Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- Vietnamese truthful QA results.xlsx +3 -0
- eval_truthful_vi.py +87 -0
- output_lora_qwen2.5_1.5b.jsonl +0 -0
- output_og_qwen2.5_1.5b.jsonl +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Vietnamese[[:space:]]truthful[[:space:]]QA[[:space:]]results.xlsx filter=lfs diff=lfs merge=lfs -text
|
Vietnamese truthful QA results.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfe1ae3ab2868fcb79e8670167bd820feb3143be59910db29816e02d3f2601c0
|
3 |
+
size 294085
|
eval_truthful_vi.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import jsonlines
|
5 |
+
import sys
|
6 |
+
from tqdm.auto import tqdm
|
7 |
+
# --- Configuration ---
|
8 |
+
MODEL_NAME = sys.argv[1]
|
9 |
+
INPUT_FILENAME = "./Vietnamese truthful QA results.xlsx"
|
10 |
+
OUTPUT_FILENAME = sys.argv[2]
|
11 |
+
MAX_NEW_TOKENS = 512 # The maximum number of new tokens to generate for each answer.
|
12 |
+
|
13 |
+
writer = jsonlines.open(OUTPUT_FILENAME, "w")
|
14 |
+
# 1. Load data from an XLSX file
|
15 |
+
try:
|
16 |
+
df = pd.read_excel(INPUT_FILENAME)
|
17 |
+
except FileNotFoundError:
|
18 |
+
print(f"Error: The file '{INPUT_FILENAME}' was not found.")
|
19 |
+
print("Please make sure your XLSX file is in the same directory as the script.")
|
20 |
+
exit()
|
21 |
+
except Exception as e:
|
22 |
+
print(f"An error occurred while reading the Excel file: {e}")
|
23 |
+
exit()
|
24 |
+
|
25 |
+
# 2. Select Relevant Columns and validate
|
26 |
+
if "Question" not in df.columns or "Ground truth" not in df.columns:
|
27 |
+
print("Error: Required columns 'Question' and/or 'Ground truth' not found.")
|
28 |
+
print(f"Available columns are: {list(df.columns)}")
|
29 |
+
exit()
|
30 |
+
|
31 |
+
df_processed = df[["Question", "Ground truth"]].copy()
|
32 |
+
|
33 |
+
# 3. Load Model and Tokenizer
|
34 |
+
print(f"Loading model '{MODEL_NAME}' and tokenizer...")
|
35 |
+
# Set up device (use GPU if available, otherwise CPU)
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
print(f"Using device: {device}")
|
38 |
+
|
39 |
+
# Load the tokenizer and model from Hugging Face Hub
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16, attn_implementation='flash_attention_2')
|
42 |
+
model.to(device) # Move the model to the selected device
|
43 |
+
|
44 |
+
# Set pad token if it's not set (GPT-2 doesn't have a default pad token)
|
45 |
+
if tokenizer.pad_token is None:
|
46 |
+
tokenizer.pad_token = tokenizer.eos_token
|
47 |
+
model.config.pad_token_id = model.config.eos_token_id
|
48 |
+
|
49 |
+
print("Model and tokenizer loaded successfully.")
|
50 |
+
|
51 |
+
# 4. Generate Answers using the Model
|
52 |
+
answers = []
|
53 |
+
out_dict = []
|
54 |
+
total_questions = len(df_processed)
|
55 |
+
print(f"Generating answers for {total_questions} questions...")
|
56 |
+
|
57 |
+
for i, question in tqdm(enumerate(df_processed["Question"])):
|
58 |
+
# Encode the question text into token IDs
|
59 |
+
# input_ids = tokenizer.encode(question, return_tensors='pt').to(device)
|
60 |
+
messages = [
|
61 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
62 |
+
{"role": "user", "content": question}
|
63 |
+
]
|
64 |
+
input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
65 |
+
input_ids = tokenizer([input], return_tensors='pt').to(model.device)
|
66 |
+
# Generate text using the model
|
67 |
+
# do_sample=False makes the output deterministic (no randomness)
|
68 |
+
output_sequences = model.generate(
|
69 |
+
**input_ids,
|
70 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
71 |
+
do_sample=False,
|
72 |
+
pad_token_id=tokenizer.pad_token_id
|
73 |
+
)
|
74 |
+
|
75 |
+
# Decode the generated token IDs back to a string
|
76 |
+
# The output includes the original prompt, so we need to remove it.
|
77 |
+
full_text = tokenizer.decode(output_sequences[0][input_ids['input_ids'].shape[1]:], skip_special_tokens=True)
|
78 |
+
answer = full_text.strip()
|
79 |
+
gold = df['Ground truth'][i]
|
80 |
+
answers.append(answer)
|
81 |
+
print(f"Processed question {i + 1}/{total_questions}\nAnswer: {answer}\nGold: {gold}")
|
82 |
+
writer.write({
|
83 |
+
"question": question,
|
84 |
+
"answer": answer,
|
85 |
+
"gold": gold
|
86 |
+
})
|
87 |
+
|
output_lora_qwen2.5_1.5b.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
output_og_qwen2.5_1.5b.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|