--- base_model: microsoft/Phi-3-mini-128k-instruct library_name: peft license: mit tags: - generated_from_trainer model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: microsoft/Phi-3-mini-128k-instruct trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: alsokit/alpaca_vtb_train_and_eval_25K type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/out sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: special_tokens: ```

# outputs/out This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.4523 | 0.0018 | 1 | 2.7465 | | 0.3199 | 0.2512 | 142 | 0.3300 | | 0.2857 | 0.5024 | 284 | 0.2663 | | 0.2264 | 0.7536 | 426 | 0.2466 | | 0.246 | 1.0049 | 568 | 0.2292 | | 0.2419 | 1.2472 | 710 | 0.2197 | | 0.2099 | 1.4985 | 852 | 0.2147 | | 0.2111 | 1.7497 | 994 | 0.2065 | | 0.1662 | 2.0009 | 1136 | 0.2005 | | 0.173 | 2.2366 | 1278 | 0.1999 | | 0.1633 | 2.4878 | 1420 | 0.1986 | | 0.169 | 2.7391 | 1562 | 0.1984 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1