File size: 7,506 Bytes
53c3843 bc5f69b 74b74f6 53c3843 74b74f6 53c3843 bc5f69b 53c3843 74b74f6 bc5f69b 74b74f6 bc5f69b 53c3843 74b74f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Adapted from https://huggingface.co/nvidia/NVLM-D-72B#inference
import math
from typing import Any, Dict, List
import torch
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
import requests
from io import BytesIO
from PIL import Image
from transformers import AutoTokenizer, AutoModel
from huggingface_inference_toolkit.logging import logger
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(
image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio,
target_ratios,
orig_width,
orig_height,
image_size,
)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_url, input_size=448, max_num=12):
response = requests.get(image_url)
image = Image.open(BytesIO(response.content)).convert("RGB")
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(
image, image_size=input_size, use_thumbnail=True, max_num=max_num
)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def split_model():
device_map = {}
world_size = torch.cuda.device_count()
num_layers = 80
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f"language_model.model.layers.{layer_cnt}"] = i
layer_cnt += 1
device_map["vision_model"] = 0
device_map["mlp1"] = 0
device_map["language_model.model.tok_embeddings"] = 0
device_map["language_model.model.embed_tokens"] = 0
device_map["language_model.output"] = 0
device_map["language_model.model.norm"] = 0
device_map["language_model.lm_head"] = 0
device_map[f"language_model.model.layers.{num_layers - 1}"] = 0
return device_map
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose(
[
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD),
]
)
return transform
class EndpointHandler:
def __init__(self, model_dir: str, **kwargs: Any) -> None:
self.model = AutoModel.from_pretrained(
model_dir,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=False,
trust_remote_code=True,
device_map=split_model(),
).eval()
self.tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True, use_fast=False
)
def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]:
logger.info(f"Received incoming request with {data=}")
if "instances" in data:
logger.warning("Using `instances` instead of `inputs` is deprecated.")
data["inputs"] = data.pop("instances")
if "inputs" not in data:
raise ValueError(
"The request body must contain a key 'inputs' with a list of inputs."
)
if not isinstance(data["inputs"], list):
raise ValueError(
"The request inputs must be a list of dictionaries with either the key"
" 'prompt' or 'prompt' + 'image_url', and optionally including the key"
" 'generation_config'."
)
if not all(isinstance(input, dict) and "prompt" in input.keys() for input in data["inputs"]):
raise ValueError(
"The request inputs must be a list of dictionaries with either the key"
" 'prompt' or 'prompt' + 'image_url', and optionally including the key"
" 'generation_config'."
)
predictions = []
for input in data["inputs"]:
if "prompt" not in input:
raise ValueError(
"The request input body must contain at least the key 'prompt' with the prompt to use."
)
generation_config = input.get("generation_config", dict(max_new_tokens=1024, do_sample=False))
if "image_url" not in input:
# pure-text conversation
response, history = self.model.chat(
self.tokenizer,
None,
input["prompt"],
generation_config,
history=None,
return_history=True,
)
else:
# single-image single-round conversation
pixel_values = load_image(input["image_url"], max_num=6).to(
torch.bfloat16
)
response = self.model.chat(
self.tokenizer,
pixel_values,
f"<image>\n{input['prompt']}",
generation_config,
)
predictions.append(response)
return {"predictions": predictions} |