--- library_name: transformers license: apache-2.0 base_model: facebook/convnext-tiny-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - precision - recall - f1 - accuracy model-index: - name: convnext-tiny-224-finetuned-barkley results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Precision type: precision value: 0.9936145510835913 - name: Recall type: recall value: 0.993421052631579 - name: F1 type: f1 value: 0.993419541966282 - name: Accuracy type: accuracy value: 0.9939393939393939 --- # convnext-tiny-224-finetuned-barkley This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0794 - Precision: 0.9936 - Recall: 0.9934 - F1: 0.9934 - Accuracy: 0.9939 - Top1 Accuracy: 0.9934 - Error Rate: 0.0061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Top1 Accuracy | Error Rate | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:| | 1.576 | 1.0 | 38 | 1.5660 | 0.3007 | 0.3684 | 0.2952 | 0.3479 | 0.3684 | 0.6521 | | 1.5469 | 2.0 | 76 | 1.5353 | 0.3141 | 0.4079 | 0.3215 | 0.3854 | 0.4079 | 0.6146 | | 1.5081 | 3.0 | 114 | 1.4782 | 0.5684 | 0.4671 | 0.3961 | 0.4436 | 0.4671 | 0.5564 | | 1.4278 | 4.0 | 152 | 1.3718 | 0.7088 | 0.6053 | 0.5840 | 0.5866 | 0.6053 | 0.4134 | | 1.2938 | 5.0 | 190 | 1.1909 | 0.8582 | 0.8355 | 0.8378 | 0.8290 | 0.8355 | 0.1710 | | 1.0696 | 6.0 | 228 | 0.9353 | 0.9243 | 0.9211 | 0.9215 | 0.9205 | 0.9211 | 0.0795 | | 0.789 | 7.0 | 266 | 0.6347 | 0.9680 | 0.9671 | 0.9673 | 0.9691 | 0.9671 | 0.0309 | | 0.506 | 8.0 | 304 | 0.3910 | 0.9750 | 0.9737 | 0.9739 | 0.9752 | 0.9737 | 0.0248 | | 0.2876 | 9.0 | 342 | 0.2126 | 0.9808 | 0.9803 | 0.9802 | 0.9814 | 0.9803 | 0.0186 | | 0.1722 | 10.0 | 380 | 0.1409 | 0.9809 | 0.9803 | 0.9799 | 0.9818 | 0.9803 | 0.0182 | | 0.1082 | 11.0 | 418 | 0.0794 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 | | 0.0715 | 12.0 | 456 | 0.0577 | 0.9936 | 0.9934 | 0.9934 | 0.9939 | 0.9934 | 0.0061 | | 0.0492 | 13.0 | 494 | 0.0440 | 0.9872 | 0.9868 | 0.9867 | 0.9879 | 0.9868 | 0.0121 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1