--- license: mit tags: - generated_from_trainer datasets: - aihub_paper_summarization metrics: - rouge model-index: - name: kobart-base-v2-finetuned-paper results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: aihub_paper_summarization type: aihub_paper_summarization config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 6.2883 --- # kobart-base-v2-finetuned-paper This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the aihub_paper_summarization dataset. It achieves the following results on the evaluation set: - Loss: 1.2966 - Rouge1: 6.2883 - Rouge2: 1.7038 - Rougel: 6.2556 - Rougelsum: 6.2618 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.2215 | 1.0 | 8831 | 1.3293 | 6.2425 | 1.7317 | 6.2246 | 6.2247 | 20.0 | | 1.122 | 2.0 | 17662 | 1.3056 | 6.2298 | 1.7005 | 6.2042 | 6.2109 | 20.0 | | 1.0914 | 3.0 | 26493 | 1.2966 | 6.2883 | 1.7038 | 6.2556 | 6.2618 | 20.0 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2