File size: 1,764 Bytes
21e2b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: rap_phase2_06dec_25i
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rap_phase2_06dec_25i

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0018

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.1123        | 1.0   | 16013  | 0.0465          |
| 0.034         | 2.0   | 32026  | 0.0903          |
| 0.3904        | 3.0   | 48039  | 0.1142          |
| 0.0287        | 4.0   | 64052  | 0.0197          |
| 0.0148        | 5.0   | 80065  | 0.0266          |
| 0.0035        | 6.0   | 96078  | 0.0026          |
| 0.0           | 7.0   | 112091 | 0.0021          |
| 0.0           | 8.0   | 128104 | 0.0014          |
| 0.0           | 9.0   | 144117 | 0.0014          |
| 0.0001        | 10.0  | 160130 | 0.0018          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0