llmll commited on
Commit
0852ada
·
verified ·
1 Parent(s): 6804ff8

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +7 -0
README.md CHANGED
@@ -9,6 +9,7 @@ library_name: transformers
9
  <h1>PARD: Accelerating LLM Inference with Low-Cost PARallel Draft Model Adaptation</h1>
10
  </div>
11
 
 
12
  <p align="center"> |
13
  <a href="https://arxiv.org/abs/2504.18583"><b>Paper</b></a> |
14
  <a href="https://github.com/AMD-AIG-AIMA/PARD"><b>Github</b></a> |
@@ -16,6 +17,7 @@ library_name: transformers
16
  </p>
17
 
18
 
 
19
  ## Introduction
20
 
21
  PARD is a high-performance speculative decoding method that also enables low-cost adaptation of autoregressive draft models into parallel draft models. It offers the following advantages:
@@ -26,6 +28,10 @@ PARD is a high-performance speculative decoding method that also enables low-cos
26
 
27
  - **High Performance**: When integrated into an optimized inference framework called Transformers+ PARD delivers up to a 4.08× speedup, with LLaMA3.1 8B reaches a state-of-the-art 311.5 tokens per second. When integrated into vLLM, PARD delivers up to 3.06× speedup, outperforming other speculative decoding methods in vLLM by 1.51×.
28
 
 
 
 
 
29
 
30
  ## Model Weights
31
 
@@ -50,3 +56,4 @@ Please visit [PARD](https://github.com/AMD-AIG-AIMA/PARD) repo for more informat
50
  year={2025}
51
  }
52
  ```
 
 
9
  <h1>PARD: Accelerating LLM Inference with Low-Cost PARallel Draft Model Adaptation</h1>
10
  </div>
11
 
12
+
13
  <p align="center"> |
14
  <a href="https://arxiv.org/abs/2504.18583"><b>Paper</b></a> |
15
  <a href="https://github.com/AMD-AIG-AIMA/PARD"><b>Github</b></a> |
 
17
  </p>
18
 
19
 
20
+
21
  ## Introduction
22
 
23
  PARD is a high-performance speculative decoding method that also enables low-cost adaptation of autoregressive draft models into parallel draft models. It offers the following advantages:
 
28
 
29
  - **High Performance**: When integrated into an optimized inference framework called Transformers+ PARD delivers up to a 4.08× speedup, with LLaMA3.1 8B reaches a state-of-the-art 311.5 tokens per second. When integrated into vLLM, PARD delivers up to 3.06× speedup, outperforming other speculative decoding methods in vLLM by 1.51×.
30
 
31
+ <p align="center">
32
+ <picture><img src="https://cdn-uploads.huggingface.co/production/uploads/630cb01cc169245d78fe76b6/Dh-7wE-l0YAfU9lXWssKf.png" width="90%"></picture>
33
+ <br><div align="center" width="90%"><em>AR and AR+ represent baseline auto-regressive generation using Transformers and Transformers+, respectively. VSD denotes vanilla speculative decoding. PARD refers to the proposed method in this work.</em></div><br>
34
+ </p>
35
 
36
  ## Model Weights
37
 
 
56
  year={2025}
57
  }
58
  ```
59
+