alyzbane commited on
Commit
2fe677d
·
verified ·
1 Parent(s): fdabcf9

Model save

Browse files
Files changed (2) hide show
  1. README.md +90 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/resnet-50
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: resnet-50-finetuned-FBark
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: train
24
+ args: default
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.990909090909091
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9939393939393939
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9922719141323793
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9906542056074766
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # resnet-50-finetuned-FBark
44
+
45
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0694
48
+ - Precision: 0.9909
49
+ - Recall: 0.9939
50
+ - F1: 0.9923
51
+ - Accuracy: 0.9907
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 0.0003
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 4
75
+ - total_train_batch_size: 32
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - lr_scheduler_warmup_ratio: 0.1
79
+ - num_epochs: 20
80
+
81
+ ### Training results
82
+
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.39.3
88
+ - Pytorch 2.2.0+cpu
89
+ - Datasets 2.19.0
90
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:28cdc3c5e6aeb9548d92cd520211b2d44f9c99e1e454b8eff734900c40ae9c68
3
  size 94327540
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f9b9c9f1542b7396eff5547b901f7956f22dc9ff9fc8ff7dcd325b3ccce28c8
3
  size 94327540