--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - aihub_paper_summarization metrics: - rouge model-index: - name: pko-t5-small-finetuned-paper-4564652 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: aihub_paper_summarization type: aihub_paper_summarization config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 4.874 --- # pko-t5-small-finetuned-paper-4564652 This model is a fine-tuned version of [paust/pko-t5-small](https://huggingface.co/paust/pko-t5-small) on the aihub_paper_summarization dataset. It achieves the following results on the evaluation set: - Loss: 0.4922 - Rouge1: 4.874 - Rouge2: 1.0497 - Rougel: 4.8599 - Rougelsum: 4.854 - Gen Len: 18.9953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2