File size: 7,506 Bytes
53c3843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc5f69b
 
74b74f6
 
 
 
 
53c3843
74b74f6
53c3843
bc5f69b
 
 
 
 
 
 
 
 
 
 
 
 
 
53c3843
 
74b74f6
 
 
bc5f69b
74b74f6
 
bc5f69b
53c3843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b74f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Adapted from https://huggingface.co/nvidia/NVLM-D-72B#inference
import math
from typing import Any, Dict, List

import torch
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

import requests
from io import BytesIO
from PIL import Image

from transformers import AutoTokenizer, AutoModel

from huggingface_inference_toolkit.logging import logger


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float("inf")
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(
    image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j)
        for n in range(min_num, max_num + 1)
        for i in range(1, n + 1)
        for j in range(1, n + 1)
        if i * j <= max_num and i * j >= min_num
    )
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio,
        target_ratios,
        orig_width,
        orig_height,
        image_size,
    )

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size,
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_url, input_size=448, max_num=12):
    response = requests.get(image_url)
    image = Image.open(BytesIO(response.content)).convert("RGB")
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(
        image, image_size=input_size, use_thumbnail=True, max_num=max_num
    )
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


def split_model():
    device_map = {}
    world_size = torch.cuda.device_count()
    num_layers = 80
    # Since the first GPU will be used for ViT, treat it as half a GPU.
    num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
    num_layers_per_gpu = [num_layers_per_gpu] * world_size
    num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f"language_model.model.layers.{layer_cnt}"] = i
            layer_cnt += 1
    device_map["vision_model"] = 0
    device_map["mlp1"] = 0
    device_map["language_model.model.tok_embeddings"] = 0
    device_map["language_model.model.embed_tokens"] = 0
    device_map["language_model.output"] = 0
    device_map["language_model.model.norm"] = 0
    device_map["language_model.lm_head"] = 0
    device_map[f"language_model.model.layers.{num_layers - 1}"] = 0

    return device_map


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose(
        [
            T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=MEAN, std=STD),
        ]
    )
    return transform


class EndpointHandler:
    def __init__(self, model_dir: str, **kwargs: Any) -> None:
        self.model = AutoModel.from_pretrained(
            model_dir,
            torch_dtype=torch.bfloat16,
            low_cpu_mem_usage=True,
            use_flash_attn=False,
            trust_remote_code=True,
            device_map=split_model(),
        ).eval()

        self.tokenizer = AutoTokenizer.from_pretrained(
            model_dir, trust_remote_code=True, use_fast=False
        )

    def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]:
        logger.info(f"Received incoming request with {data=}")
        
        if "instances" in data:
            logger.warning("Using `instances` instead of `inputs` is deprecated.")
            data["inputs"] = data.pop("instances")

        if "inputs" not in data:
            raise ValueError(
                "The request body must contain a key 'inputs' with a list of inputs."
            )

        if not isinstance(data["inputs"], list):
            raise ValueError(
                "The request inputs must be a list of dictionaries with either the key"
                " 'prompt' or 'prompt' + 'image_url', and optionally including the key"
                " 'generation_config'."
            )

        if not all(isinstance(input, dict) and "prompt" in input.keys() for input in data["inputs"]):
            raise ValueError(
                "The request inputs must be a list of dictionaries with either the key"
                " 'prompt' or 'prompt' + 'image_url', and optionally including the key"
                " 'generation_config'."
            )

        predictions = []
        for input in data["inputs"]:
            if "prompt" not in input:
                raise ValueError(
                    "The request input body must contain at least the key 'prompt' with the prompt to use."
                )

            generation_config = input.get("generation_config", dict(max_new_tokens=1024, do_sample=False))

            if "image_url" not in input:
                # pure-text conversation
                response, history = self.model.chat(
                    self.tokenizer,
                    None,
                    input["prompt"],
                    generation_config,
                    history=None,
                    return_history=True,
                )
            else:
                # single-image single-round conversation
                pixel_values = load_image(input["image_url"], max_num=6).to(
                    torch.bfloat16
                )
                response = self.model.chat(
                    self.tokenizer,
                    pixel_values,
                    f"<image>\n{input['prompt']}",
                    generation_config,
                )

            predictions.append(response)
        return {"predictions": predictions}