metadata
library_name: transformers
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: convnext-tiny-224-finetuned-barkley
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Precision
type: precision
value: 0.9936145510835913
- name: Recall
type: recall
value: 0.993421052631579
- name: F1
type: f1
value: 0.993419541966282
- name: Accuracy
type: accuracy
value: 0.9939393939393939
convnext-tiny-224-finetuned-barkley
This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0794
- Precision: 0.9936
- Recall: 0.9934
- F1: 0.9934
- Accuracy: 0.9939
- Top1 Accuracy: 0.9934
- Error Rate: 0.0061
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
|---|---|---|---|---|---|---|---|---|---|
| 1.576 | 1.0 | 38 | 1.5660 | 0.3007 | 0.3684 | 0.2952 | 0.3479 | 0.3684 | 0.6521 |
| 1.5469 | 2.0 | 76 | 1.5353 | 0.3141 | 0.4079 | 0.3215 | 0.3854 | 0.4079 | 0.6146 |
| 1.5081 | 3.0 | 114 | 1.4782 | 0.5684 | 0.4671 | 0.3961 | 0.4436 | 0.4671 | 0.5564 |
| 1.4278 | 4.0 | 152 | 1.3718 | 0.7088 | 0.6053 | 0.5840 | 0.5866 | 0.6053 | 0.4134 |
| 1.2938 | 5.0 | 190 | 1.1909 | 0.8582 | 0.8355 | 0.8378 | 0.8290 | 0.8355 | 0.1710 |
| 1.0696 | 6.0 | 228 | 0.9353 | 0.9243 | 0.9211 | 0.9215 | 0.9205 | 0.9211 | 0.0795 |
| 0.789 | 7.0 | 266 | 0.6347 | 0.9680 | 0.9671 | 0.9673 | 0.9691 | 0.9671 | 0.0309 |
| 0.506 | 8.0 | 304 | 0.3910 | 0.9750 | 0.9737 | 0.9739 | 0.9752 | 0.9737 | 0.0248 |
| 0.2876 | 9.0 | 342 | 0.2126 | 0.9808 | 0.9803 | 0.9802 | 0.9814 | 0.9803 | 0.0186 |
| 0.1722 | 10.0 | 380 | 0.1409 | 0.9809 | 0.9803 | 0.9799 | 0.9818 | 0.9803 | 0.0182 |
| 0.1082 | 11.0 | 418 | 0.0794 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 |
| 0.0715 | 12.0 | 456 | 0.0577 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 |
| 0.0492 | 13.0 | 494 | 0.0440 | 0.9872 | 0.9868 | 0.9867 | 0.9879 | 0.9868 | 0.0121 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1