End of training
Browse files- .gitattributes +1 -0
- README.md +47 -55
- all_results.json +16 -16
- classification_report.png +0 -0
- config.json +1 -1
- eval_results.json +11 -11
- integrated_gradients_grid.jpg +3 -0
- model.safetensors +1 -1
- train_and_eval.jpg +0 -0
- train_results.json +6 -6
- trainer_state.json +588 -238
- training_args.bin +2 -2
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
integrated_gradients_grid.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -4,8 +4,6 @@ license: apache-2.0
|
|
4 |
base_model: facebook/convnext-tiny-224
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
-
datasets:
|
8 |
-
- imagefolder
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
@@ -13,29 +11,7 @@ metrics:
|
|
13 |
- accuracy
|
14 |
model-index:
|
15 |
- name: convnext-tiny-224-finetuned-barkley
|
16 |
-
results:
|
17 |
-
- task:
|
18 |
-
name: Image Classification
|
19 |
-
type: image-classification
|
20 |
-
dataset:
|
21 |
-
name: imagefolder
|
22 |
-
type: imagefolder
|
23 |
-
config: default
|
24 |
-
split: train
|
25 |
-
args: default
|
26 |
-
metrics:
|
27 |
-
- name: Precision
|
28 |
-
type: precision
|
29 |
-
value: 0.9936145510835913
|
30 |
-
- name: Recall
|
31 |
-
type: recall
|
32 |
-
value: 0.993421052631579
|
33 |
-
- name: F1
|
34 |
-
type: f1
|
35 |
-
value: 0.993419541966282
|
36 |
-
- name: Accuracy
|
37 |
-
type: accuracy
|
38 |
-
value: 0.9939393939393939
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,15 +19,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
# convnext-tiny-224-finetuned-barkley
|
45 |
|
46 |
-
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0
|
50 |
-
- Recall: 0
|
51 |
-
- F1: 0
|
52 |
-
- Accuracy: 0
|
53 |
-
- Top1 Accuracy: 0
|
54 |
-
- Error Rate: 0.
|
55 |
|
56 |
## Model description
|
57 |
|
@@ -71,9 +47,11 @@ More information needed
|
|
71 |
|
72 |
The following hyperparameters were used during training:
|
73 |
- learning_rate: 0.0002
|
74 |
-
- train_batch_size:
|
75 |
-
- eval_batch_size:
|
76 |
- seed: 42
|
|
|
|
|
77 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
- lr_scheduler_type: linear
|
79 |
- lr_scheduler_warmup_ratio: 0.1
|
@@ -82,29 +60,43 @@ The following hyperparameters were used during training:
|
|
82 |
|
83 |
### Training results
|
84 |
|
85 |
-
| Training Loss | Epoch | Step |
|
86 |
-
|
87 |
-
| 1.
|
88 |
-
| 1.
|
89 |
-
| 1.
|
90 |
-
| 1.
|
91 |
-
| 1.
|
92 |
-
| 1.
|
93 |
-
|
|
94 |
-
|
|
95 |
-
|
|
96 |
-
|
|
97 |
-
|
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
|
105 |
### Framework versions
|
106 |
|
107 |
-
- Transformers 4.
|
108 |
- Pytorch 2.3.1+cu121
|
109 |
- Datasets 3.0.1
|
110 |
-
- Tokenizers 0.
|
|
|
4 |
base_model: facebook/convnext-tiny-224
|
5 |
tags:
|
6 |
- generated_from_trainer
|
|
|
|
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
|
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
- name: convnext-tiny-224-finetuned-barkley
|
14 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
19 |
|
20 |
# convnext-tiny-224-finetuned-barkley
|
21 |
|
22 |
+
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0128
|
25 |
+
- Precision: 1.0
|
26 |
+
- Recall: 1.0
|
27 |
+
- F1: 1.0
|
28 |
+
- Accuracy: 1.0
|
29 |
+
- Top1 Accuracy: 1.0
|
30 |
+
- Error Rate: 0.0
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
- learning_rate: 0.0002
|
50 |
+
- train_batch_size: 8
|
51 |
+
- eval_batch_size: 8
|
52 |
- seed: 42
|
53 |
+
- gradient_accumulation_steps: 4
|
54 |
+
- total_train_batch_size: 32
|
55 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
- lr_scheduler_type: linear
|
57 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
60 |
|
61 |
### Training results
|
62 |
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate |
|
64 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|
|
65 |
+
| 1.6288 | 1.0 | 38 | 1.6005 | 0.2133 | 0.2697 | 0.2043 | 0.2371 | 0.2697 | 0.7629 |
|
66 |
+
| 1.6059 | 2.0 | 76 | 1.5802 | 0.2384 | 0.2763 | 0.2243 | 0.2473 | 0.2763 | 0.7527 |
|
67 |
+
| 1.5808 | 3.0 | 114 | 1.5570 | 0.2778 | 0.3026 | 0.2595 | 0.2744 | 0.3026 | 0.7256 |
|
68 |
+
| 1.5555 | 4.0 | 152 | 1.5291 | 0.3831 | 0.375 | 0.3491 | 0.3511 | 0.375 | 0.6489 |
|
69 |
+
| 1.5232 | 5.0 | 190 | 1.4933 | 0.4252 | 0.4408 | 0.4154 | 0.4147 | 0.4408 | 0.5853 |
|
70 |
+
| 1.4784 | 6.0 | 228 | 1.4484 | 0.5076 | 0.5197 | 0.4926 | 0.4972 | 0.5197 | 0.5028 |
|
71 |
+
| 1.4242 | 7.0 | 266 | 1.3902 | 0.6857 | 0.6382 | 0.6307 | 0.6249 | 0.6382 | 0.3751 |
|
72 |
+
| 1.3586 | 8.0 | 304 | 1.3186 | 0.7728 | 0.7171 | 0.7166 | 0.7134 | 0.7171 | 0.2866 |
|
73 |
+
| 1.276 | 9.0 | 342 | 1.2236 | 0.8547 | 0.8026 | 0.8109 | 0.8060 | 0.8026 | 0.1940 |
|
74 |
+
| 1.1778 | 10.0 | 380 | 1.1122 | 0.8899 | 0.8553 | 0.8609 | 0.8601 | 0.8553 | 0.1399 |
|
75 |
+
| 1.0543 | 11.0 | 418 | 0.9839 | 0.9064 | 0.8947 | 0.8958 | 0.9005 | 0.8947 | 0.0995 |
|
76 |
+
| 0.921 | 12.0 | 456 | 0.8418 | 0.9541 | 0.9539 | 0.9537 | 0.9575 | 0.9539 | 0.0425 |
|
77 |
+
| 0.773 | 13.0 | 494 | 0.6935 | 0.9624 | 0.9605 | 0.9605 | 0.9652 | 0.9605 | 0.0348 |
|
78 |
+
| 0.6204 | 14.0 | 532 | 0.5515 | 0.9688 | 0.9671 | 0.9672 | 0.9708 | 0.9671 | 0.0292 |
|
79 |
+
| 0.4835 | 15.0 | 570 | 0.4146 | 0.9704 | 0.9671 | 0.9676 | 0.9697 | 0.9671 | 0.0303 |
|
80 |
+
| 0.3641 | 16.0 | 608 | 0.3043 | 0.9805 | 0.9803 | 0.9802 | 0.9830 | 0.9803 | 0.0170 |
|
81 |
+
| 0.2706 | 17.0 | 646 | 0.2247 | 0.9805 | 0.9803 | 0.9802 | 0.9830 | 0.9803 | 0.0170 |
|
82 |
+
| 0.1998 | 18.0 | 684 | 0.1705 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
|
83 |
+
| 0.1446 | 19.0 | 722 | 0.1271 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
|
84 |
+
| 0.1106 | 20.0 | 760 | 0.1047 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
|
85 |
+
| 0.0872 | 21.0 | 798 | 0.0780 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
|
86 |
+
| 0.0614 | 22.0 | 836 | 0.0739 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
|
87 |
+
| 0.0491 | 23.0 | 874 | 0.0517 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
|
88 |
+
| 0.0365 | 24.0 | 912 | 0.0401 | 0.9871 | 0.9868 | 0.9868 | 0.9878 | 0.9868 | 0.0122 |
|
89 |
+
| 0.0255 | 25.0 | 950 | 0.0336 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
|
90 |
+
| 0.0212 | 26.0 | 988 | 0.0377 | 0.9873 | 0.9868 | 0.9868 | 0.9889 | 0.9868 | 0.0111 |
|
91 |
+
| 0.0175 | 27.0 | 1026 | 0.0195 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
|
92 |
+
| 0.0125 | 28.0 | 1064 | 0.0214 | 0.9936 | 0.9934 | 0.9934 | 0.9933 | 0.9934 | 0.0067 |
|
93 |
+
| 0.0155 | 29.0 | 1102 | 0.0128 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 |
|
94 |
+
| 0.0104 | 30.0 | 1140 | 0.0159 | 0.9937 | 0.9934 | 0.9934 | 0.9944 | 0.9934 | 0.0056 |
|
95 |
|
96 |
|
97 |
### Framework versions
|
98 |
|
99 |
+
- Transformers 4.44.2
|
100 |
- Pytorch 2.3.1+cu121
|
101 |
- Datasets 3.0.1
|
102 |
+
- Tokenizers 0.19.1
|
all_results.json
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0
|
4 |
-
"eval_error_rate": 0.
|
5 |
-
"eval_f1": 0
|
6 |
-
"eval_loss": 0.
|
7 |
-
"eval_precision": 0
|
8 |
-
"eval_recall": 0
|
9 |
-
"eval_runtime":
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second": 0.
|
12 |
-
"eval_top1_accuracy": 0
|
13 |
-
"total_flos":
|
14 |
-
"train_loss": 0.
|
15 |
-
"train_runtime":
|
16 |
-
"train_samples_per_second":
|
17 |
-
"train_steps_per_second": 0.
|
18 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_accuracy": 1.0,
|
4 |
+
"eval_error_rate": 0.0,
|
5 |
+
"eval_f1": 1.0,
|
6 |
+
"eval_loss": 0.012786287814378738,
|
7 |
+
"eval_precision": 1.0,
|
8 |
+
"eval_recall": 1.0,
|
9 |
+
"eval_runtime": 55.4352,
|
10 |
+
"eval_samples_per_second": 2.742,
|
11 |
+
"eval_steps_per_second": 0.343,
|
12 |
+
"eval_top1_accuracy": 1.0,
|
13 |
+
"total_flos": 9.167322602550067e+17,
|
14 |
+
"train_loss": 0.6629255272840199,
|
15 |
+
"train_runtime": 13519.4546,
|
16 |
+
"train_samples_per_second": 2.698,
|
17 |
+
"train_steps_per_second": 0.084
|
18 |
}
|
classification_report.png
ADDED
![]() |
config.json
CHANGED
@@ -54,5 +54,5 @@
|
|
54 |
"stage4"
|
55 |
],
|
56 |
"torch_dtype": "float32",
|
57 |
-
"transformers_version": "4.
|
58 |
}
|
|
|
54 |
"stage4"
|
55 |
],
|
56 |
"torch_dtype": "float32",
|
57 |
+
"transformers_version": "4.44.2"
|
58 |
}
|
eval_results.json
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0
|
4 |
-
"eval_error_rate": 0.
|
5 |
-
"eval_f1": 0
|
6 |
-
"eval_loss": 0.
|
7 |
-
"eval_precision": 0
|
8 |
-
"eval_recall": 0
|
9 |
-
"eval_runtime":
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second": 0.
|
12 |
-
"eval_top1_accuracy": 0
|
13 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_accuracy": 1.0,
|
4 |
+
"eval_error_rate": 0.0,
|
5 |
+
"eval_f1": 1.0,
|
6 |
+
"eval_loss": 0.012786287814378738,
|
7 |
+
"eval_precision": 1.0,
|
8 |
+
"eval_recall": 1.0,
|
9 |
+
"eval_runtime": 55.4352,
|
10 |
+
"eval_samples_per_second": 2.742,
|
11 |
+
"eval_steps_per_second": 0.343,
|
12 |
+
"eval_top1_accuracy": 1.0
|
13 |
}
|
integrated_gradients_grid.jpg
ADDED
![]() |
Git LFS Details
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 111317164
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e5faa27c00aa42aa187e40f60ad05ba472a4242928fe76fc51a447cebef11be
|
3 |
size 111317164
|
train_and_eval.jpg
ADDED
![]() |
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos":
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second": 0.
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"total_flos": 9.167322602550067e+17,
|
4 |
+
"train_loss": 0.6629255272840199,
|
5 |
+
"train_runtime": 13519.4546,
|
6 |
+
"train_samples_per_second": 2.698,
|
7 |
+
"train_steps_per_second": 0.084
|
8 |
}
|
trainer_state.json
CHANGED
@@ -1,424 +1,774 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
-
"best_model_checkpoint": "convnext-tiny-224-finetuned-barkley\\checkpoint-
|
4 |
-
"epoch":
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
-
"train_accuracy": 0.
|
14 |
},
|
15 |
{
|
16 |
"epoch": 1.0,
|
17 |
-
"grad_norm": 2.
|
18 |
-
"learning_rate":
|
19 |
-
"loss": 1.
|
20 |
"step": 38
|
21 |
},
|
22 |
{
|
23 |
"epoch": 1.0,
|
24 |
-
"eval_accuracy": 0.
|
25 |
-
"eval_error_rate": 0.
|
26 |
-
"eval_f1": 0.
|
27 |
-
"eval_loss": 1.
|
28 |
-
"eval_precision": 0.
|
29 |
-
"eval_recall": 0.
|
30 |
-
"eval_runtime":
|
31 |
-
"eval_samples_per_second":
|
32 |
-
"eval_steps_per_second": 0.
|
33 |
-
"eval_top1_accuracy": 0.
|
34 |
"step": 38
|
35 |
},
|
36 |
{
|
37 |
"epoch": 2.0,
|
38 |
-
"train_accuracy": 0.
|
39 |
},
|
40 |
{
|
41 |
"epoch": 2.0,
|
42 |
-
"grad_norm": 2.
|
43 |
-
"learning_rate":
|
44 |
-
"loss": 1.
|
45 |
"step": 76
|
46 |
},
|
47 |
{
|
48 |
"epoch": 2.0,
|
49 |
-
"eval_accuracy": 0.
|
50 |
-
"eval_error_rate": 0.
|
51 |
-
"eval_f1": 0.
|
52 |
-
"eval_loss": 1.
|
53 |
-
"eval_precision": 0.
|
54 |
-
"eval_recall": 0.
|
55 |
-
"eval_runtime":
|
56 |
-
"eval_samples_per_second":
|
57 |
-
"eval_steps_per_second": 0.
|
58 |
-
"eval_top1_accuracy": 0.
|
59 |
"step": 76
|
60 |
},
|
61 |
{
|
62 |
"epoch": 3.0,
|
63 |
-
"train_accuracy": 0.
|
64 |
},
|
65 |
{
|
66 |
"epoch": 3.0,
|
67 |
-
"grad_norm": 2.
|
68 |
-
"learning_rate":
|
69 |
-
"loss": 1.
|
70 |
"step": 114
|
71 |
},
|
72 |
{
|
73 |
"epoch": 3.0,
|
74 |
-
"eval_accuracy": 0.
|
75 |
-
"eval_error_rate": 0.
|
76 |
-
"eval_f1": 0.
|
77 |
-
"eval_loss": 1.
|
78 |
-
"eval_precision": 0.
|
79 |
-
"eval_recall": 0.
|
80 |
-
"eval_runtime":
|
81 |
-
"eval_samples_per_second":
|
82 |
-
"eval_steps_per_second": 0.
|
83 |
-
"eval_top1_accuracy": 0.
|
84 |
"step": 114
|
85 |
},
|
86 |
{
|
87 |
"epoch": 4.0,
|
88 |
-
"train_accuracy": 0.
|
89 |
},
|
90 |
{
|
91 |
"epoch": 4.0,
|
92 |
-
"grad_norm": 2.
|
93 |
-
"learning_rate":
|
94 |
-
"loss": 1.
|
95 |
"step": 152
|
96 |
},
|
97 |
{
|
98 |
"epoch": 4.0,
|
99 |
-
"eval_accuracy": 0.
|
100 |
-
"eval_error_rate": 0.
|
101 |
-
"eval_f1": 0.
|
102 |
-
"eval_loss": 1.
|
103 |
-
"eval_precision": 0.
|
104 |
-
"eval_recall": 0.
|
105 |
-
"eval_runtime":
|
106 |
-
"eval_samples_per_second":
|
107 |
-
"eval_steps_per_second": 0.
|
108 |
-
"eval_top1_accuracy": 0.
|
109 |
"step": 152
|
110 |
},
|
111 |
{
|
112 |
"epoch": 5.0,
|
113 |
-
"train_accuracy": 0.
|
114 |
},
|
115 |
{
|
116 |
"epoch": 5.0,
|
117 |
-
"grad_norm":
|
118 |
-
"learning_rate":
|
119 |
-
"loss": 1.
|
120 |
"step": 190
|
121 |
},
|
122 |
{
|
123 |
"epoch": 5.0,
|
124 |
-
"eval_accuracy": 0.
|
125 |
-
"eval_error_rate": 0.
|
126 |
-
"eval_f1": 0.
|
127 |
-
"eval_loss": 1.
|
128 |
-
"eval_precision": 0.
|
129 |
-
"eval_recall": 0.
|
130 |
-
"eval_runtime":
|
131 |
-
"eval_samples_per_second":
|
132 |
-
"eval_steps_per_second": 0.
|
133 |
-
"eval_top1_accuracy": 0.
|
134 |
"step": 190
|
135 |
},
|
136 |
{
|
137 |
"epoch": 6.0,
|
138 |
-
"train_accuracy": 0.
|
139 |
},
|
140 |
{
|
141 |
"epoch": 6.0,
|
142 |
-
"grad_norm": 2.
|
143 |
-
"learning_rate":
|
144 |
-
"loss": 1.
|
145 |
"step": 228
|
146 |
},
|
147 |
{
|
148 |
"epoch": 6.0,
|
149 |
-
"eval_accuracy": 0.
|
150 |
-
"eval_error_rate": 0.
|
151 |
-
"eval_f1": 0.
|
152 |
-
"eval_loss":
|
153 |
-
"eval_precision": 0.
|
154 |
-
"eval_recall": 0.
|
155 |
-
"eval_runtime":
|
156 |
-
"eval_samples_per_second": 2.
|
157 |
-
"eval_steps_per_second": 0.
|
158 |
-
"eval_top1_accuracy": 0.
|
159 |
"step": 228
|
160 |
},
|
161 |
{
|
162 |
"epoch": 7.0,
|
163 |
-
"train_accuracy": 0.
|
164 |
},
|
165 |
{
|
166 |
"epoch": 7.0,
|
167 |
-
"grad_norm": 3.
|
168 |
-
"learning_rate":
|
169 |
-
"loss":
|
170 |
"step": 266
|
171 |
},
|
172 |
{
|
173 |
"epoch": 7.0,
|
174 |
-
"eval_accuracy": 0.
|
175 |
-
"eval_error_rate": 0.
|
176 |
-
"eval_f1": 0.
|
177 |
-
"eval_loss":
|
178 |
-
"eval_precision": 0.
|
179 |
-
"eval_recall": 0.
|
180 |
-
"eval_runtime":
|
181 |
-
"eval_samples_per_second": 2.
|
182 |
-
"eval_steps_per_second": 0.
|
183 |
-
"eval_top1_accuracy": 0.
|
184 |
"step": 266
|
185 |
},
|
186 |
{
|
187 |
"epoch": 8.0,
|
188 |
-
"train_accuracy": 0.
|
189 |
},
|
190 |
{
|
191 |
"epoch": 8.0,
|
192 |
-
"grad_norm":
|
193 |
-
"learning_rate":
|
194 |
-
"loss":
|
195 |
"step": 304
|
196 |
},
|
197 |
{
|
198 |
"epoch": 8.0,
|
199 |
-
"eval_accuracy": 0.
|
200 |
-
"eval_error_rate": 0.
|
201 |
-
"eval_f1": 0.
|
202 |
-
"eval_loss":
|
203 |
-
"eval_precision": 0.
|
204 |
-
"eval_recall": 0.
|
205 |
-
"eval_runtime":
|
206 |
-
"eval_samples_per_second":
|
207 |
-
"eval_steps_per_second": 0.
|
208 |
-
"eval_top1_accuracy": 0.
|
209 |
"step": 304
|
210 |
},
|
211 |
{
|
212 |
"epoch": 9.0,
|
213 |
-
"train_accuracy": 0.
|
214 |
},
|
215 |
{
|
216 |
"epoch": 9.0,
|
217 |
-
"grad_norm": 2.
|
218 |
-
"learning_rate":
|
219 |
-
"loss":
|
220 |
"step": 342
|
221 |
},
|
222 |
{
|
223 |
"epoch": 9.0,
|
224 |
-
"eval_accuracy": 0.
|
225 |
-
"eval_error_rate": 0.
|
226 |
-
"eval_f1": 0.
|
227 |
-
"eval_loss":
|
228 |
-
"eval_precision": 0.
|
229 |
-
"eval_recall": 0.
|
230 |
-
"eval_runtime":
|
231 |
-
"eval_samples_per_second":
|
232 |
-
"eval_steps_per_second": 0.
|
233 |
-
"eval_top1_accuracy": 0.
|
234 |
"step": 342
|
235 |
},
|
236 |
{
|
237 |
"epoch": 10.0,
|
238 |
-
"train_accuracy": 0.
|
239 |
},
|
240 |
{
|
241 |
"epoch": 10.0,
|
242 |
-
"grad_norm": 3.
|
243 |
-
"learning_rate":
|
244 |
-
"loss":
|
245 |
"step": 380
|
246 |
},
|
247 |
{
|
248 |
"epoch": 10.0,
|
249 |
-
"eval_accuracy": 0.
|
250 |
-
"eval_error_rate": 0.
|
251 |
-
"eval_f1": 0.
|
252 |
-
"eval_loss":
|
253 |
-
"eval_precision": 0.
|
254 |
-
"eval_recall": 0.
|
255 |
-
"eval_runtime":
|
256 |
-
"eval_samples_per_second":
|
257 |
-
"eval_steps_per_second": 0.
|
258 |
-
"eval_top1_accuracy": 0.
|
259 |
"step": 380
|
260 |
},
|
261 |
{
|
262 |
"epoch": 11.0,
|
263 |
-
"train_accuracy": 0.
|
264 |
},
|
265 |
{
|
266 |
"epoch": 11.0,
|
267 |
-
"grad_norm":
|
268 |
-
"learning_rate":
|
269 |
-
"loss":
|
270 |
"step": 418
|
271 |
},
|
272 |
{
|
273 |
"epoch": 11.0,
|
274 |
-
"eval_accuracy": 0.
|
275 |
-
"eval_error_rate": 0.
|
276 |
-
"eval_f1": 0.
|
277 |
-
"eval_loss": 0.
|
278 |
-
"eval_precision": 0.
|
279 |
-
"eval_recall": 0.
|
280 |
-
"eval_runtime":
|
281 |
-
"eval_samples_per_second": 2.
|
282 |
-
"eval_steps_per_second": 0.
|
283 |
-
"eval_top1_accuracy": 0.
|
284 |
"step": 418
|
285 |
},
|
286 |
{
|
287 |
"epoch": 12.0,
|
288 |
-
"train_accuracy": 0.
|
289 |
},
|
290 |
{
|
291 |
"epoch": 12.0,
|
292 |
-
"grad_norm":
|
293 |
-
"learning_rate":
|
294 |
-
"loss": 0.
|
295 |
"step": 456
|
296 |
},
|
297 |
{
|
298 |
"epoch": 12.0,
|
299 |
-
"eval_accuracy": 0.
|
300 |
-
"eval_error_rate": 0.
|
301 |
-
"eval_f1": 0.
|
302 |
-
"eval_loss": 0.
|
303 |
-
"eval_precision": 0.
|
304 |
-
"eval_recall": 0.
|
305 |
-
"eval_runtime":
|
306 |
-
"eval_samples_per_second": 2.
|
307 |
-
"eval_steps_per_second": 0.
|
308 |
-
"eval_top1_accuracy": 0.
|
309 |
"step": 456
|
310 |
},
|
311 |
{
|
312 |
"epoch": 13.0,
|
313 |
-
"train_accuracy": 0.
|
314 |
},
|
315 |
{
|
316 |
"epoch": 13.0,
|
317 |
-
"grad_norm":
|
318 |
-
"learning_rate":
|
319 |
-
"loss": 0.
|
320 |
"step": 494
|
321 |
},
|
322 |
{
|
323 |
"epoch": 13.0,
|
324 |
-
"eval_accuracy": 0.
|
325 |
-
"eval_error_rate": 0.
|
326 |
-
"eval_f1": 0.
|
327 |
-
"eval_loss": 0.
|
328 |
-
"eval_precision": 0.
|
329 |
-
"eval_recall": 0.
|
330 |
-
"eval_runtime":
|
331 |
-
"eval_samples_per_second": 2.
|
332 |
-
"eval_steps_per_second": 0.
|
333 |
-
"eval_top1_accuracy": 0.
|
334 |
"step": 494
|
335 |
},
|
336 |
{
|
337 |
"epoch": 14.0,
|
338 |
-
"train_accuracy": 0.
|
339 |
},
|
340 |
{
|
341 |
"epoch": 14.0,
|
342 |
-
"grad_norm":
|
343 |
-
"learning_rate":
|
344 |
-
"loss": 0.
|
345 |
"step": 532
|
346 |
},
|
347 |
{
|
348 |
"epoch": 14.0,
|
349 |
-
"eval_accuracy": 0.
|
350 |
-
"eval_error_rate": 0.
|
351 |
-
"eval_f1": 0.
|
352 |
-
"eval_loss": 0.
|
353 |
-
"eval_precision": 0.
|
354 |
-
"eval_recall": 0.
|
355 |
-
"eval_runtime":
|
356 |
-
"eval_samples_per_second": 2.
|
357 |
-
"eval_steps_per_second": 0.
|
358 |
-
"eval_top1_accuracy": 0.
|
359 |
"step": 532
|
360 |
},
|
361 |
{
|
362 |
"epoch": 15.0,
|
363 |
-
"train_accuracy": 0.
|
364 |
},
|
365 |
{
|
366 |
"epoch": 15.0,
|
367 |
-
"grad_norm":
|
368 |
-
"learning_rate":
|
369 |
-
"loss": 0.
|
370 |
"step": 570
|
371 |
},
|
372 |
{
|
373 |
"epoch": 15.0,
|
374 |
-
"eval_accuracy": 0.
|
375 |
-
"eval_error_rate": 0.
|
376 |
-
"eval_f1": 0.
|
377 |
-
"eval_loss": 0.
|
378 |
-
"eval_precision": 0.
|
379 |
-
"eval_recall": 0.
|
380 |
-
"eval_runtime":
|
381 |
-
"eval_samples_per_second":
|
382 |
-
"eval_steps_per_second": 0.
|
383 |
-
"eval_top1_accuracy": 0.
|
384 |
"step": 570
|
385 |
},
|
386 |
{
|
387 |
"epoch": 16.0,
|
388 |
-
"train_accuracy": 0.
|
389 |
},
|
390 |
{
|
391 |
"epoch": 16.0,
|
392 |
-
"grad_norm":
|
393 |
-
"learning_rate":
|
394 |
-
"loss": 0.
|
395 |
"step": 608
|
396 |
},
|
397 |
{
|
398 |
"epoch": 16.0,
|
399 |
-
"eval_accuracy": 0.
|
400 |
-
"eval_error_rate": 0.
|
401 |
-
"eval_f1": 0.
|
402 |
-
"eval_loss": 0.
|
403 |
-
"eval_precision": 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
"eval_recall": 0.9868421052631579,
|
405 |
-
"eval_runtime":
|
406 |
-
"eval_samples_per_second":
|
407 |
-
"eval_steps_per_second": 0.
|
408 |
"eval_top1_accuracy": 0.9868421052631579,
|
409 |
-
"step":
|
410 |
},
|
411 |
{
|
412 |
-
"epoch":
|
413 |
-
"
|
414 |
-
|
415 |
-
|
416 |
-
"
|
417 |
-
"
|
418 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
}
|
420 |
],
|
421 |
-
"logging_steps":
|
422 |
"max_steps": 1140,
|
423 |
"num_input_tokens_seen": 0,
|
424 |
"num_train_epochs": 30,
|
@@ -430,7 +780,7 @@
|
|
430 |
"early_stopping_threshold": 0.0
|
431 |
},
|
432 |
"attributes": {
|
433 |
-
"early_stopping_patience_counter":
|
434 |
}
|
435 |
},
|
436 |
"TrainerControl": {
|
@@ -444,8 +794,8 @@
|
|
444 |
"attributes": {}
|
445 |
}
|
446 |
},
|
447 |
-
"total_flos":
|
448 |
-
"train_batch_size":
|
449 |
"trial_name": null,
|
450 |
"trial_params": null
|
451 |
}
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.012786287814378738,
|
3 |
+
"best_model_checkpoint": "convnext-tiny-224-finetuned-barkley\\checkpoint-1102",
|
4 |
+
"epoch": 30.0,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 1140,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 1.0,
|
13 |
+
"train_accuracy": 0.2138157894736842
|
14 |
},
|
15 |
{
|
16 |
"epoch": 1.0,
|
17 |
+
"grad_norm": 2.7230629920959473,
|
18 |
+
"learning_rate": 8.365843306988109e-07,
|
19 |
+
"loss": 1.6288,
|
20 |
"step": 38
|
21 |
},
|
22 |
{
|
23 |
"epoch": 1.0,
|
24 |
+
"eval_accuracy": 0.2371292106586224,
|
25 |
+
"eval_error_rate": 0.7628707893413775,
|
26 |
+
"eval_f1": 0.20430842832369756,
|
27 |
+
"eval_loss": 1.6004831790924072,
|
28 |
+
"eval_precision": 0.2132792246940375,
|
29 |
+
"eval_recall": 0.26973684210526316,
|
30 |
+
"eval_runtime": 41.666,
|
31 |
+
"eval_samples_per_second": 3.648,
|
32 |
+
"eval_steps_per_second": 0.456,
|
33 |
+
"eval_top1_accuracy": 0.26973684210526316,
|
34 |
"step": 38
|
35 |
},
|
36 |
{
|
37 |
"epoch": 2.0,
|
38 |
+
"train_accuracy": 0.25
|
39 |
},
|
40 |
{
|
41 |
"epoch": 2.0,
|
42 |
+
"grad_norm": 2.8333628177642822,
|
43 |
+
"learning_rate": 9.460584867009364e-07,
|
44 |
+
"loss": 1.6059,
|
45 |
"step": 76
|
46 |
},
|
47 |
{
|
48 |
"epoch": 2.0,
|
49 |
+
"eval_accuracy": 0.24728506787330323,
|
50 |
+
"eval_error_rate": 0.7527149321266968,
|
51 |
+
"eval_f1": 0.2243479907737179,
|
52 |
+
"eval_loss": 1.5801552534103394,
|
53 |
+
"eval_precision": 0.2383676582761251,
|
54 |
+
"eval_recall": 0.27631578947368424,
|
55 |
+
"eval_runtime": 40.3741,
|
56 |
+
"eval_samples_per_second": 3.765,
|
57 |
+
"eval_steps_per_second": 0.471,
|
58 |
+
"eval_top1_accuracy": 0.27631578947368424,
|
59 |
"step": 76
|
60 |
},
|
61 |
{
|
62 |
"epoch": 3.0,
|
63 |
+
"train_accuracy": 0.2894736842105263
|
64 |
},
|
65 |
{
|
66 |
"epoch": 3.0,
|
67 |
+
"grad_norm": 2.8583333492279053,
|
68 |
+
"learning_rate": 1.1275880849384341e-06,
|
69 |
+
"loss": 1.5808,
|
70 |
"step": 114
|
71 |
},
|
72 |
{
|
73 |
"epoch": 3.0,
|
74 |
+
"eval_accuracy": 0.2744343891402715,
|
75 |
+
"eval_error_rate": 0.7255656108597285,
|
76 |
+
"eval_f1": 0.25945030547058157,
|
77 |
+
"eval_loss": 1.5570068359375,
|
78 |
+
"eval_precision": 0.2778035204289794,
|
79 |
+
"eval_recall": 0.3026315789473684,
|
80 |
+
"eval_runtime": 25.2172,
|
81 |
+
"eval_samples_per_second": 6.028,
|
82 |
+
"eval_steps_per_second": 0.753,
|
83 |
+
"eval_top1_accuracy": 0.3026315789473684,
|
84 |
"step": 114
|
85 |
},
|
86 |
{
|
87 |
"epoch": 4.0,
|
88 |
+
"train_accuracy": 0.32383040935672514
|
89 |
},
|
90 |
{
|
91 |
"epoch": 4.0,
|
92 |
+
"grad_norm": 2.166118860244751,
|
93 |
+
"learning_rate": 1.3797895548168056e-06,
|
94 |
+
"loss": 1.5555,
|
95 |
"step": 152
|
96 |
},
|
97 |
{
|
98 |
"epoch": 4.0,
|
99 |
+
"eval_accuracy": 0.3510859728506787,
|
100 |
+
"eval_error_rate": 0.6489140271493212,
|
101 |
+
"eval_f1": 0.3490548373858623,
|
102 |
+
"eval_loss": 1.5290976762771606,
|
103 |
+
"eval_precision": 0.3831372574793627,
|
104 |
+
"eval_recall": 0.375,
|
105 |
+
"eval_runtime": 28.1947,
|
106 |
+
"eval_samples_per_second": 5.391,
|
107 |
+
"eval_steps_per_second": 0.674,
|
108 |
+
"eval_top1_accuracy": 0.375,
|
109 |
"step": 152
|
110 |
},
|
111 |
{
|
112 |
"epoch": 5.0,
|
113 |
+
"train_accuracy": 0.38742690058479534
|
114 |
},
|
115 |
{
|
116 |
"epoch": 5.0,
|
117 |
+
"grad_norm": 2.677858591079712,
|
118 |
+
"learning_rate": 1.7007406834242322e-06,
|
119 |
+
"loss": 1.5232,
|
120 |
"step": 190
|
121 |
},
|
122 |
{
|
123 |
"epoch": 5.0,
|
124 |
+
"eval_accuracy": 0.41472599296128704,
|
125 |
+
"eval_error_rate": 0.585274007038713,
|
126 |
+
"eval_f1": 0.41544045031957555,
|
127 |
+
"eval_loss": 1.4932990074157715,
|
128 |
+
"eval_precision": 0.4251577933805101,
|
129 |
+
"eval_recall": 0.4407894736842105,
|
130 |
+
"eval_runtime": 25.5314,
|
131 |
+
"eval_samples_per_second": 5.953,
|
132 |
+
"eval_steps_per_second": 0.744,
|
133 |
+
"eval_top1_accuracy": 0.4407894736842105,
|
134 |
"step": 190
|
135 |
},
|
136 |
{
|
137 |
"epoch": 6.0,
|
138 |
+
"train_accuracy": 0.47076023391812866
|
139 |
},
|
140 |
{
|
141 |
"epoch": 6.0,
|
142 |
+
"grad_norm": 2.4222543239593506,
|
143 |
+
"learning_rate": 2.087995266130065e-06,
|
144 |
+
"loss": 1.4784,
|
145 |
"step": 228
|
146 |
},
|
147 |
{
|
148 |
"epoch": 6.0,
|
149 |
+
"eval_accuracy": 0.49721468074409253,
|
150 |
+
"eval_error_rate": 0.5027853192559075,
|
151 |
+
"eval_f1": 0.4925881060058483,
|
152 |
+
"eval_loss": 1.4484349489212036,
|
153 |
+
"eval_precision": 0.5076020884114232,
|
154 |
+
"eval_recall": 0.5197368421052632,
|
155 |
+
"eval_runtime": 56.6448,
|
156 |
+
"eval_samples_per_second": 2.683,
|
157 |
+
"eval_steps_per_second": 0.335,
|
158 |
+
"eval_top1_accuracy": 0.5197368421052632,
|
159 |
"step": 228
|
160 |
},
|
161 |
{
|
162 |
"epoch": 7.0,
|
163 |
+
"train_accuracy": 0.5701754385964912
|
164 |
},
|
165 |
{
|
166 |
"epoch": 7.0,
|
167 |
+
"grad_norm": 3.0168983936309814,
|
168 |
+
"learning_rate": 2.5386017509096417e-06,
|
169 |
+
"loss": 1.4242,
|
170 |
"step": 266
|
171 |
},
|
172 |
{
|
173 |
"epoch": 7.0,
|
174 |
+
"eval_accuracy": 0.6248768225238813,
|
175 |
+
"eval_error_rate": 0.3751231774761187,
|
176 |
+
"eval_f1": 0.6307132735050356,
|
177 |
+
"eval_loss": 1.390175223350525,
|
178 |
+
"eval_precision": 0.6856800923548139,
|
179 |
+
"eval_recall": 0.6381578947368421,
|
180 |
+
"eval_runtime": 59.0359,
|
181 |
+
"eval_samples_per_second": 2.575,
|
182 |
+
"eval_steps_per_second": 0.322,
|
183 |
+
"eval_top1_accuracy": 0.6381578947368421,
|
184 |
"step": 266
|
185 |
},
|
186 |
{
|
187 |
"epoch": 8.0,
|
188 |
+
"train_accuracy": 0.6498538011695907
|
189 |
},
|
190 |
{
|
191 |
"epoch": 8.0,
|
192 |
+
"grad_norm": 2.808101177215576,
|
193 |
+
"learning_rate": 3.049125734293339e-06,
|
194 |
+
"loss": 1.3586,
|
195 |
"step": 304
|
196 |
},
|
197 |
{
|
198 |
"epoch": 8.0,
|
199 |
+
"eval_accuracy": 0.7134087481146305,
|
200 |
+
"eval_error_rate": 0.2865912518853695,
|
201 |
+
"eval_f1": 0.7165677244674166,
|
202 |
+
"eval_loss": 1.318568229675293,
|
203 |
+
"eval_precision": 0.7728468899521532,
|
204 |
+
"eval_recall": 0.7171052631578947,
|
205 |
+
"eval_runtime": 55.4154,
|
206 |
+
"eval_samples_per_second": 2.743,
|
207 |
+
"eval_steps_per_second": 0.343,
|
208 |
+
"eval_top1_accuracy": 0.7171052631578947,
|
209 |
"step": 304
|
210 |
},
|
211 |
{
|
212 |
"epoch": 9.0,
|
213 |
+
"train_accuracy": 0.7149122807017544
|
214 |
},
|
215 |
{
|
216 |
"epoch": 9.0,
|
217 |
+
"grad_norm": 2.8706772327423096,
|
218 |
+
"learning_rate": 3.6156761374816205e-06,
|
219 |
+
"loss": 1.276,
|
220 |
"step": 342
|
221 |
},
|
222 |
{
|
223 |
"epoch": 9.0,
|
224 |
+
"eval_accuracy": 0.805972850678733,
|
225 |
+
"eval_error_rate": 0.19402714932126697,
|
226 |
+
"eval_f1": 0.8108964691671459,
|
227 |
+
"eval_loss": 1.223597526550293,
|
228 |
+
"eval_precision": 0.8547017577806745,
|
229 |
+
"eval_recall": 0.8026315789473685,
|
230 |
+
"eval_runtime": 55.5305,
|
231 |
+
"eval_samples_per_second": 2.737,
|
232 |
+
"eval_steps_per_second": 0.342,
|
233 |
+
"eval_top1_accuracy": 0.8026315789473685,
|
234 |
"step": 342
|
235 |
},
|
236 |
{
|
237 |
"epoch": 10.0,
|
238 |
+
"train_accuracy": 0.8033625730994152
|
239 |
},
|
240 |
{
|
241 |
"epoch": 10.0,
|
242 |
+
"grad_norm": 3.2001399993896484,
|
243 |
+
"learning_rate": 4.233934863118696e-06,
|
244 |
+
"loss": 1.1778,
|
245 |
"step": 380
|
246 |
},
|
247 |
{
|
248 |
"epoch": 10.0,
|
249 |
+
"eval_accuracy": 0.8600754147812971,
|
250 |
+
"eval_error_rate": 0.13992458521870288,
|
251 |
+
"eval_f1": 0.8609113468479812,
|
252 |
+
"eval_loss": 1.1122019290924072,
|
253 |
+
"eval_precision": 0.8898553355968974,
|
254 |
+
"eval_recall": 0.8552631578947368,
|
255 |
+
"eval_runtime": 53.869,
|
256 |
+
"eval_samples_per_second": 2.822,
|
257 |
+
"eval_steps_per_second": 0.353,
|
258 |
+
"eval_top1_accuracy": 0.8552631578947368,
|
259 |
"step": 380
|
260 |
},
|
261 |
{
|
262 |
"epoch": 11.0,
|
263 |
+
"train_accuracy": 0.868421052631579
|
264 |
},
|
265 |
{
|
266 |
"epoch": 11.0,
|
267 |
+
"grad_norm": 3.1884777545928955,
|
268 |
+
"learning_rate": 4.899189706688707e-06,
|
269 |
+
"loss": 1.0543,
|
270 |
"step": 418
|
271 |
},
|
272 |
{
|
273 |
"epoch": 11.0,
|
274 |
+
"eval_accuracy": 0.9004725992961287,
|
275 |
+
"eval_error_rate": 0.09952740070387134,
|
276 |
+
"eval_f1": 0.8958336111023342,
|
277 |
+
"eval_loss": 0.9839252829551697,
|
278 |
+
"eval_precision": 0.9063624095203042,
|
279 |
+
"eval_recall": 0.8947368421052632,
|
280 |
+
"eval_runtime": 54.1079,
|
281 |
+
"eval_samples_per_second": 2.809,
|
282 |
+
"eval_steps_per_second": 0.351,
|
283 |
+
"eval_top1_accuracy": 0.8947368421052632,
|
284 |
"step": 418
|
285 |
},
|
286 |
{
|
287 |
"epoch": 12.0,
|
288 |
+
"train_accuracy": 0.902046783625731
|
289 |
},
|
290 |
{
|
291 |
"epoch": 12.0,
|
292 |
+
"grad_norm": 3.692692279815674,
|
293 |
+
"learning_rate": 5.6063702716924525e-06,
|
294 |
+
"loss": 0.921,
|
295 |
"step": 456
|
296 |
},
|
297 |
{
|
298 |
"epoch": 12.0,
|
299 |
+
"eval_accuracy": 0.9575364504776269,
|
300 |
+
"eval_error_rate": 0.04246354952237308,
|
301 |
+
"eval_f1": 0.9537314326645565,
|
302 |
+
"eval_loss": 0.8418065309524536,
|
303 |
+
"eval_precision": 0.9540851522650184,
|
304 |
+
"eval_recall": 0.9539473684210527,
|
305 |
+
"eval_runtime": 54.166,
|
306 |
+
"eval_samples_per_second": 2.806,
|
307 |
+
"eval_steps_per_second": 0.351,
|
308 |
+
"eval_top1_accuracy": 0.9539473684210527,
|
309 |
"step": 456
|
310 |
},
|
311 |
{
|
312 |
"epoch": 13.0,
|
313 |
+
"train_accuracy": 0.9371345029239766
|
314 |
},
|
315 |
{
|
316 |
"epoch": 13.0,
|
317 |
+
"grad_norm": 3.067211389541626,
|
318 |
+
"learning_rate": 6.350086614868708e-06,
|
319 |
+
"loss": 0.773,
|
320 |
"step": 494
|
321 |
},
|
322 |
{
|
323 |
"epoch": 13.0,
|
324 |
+
"eval_accuracy": 0.9652287581699346,
|
325 |
+
"eval_error_rate": 0.034771241830065414,
|
326 |
+
"eval_f1": 0.9604621710987601,
|
327 |
+
"eval_loss": 0.6935167908668518,
|
328 |
+
"eval_precision": 0.9623944201691405,
|
329 |
+
"eval_recall": 0.9605263157894737,
|
330 |
+
"eval_runtime": 67.8683,
|
331 |
+
"eval_samples_per_second": 2.24,
|
332 |
+
"eval_steps_per_second": 0.28,
|
333 |
+
"eval_top1_accuracy": 0.9605263157894737,
|
334 |
"step": 494
|
335 |
},
|
336 |
{
|
337 |
"epoch": 14.0,
|
338 |
+
"train_accuracy": 0.9576023391812866
|
339 |
},
|
340 |
{
|
341 |
"epoch": 14.0,
|
342 |
+
"grad_norm": 2.8400356769561768,
|
343 |
+
"learning_rate": 7.124670326916465e-06,
|
344 |
+
"loss": 0.6204,
|
345 |
"step": 532
|
346 |
},
|
347 |
{
|
348 |
"epoch": 14.0,
|
349 |
+
"eval_accuracy": 0.9707843137254901,
|
350 |
+
"eval_error_rate": 0.029215686274509878,
|
351 |
+
"eval_f1": 0.96721850419808,
|
352 |
+
"eval_loss": 0.5515281558036804,
|
353 |
+
"eval_precision": 0.9687600085406214,
|
354 |
+
"eval_recall": 0.9671052631578947,
|
355 |
+
"eval_runtime": 75.408,
|
356 |
+
"eval_samples_per_second": 2.016,
|
357 |
+
"eval_steps_per_second": 0.252,
|
358 |
+
"eval_top1_accuracy": 0.9671052631578947,
|
359 |
"step": 532
|
360 |
},
|
361 |
{
|
362 |
"epoch": 15.0,
|
363 |
+
"train_accuracy": 0.9707602339181286
|
364 |
},
|
365 |
{
|
366 |
"epoch": 15.0,
|
367 |
+
"grad_norm": 2.3800432682037354,
|
368 |
+
"learning_rate": 7.924217735611663e-06,
|
369 |
+
"loss": 0.4835,
|
370 |
"step": 570
|
371 |
},
|
372 |
{
|
373 |
"epoch": 15.0,
|
374 |
+
"eval_accuracy": 0.9696732026143791,
|
375 |
+
"eval_error_rate": 0.03032679738562094,
|
376 |
+
"eval_f1": 0.9676301640599072,
|
377 |
+
"eval_loss": 0.4145788848400116,
|
378 |
+
"eval_precision": 0.9704260651629072,
|
379 |
+
"eval_recall": 0.9671052631578947,
|
380 |
+
"eval_runtime": 43.8505,
|
381 |
+
"eval_samples_per_second": 3.466,
|
382 |
+
"eval_steps_per_second": 0.433,
|
383 |
+
"eval_top1_accuracy": 0.9671052631578947,
|
384 |
"step": 570
|
385 |
},
|
386 |
{
|
387 |
"epoch": 16.0,
|
388 |
+
"train_accuracy": 0.9736842105263158
|
389 |
},
|
390 |
{
|
391 |
"epoch": 16.0,
|
392 |
+
"grad_norm": 3.108427047729492,
|
393 |
+
"learning_rate": 8.742634902035743e-06,
|
394 |
+
"loss": 0.3641,
|
395 |
"step": 608
|
396 |
},
|
397 |
{
|
398 |
"epoch": 16.0,
|
399 |
+
"eval_accuracy": 0.9830065359477125,
|
400 |
+
"eval_error_rate": 0.01699346405228752,
|
401 |
+
"eval_f1": 0.980191060766086,
|
402 |
+
"eval_loss": 0.3042638599872589,
|
403 |
+
"eval_precision": 0.9805310767959324,
|
404 |
+
"eval_recall": 0.9802631578947368,
|
405 |
+
"eval_runtime": 32.0995,
|
406 |
+
"eval_samples_per_second": 4.735,
|
407 |
+
"eval_steps_per_second": 0.592,
|
408 |
+
"eval_top1_accuracy": 0.9802631578947368,
|
409 |
+
"step": 608
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 17.0,
|
413 |
+
"train_accuracy": 0.9788011695906432
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 17.0,
|
417 |
+
"grad_norm": 2.5407485961914062,
|
418 |
+
"learning_rate": 9.573684066966612e-06,
|
419 |
+
"loss": 0.2706,
|
420 |
+
"step": 646
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 17.0,
|
424 |
+
"eval_accuracy": 0.9830065359477125,
|
425 |
+
"eval_error_rate": 0.01699346405228752,
|
426 |
+
"eval_f1": 0.980191060766086,
|
427 |
+
"eval_loss": 0.22474148869514465,
|
428 |
+
"eval_precision": 0.9805310767959324,
|
429 |
+
"eval_recall": 0.9802631578947368,
|
430 |
+
"eval_runtime": 44.9328,
|
431 |
+
"eval_samples_per_second": 3.383,
|
432 |
+
"eval_steps_per_second": 0.423,
|
433 |
+
"eval_top1_accuracy": 0.9802631578947368,
|
434 |
+
"step": 646
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 18.0,
|
438 |
+
"train_accuracy": 0.9817251461988304
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 18.0,
|
442 |
+
"grad_norm": 3.097386598587036,
|
443 |
+
"learning_rate": 1.0411031193429937e-05,
|
444 |
+
"loss": 0.1998,
|
445 |
+
"step": 684
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 18.0,
|
449 |
+
"eval_accuracy": 0.9888888888888889,
|
450 |
+
"eval_error_rate": 0.011111111111111072,
|
451 |
+
"eval_f1": 0.9867701266776593,
|
452 |
+
"eval_loss": 0.17049287259578705,
|
453 |
+
"eval_precision": 0.9872979940891655,
|
454 |
"eval_recall": 0.9868421052631579,
|
455 |
+
"eval_runtime": 39.0056,
|
456 |
+
"eval_samples_per_second": 3.897,
|
457 |
+
"eval_steps_per_second": 0.487,
|
458 |
"eval_top1_accuracy": 0.9868421052631579,
|
459 |
+
"step": 684
|
460 |
},
|
461 |
{
|
462 |
+
"epoch": 19.0,
|
463 |
+
"train_accuracy": 0.9890350877192983
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 19.0,
|
467 |
+
"grad_norm": 2.5862479209899902,
|
468 |
+
"learning_rate": 1.1248294243054004e-05,
|
469 |
+
"loss": 0.1446,
|
470 |
+
"step": 722
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 19.0,
|
474 |
+
"eval_accuracy": 0.9944444444444445,
|
475 |
+
"eval_error_rate": 0.005555555555555536,
|
476 |
+
"eval_f1": 0.99343678755752,
|
477 |
+
"eval_loss": 0.12706294655799866,
|
478 |
+
"eval_precision": 0.9936647173489279,
|
479 |
+
"eval_recall": 0.993421052631579,
|
480 |
+
"eval_runtime": 35.4207,
|
481 |
+
"eval_samples_per_second": 4.291,
|
482 |
+
"eval_steps_per_second": 0.536,
|
483 |
+
"eval_top1_accuracy": 0.993421052631579,
|
484 |
+
"step": 722
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"epoch": 20.0,
|
488 |
+
"train_accuracy": 0.9897660818713451
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 20.0,
|
492 |
+
"grad_norm": 4.520482540130615,
|
493 |
+
"learning_rate": 1.2079091818278531e-05,
|
494 |
+
"loss": 0.1106,
|
495 |
+
"step": 760
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 20.0,
|
499 |
+
"eval_accuracy": 0.9888888888888889,
|
500 |
+
"eval_error_rate": 0.011111111111111072,
|
501 |
+
"eval_f1": 0.9867701266776593,
|
502 |
+
"eval_loss": 0.1046518012881279,
|
503 |
+
"eval_precision": 0.9872979940891655,
|
504 |
+
"eval_recall": 0.9868421052631579,
|
505 |
+
"eval_runtime": 41.2892,
|
506 |
+
"eval_samples_per_second": 3.681,
|
507 |
+
"eval_steps_per_second": 0.46,
|
508 |
+
"eval_top1_accuracy": 0.9868421052631579,
|
509 |
+
"step": 760
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 21.0,
|
513 |
+
"train_accuracy": 0.9883040935672515
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 21.0,
|
517 |
+
"grad_norm": 9.188246726989746,
|
518 |
+
"learning_rate": 1.2897091799679402e-05,
|
519 |
+
"loss": 0.0872,
|
520 |
+
"step": 798
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 21.0,
|
524 |
+
"eval_accuracy": 0.9944444444444445,
|
525 |
+
"eval_error_rate": 0.005555555555555536,
|
526 |
+
"eval_f1": 0.99343678755752,
|
527 |
+
"eval_loss": 0.0779847577214241,
|
528 |
+
"eval_precision": 0.9936647173489279,
|
529 |
+
"eval_recall": 0.993421052631579,
|
530 |
+
"eval_runtime": 68.0671,
|
531 |
+
"eval_samples_per_second": 2.233,
|
532 |
+
"eval_steps_per_second": 0.279,
|
533 |
+
"eval_top1_accuracy": 0.993421052631579,
|
534 |
+
"step": 798
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 22.0,
|
538 |
+
"train_accuracy": 0.993421052631579
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 22.0,
|
542 |
+
"grad_norm": 1.4848785400390625,
|
543 |
+
"learning_rate": 1.3696059607708444e-05,
|
544 |
+
"loss": 0.0614,
|
545 |
+
"step": 836
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 22.0,
|
549 |
+
"eval_accuracy": 0.9888888888888889,
|
550 |
+
"eval_error_rate": 0.011111111111111072,
|
551 |
+
"eval_f1": 0.9867701266776593,
|
552 |
+
"eval_loss": 0.07387673109769821,
|
553 |
+
"eval_precision": 0.9872979940891655,
|
554 |
+
"eval_recall": 0.9868421052631579,
|
555 |
+
"eval_runtime": 57.9913,
|
556 |
+
"eval_samples_per_second": 2.621,
|
557 |
+
"eval_steps_per_second": 0.328,
|
558 |
+
"eval_top1_accuracy": 0.9868421052631579,
|
559 |
+
"step": 836
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 23.0,
|
563 |
+
"train_accuracy": 0.9948830409356725
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 23.0,
|
567 |
+
"grad_norm": 0.7044534683227539,
|
568 |
+
"learning_rate": 1.4469905721010107e-05,
|
569 |
+
"loss": 0.0491,
|
570 |
+
"step": 874
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 23.0,
|
574 |
+
"eval_accuracy": 0.9944444444444445,
|
575 |
+
"eval_error_rate": 0.005555555555555536,
|
576 |
+
"eval_f1": 0.99343678755752,
|
577 |
+
"eval_loss": 0.05167735368013382,
|
578 |
+
"eval_precision": 0.9936647173489279,
|
579 |
+
"eval_recall": 0.993421052631579,
|
580 |
+
"eval_runtime": 43.1178,
|
581 |
+
"eval_samples_per_second": 3.525,
|
582 |
+
"eval_steps_per_second": 0.441,
|
583 |
+
"eval_top1_accuracy": 0.993421052631579,
|
584 |
+
"step": 874
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 24.0,
|
588 |
+
"train_accuracy": 0.9956140350877193
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"epoch": 24.0,
|
592 |
+
"grad_norm": 4.517460346221924,
|
593 |
+
"learning_rate": 1.5212732089142938e-05,
|
594 |
+
"loss": 0.0365,
|
595 |
+
"step": 912
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"epoch": 24.0,
|
599 |
+
"eval_accuracy": 0.9877777777777779,
|
600 |
+
"eval_error_rate": 0.012222222222222134,
|
601 |
+
"eval_f1": 0.9868484170131115,
|
602 |
+
"eval_loss": 0.04010358452796936,
|
603 |
+
"eval_precision": 0.9870857699805068,
|
604 |
+
"eval_recall": 0.9868421052631579,
|
605 |
+
"eval_runtime": 37.7666,
|
606 |
+
"eval_samples_per_second": 4.025,
|
607 |
+
"eval_steps_per_second": 0.503,
|
608 |
+
"eval_top1_accuracy": 0.9868421052631579,
|
609 |
+
"step": 912
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 25.0,
|
613 |
+
"train_accuracy": 0.9956140350877193
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 25.0,
|
617 |
+
"grad_norm": 0.25067076086997986,
|
618 |
+
"learning_rate": 1.590081029331129e-05,
|
619 |
+
"loss": 0.0255,
|
620 |
+
"step": 950
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 25.0,
|
624 |
+
"eval_accuracy": 0.9944444444444445,
|
625 |
+
"eval_error_rate": 0.005555555555555536,
|
626 |
+
"eval_f1": 0.99343678755752,
|
627 |
+
"eval_loss": 0.033598948270082474,
|
628 |
+
"eval_precision": 0.9936647173489279,
|
629 |
+
"eval_recall": 0.993421052631579,
|
630 |
+
"eval_runtime": 41.2598,
|
631 |
+
"eval_samples_per_second": 3.684,
|
632 |
+
"eval_steps_per_second": 0.46,
|
633 |
+
"eval_top1_accuracy": 0.993421052631579,
|
634 |
+
"step": 950
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 26.0,
|
638 |
+
"train_accuracy": 0.9963450292397661
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 26.0,
|
642 |
+
"grad_norm": 3.2572007179260254,
|
643 |
+
"learning_rate": 1.65660651368813e-05,
|
644 |
+
"loss": 0.0212,
|
645 |
+
"step": 988
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 26.0,
|
649 |
+
"eval_accuracy": 0.9888888888888889,
|
650 |
+
"eval_error_rate": 0.011111111111111072,
|
651 |
+
"eval_f1": 0.9867701266776593,
|
652 |
+
"eval_loss": 0.037725575268268585,
|
653 |
+
"eval_precision": 0.9872979940891655,
|
654 |
+
"eval_recall": 0.9868421052631579,
|
655 |
+
"eval_runtime": 39.6757,
|
656 |
+
"eval_samples_per_second": 3.831,
|
657 |
+
"eval_steps_per_second": 0.479,
|
658 |
+
"eval_top1_accuracy": 0.9868421052631579,
|
659 |
+
"step": 988
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 27.0,
|
663 |
+
"train_accuracy": 0.9956140350877193
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 27.0,
|
667 |
+
"grad_norm": 0.9294455051422119,
|
668 |
+
"learning_rate": 1.7184323862518377e-05,
|
669 |
+
"loss": 0.0175,
|
670 |
+
"step": 1026
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"epoch": 27.0,
|
674 |
+
"eval_accuracy": 0.9944444444444445,
|
675 |
+
"eval_error_rate": 0.005555555555555536,
|
676 |
+
"eval_f1": 0.99343678755752,
|
677 |
+
"eval_loss": 0.019463175907731056,
|
678 |
+
"eval_precision": 0.9936647173489279,
|
679 |
+
"eval_recall": 0.993421052631579,
|
680 |
+
"eval_runtime": 41.079,
|
681 |
+
"eval_samples_per_second": 3.7,
|
682 |
+
"eval_steps_per_second": 0.463,
|
683 |
+
"eval_top1_accuracy": 0.993421052631579,
|
684 |
+
"step": 1026
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 28.0,
|
688 |
+
"train_accuracy": 0.9978070175438597
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 28.0,
|
692 |
+
"grad_norm": 3.1146209239959717,
|
693 |
+
"learning_rate": 1.775087426570666e-05,
|
694 |
+
"loss": 0.0125,
|
695 |
+
"step": 1064
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 28.0,
|
699 |
+
"eval_accuracy": 0.9933333333333334,
|
700 |
+
"eval_error_rate": 0.006666666666666599,
|
701 |
+
"eval_f1": 0.9934103601236665,
|
702 |
+
"eval_loss": 0.02142958901822567,
|
703 |
+
"eval_precision": 0.9935988620199147,
|
704 |
+
"eval_recall": 0.993421052631579,
|
705 |
+
"eval_runtime": 71.7993,
|
706 |
+
"eval_samples_per_second": 2.117,
|
707 |
+
"eval_steps_per_second": 0.265,
|
708 |
+
"eval_top1_accuracy": 0.993421052631579,
|
709 |
+
"step": 1064
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 29.0,
|
713 |
+
"train_accuracy": 0.9948830409356725
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 29.0,
|
717 |
+
"grad_norm": 0.6761703491210938,
|
718 |
+
"learning_rate": 1.826139824909036e-05,
|
719 |
+
"loss": 0.0155,
|
720 |
+
"step": 1102
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 29.0,
|
724 |
+
"eval_accuracy": 1.0,
|
725 |
+
"eval_error_rate": 0.0,
|
726 |
+
"eval_f1": 1.0,
|
727 |
+
"eval_loss": 0.012786287814378738,
|
728 |
+
"eval_precision": 1.0,
|
729 |
+
"eval_recall": 1.0,
|
730 |
+
"eval_runtime": 70.5861,
|
731 |
+
"eval_samples_per_second": 2.153,
|
732 |
+
"eval_steps_per_second": 0.269,
|
733 |
+
"eval_top1_accuracy": 1.0,
|
734 |
+
"step": 1102
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 30.0,
|
738 |
+
"train_accuracy": 0.9985380116959064
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 30.0,
|
742 |
+
"grad_norm": 0.24630075693130493,
|
743 |
+
"learning_rate": 1.8712004733869936e-05,
|
744 |
+
"loss": 0.0104,
|
745 |
+
"step": 1140
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 30.0,
|
749 |
+
"eval_accuracy": 0.9944444444444445,
|
750 |
+
"eval_error_rate": 0.005555555555555536,
|
751 |
+
"eval_f1": 0.99343678755752,
|
752 |
+
"eval_loss": 0.0159451961517334,
|
753 |
+
"eval_precision": 0.9936647173489279,
|
754 |
+
"eval_recall": 0.993421052631579,
|
755 |
+
"eval_runtime": 68.8635,
|
756 |
+
"eval_samples_per_second": 2.207,
|
757 |
+
"eval_steps_per_second": 0.276,
|
758 |
+
"eval_top1_accuracy": 0.993421052631579,
|
759 |
+
"step": 1140
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 30.0,
|
763 |
+
"step": 1140,
|
764 |
+
"total_flos": 9.167322602550067e+17,
|
765 |
+
"train_loss": 0.6629255272840199,
|
766 |
+
"train_runtime": 13519.4546,
|
767 |
+
"train_samples_per_second": 2.698,
|
768 |
+
"train_steps_per_second": 0.084
|
769 |
}
|
770 |
],
|
771 |
+
"logging_steps": 10,
|
772 |
"max_steps": 1140,
|
773 |
"num_input_tokens_seen": 0,
|
774 |
"num_train_epochs": 30,
|
|
|
780 |
"early_stopping_threshold": 0.0
|
781 |
},
|
782 |
"attributes": {
|
783 |
+
"early_stopping_patience_counter": 0
|
784 |
}
|
785 |
},
|
786 |
"TrainerControl": {
|
|
|
794 |
"attributes": {}
|
795 |
}
|
796 |
},
|
797 |
+
"total_flos": 9.167322602550067e+17,
|
798 |
+
"train_batch_size": 8,
|
799 |
"trial_name": null,
|
800 |
"trial_params": null
|
801 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:591d261e4698fb2aced103c9b4eff40a248d2fd6e9b86b4707a073f3e92348b1
|
3 |
+
size 5112
|