429, 0.5111, ..., -0.1177, -0.1913, -0.1121],
|
| 74 |
+
# ...,
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
##### Extract contextual embedding features from all Camembert layers
|
| 78 |
+
```python
|
| 79 |
+
from transformers import CamembertConfig
|
| 80 |
+
# (Need to reload the model with new config)
|
| 81 |
+
config = CamembertConfig.from_pretrained("camembert/camembert-large", output_hidden_states=True)
|
| 82 |
+
camembert = CamembertModel.from_pretrained("camembert/camembert-large", config=config)
|
| 83 |
+
|
| 84 |
+
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
|
| 85 |
+
# all_layer_embeddings list of len(all_layer_embeddings) == 25 (input embedding layer + 24 self attention layers)
|
| 86 |
+
all_layer_embeddings[5]
|
| 87 |
+
# layer 5 contextual embedding : size torch.Size([1, 10, 1024])
|
| 88 |
+
#tensor([[[-0.0600, 0.0742, 0.0332, ..., -0.0525, -0.0637, -0.0287],
|
| 89 |
+
# [ 0.0950, 0.2840, 0.1985, ..., 0.2073, -0.2172, -0.6321],
|
| 90 |
+
# [ 0.1381, 0.1872, 0.1614, ..., -0.0339, -0.2530, -0.1182],
|
| 91 |
+
# ...,
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
## Authors
|
| 96 |
+
|
| 97 |
+
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
## Citation
|
| 101 |
+
If you use our work, please cite:
|
| 102 |
+
|
| 103 |
+
```bibtex
|
| 104 |
+
@inproceedings{martin2020camembert,
|
| 105 |
+
title={CamemBERT: a Tasty French Language Model},
|
| 106 |
+
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
| 107 |
+
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
| 108 |
+
year={2020}
|
| 109 |
+
}
|
| 110 |
+
```
|