--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 2025-02-05-21-58-41-resnet-50 results: [] --- # 2025-02-05-21-58-41-resnet-50 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0762 - Precision: 0.9810 - Recall: 0.9805 - F1: 0.9804 - Accuracy: 0.9766 - Top1 Accuracy: 0.9805 - Error Rate: 0.0234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 3407 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:| | 2.4636 | 1.0 | 103 | 2.1548 | 0.6867 | 0.6293 | 0.5929 | 0.5824 | 0.6293 | 0.4176 | | 1.3967 | 2.0 | 206 | 0.5586 | 0.8893 | 0.8780 | 0.8770 | 0.8743 | 0.8780 | 0.1257 | | 0.4328 | 3.0 | 309 | 0.2100 | 0.9565 | 0.9512 | 0.9518 | 0.9524 | 0.9512 | 0.0476 | | 0.2544 | 4.0 | 412 | 0.1414 | 0.9628 | 0.9610 | 0.9613 | 0.9588 | 0.9610 | 0.0412 | | 0.171 | 5.0 | 515 | 0.1127 | 0.9690 | 0.9683 | 0.9683 | 0.9638 | 0.9683 | 0.0362 | | 0.1556 | 6.0 | 618 | 0.0976 | 0.9715 | 0.9707 | 0.9706 | 0.9681 | 0.9707 | 0.0319 | | 0.118 | 7.0 | 721 | 0.0762 | 0.9810 | 0.9805 | 0.9804 | 0.9766 | 0.9805 | 0.0234 | | 0.1142 | 8.0 | 824 | 0.0853 | 0.9809 | 0.9805 | 0.9804 | 0.9813 | 0.9805 | 0.0187 | | 0.0978 | 9.0 | 927 | 0.0798 | 0.9808 | 0.9805 | 0.9803 | 0.9788 | 0.9805 | 0.0212 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3