File size: 12,770 Bytes
a053503 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import argparse
import os
import torch
from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast
from exp.exp_imputation import Exp_Imputation
from exp.exp_short_term_forecasting import Exp_Short_Term_Forecast
from exp.exp_anomaly_detection import Exp_Anomaly_Detection
from exp.exp_classification import Exp_Classification
from utils.print_args import print_args
import random
import numpy as np
if __name__ == '__main__':
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
parser = argparse.ArgumentParser(description='TimesNet')
# basic config
parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast',
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='Autoformer',
help='model name, options: [Autoformer, Transformer, TimesNet]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='residual', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='t',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
parser.add_argument('--inverse', action='store_true', help='inverse output data', default=True)
# inputation task
parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio')
# anomaly detection task
parser.add_argument('--anomaly_ratio', type=float, default=0.25, help='prior anomaly ratio (%)')
# model define
parser.add_argument('--expand', type=int, default=2, help='expansion factor for Mamba')
parser.add_argument('--d_conv', type=int, default=4, help='conv kernel size for Mamba')
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--channel_independence', type=int, default=1,
help='0: channel dependence 1: channel independence for FreTS model')
parser.add_argument('--decomp_method', type=str, default='moving_avg',
help='method of series decompsition, only support moving_avg or dft_decomp')
parser.add_argument('--use_norm', type=int, default=1, help='whether to use normalize; True 1 False 0')
parser.add_argument('--down_sampling_layers', type=int, default=0, help='num of down sampling layers')
parser.add_argument('--down_sampling_window', type=int, default=1, help='down sampling window size')
parser.add_argument('--down_sampling_method', type=str, default=None,
help='down sampling method, only support avg, max, conv')
parser.add_argument('--seg_len', type=int, default=48,
help='the length of segmen-wise iteration of SegRNN')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=20, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
# de-stationary projector params
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128],
help='hidden layer dimensions of projector (List)')
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
# metrics (dtw)
parser.add_argument('--use_dtw', type=bool, default=False,
help='the controller of using dtw metric (dtw is time consuming, not suggested unless necessary)')
# Augmentation
parser.add_argument('--augmentation_ratio', type=int, default=0, help="How many times to augment")
parser.add_argument('--seed', type=int, default=2, help="Randomization seed")
parser.add_argument('--jitter', default=False, action="store_true", help="Jitter preset augmentation")
parser.add_argument('--scaling', default=False, action="store_true", help="Scaling preset augmentation")
parser.add_argument('--permutation', default=False, action="store_true",
help="Equal Length Permutation preset augmentation")
parser.add_argument('--randompermutation', default=False, action="store_true",
help="Random Length Permutation preset augmentation")
parser.add_argument('--magwarp', default=False, action="store_true", help="Magnitude warp preset augmentation")
parser.add_argument('--timewarp', default=False, action="store_true", help="Time warp preset augmentation")
parser.add_argument('--windowslice', default=False, action="store_true", help="Window slice preset augmentation")
parser.add_argument('--windowwarp', default=False, action="store_true", help="Window warp preset augmentation")
parser.add_argument('--rotation', default=False, action="store_true", help="Rotation preset augmentation")
parser.add_argument('--spawner', default=False, action="store_true", help="SPAWNER preset augmentation")
parser.add_argument('--dtwwarp', default=False, action="store_true", help="DTW warp preset augmentation")
parser.add_argument('--shapedtwwarp', default=False, action="store_true", help="Shape DTW warp preset augmentation")
parser.add_argument('--wdba', default=False, action="store_true", help="Weighted DBA preset augmentation")
parser.add_argument('--discdtw', default=False, action="store_true",
help="Discrimitive DTW warp preset augmentation")
parser.add_argument('--discsdtw', default=False, action="store_true",
help="Discrimitive shapeDTW warp preset augmentation")
parser.add_argument('--extra_tag', type=str, default="", help="Anything extra")
# TimeXer
parser.add_argument('--patch_len', type=int, default=16, help='patch length')
args = parser.parse_args()
# args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
args.use_gpu = True if torch.cuda.is_available() else False
print(torch.cuda.is_available())
if args.use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
print('Args in experiment:')
print_args(args)
if args.task_name == 'long_term_forecast':
Exp = Exp_Long_Term_Forecast
elif args.task_name == 'short_term_forecast':
Exp = Exp_Short_Term_Forecast
elif args.task_name == 'imputation':
Exp = Exp_Imputation
elif args.task_name == 'anomaly_detection':
Exp = Exp_Anomaly_Detection
elif args.task_name == 'classification':
Exp = Exp_Classification
else:
Exp = Exp_Long_Term_Forecast
if args.is_training:
for ii in range(args.itr):
# setting record of experiments
exp = Exp(args) # set experiments
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.expand,
args.d_conv,
args.factor,
args.embed,
args.distil,
args.des, ii)
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
torch.cuda.empty_cache()
else:
ii = 0
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.expand,
args.d_conv,
args.factor,
args.embed,
args.distil,
args.des, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache() |