|
import numpy as np |
|
import torch |
|
import glob |
|
import os |
|
import tqdm |
|
import librosa |
|
import parselmouth |
|
from utils.commons.pitch_utils import f0_to_coarse |
|
from utils.commons.multiprocess_utils import multiprocess_run_tqdm |
|
from utils.commons.os_utils import multiprocess_glob |
|
from utils.audio.io import save_wav |
|
|
|
from moviepy.editor import VideoFileClip |
|
from utils.commons.hparams import hparams, set_hparams |
|
|
|
def resample_wav(wav_name, out_name, sr=16000): |
|
wav_raw, sr = librosa.core.load(wav_name, sr=sr) |
|
save_wav(wav_raw, out_name, sr) |
|
|
|
def split_wav(mp4_name, wav_name=None): |
|
if wav_name is None: |
|
wav_name = mp4_name.replace(".mp4", ".wav").replace("/video/", "/audio/") |
|
if os.path.exists(wav_name): |
|
return wav_name |
|
os.makedirs(os.path.dirname(wav_name), exist_ok=True) |
|
|
|
video = VideoFileClip(mp4_name,verbose=False) |
|
dur = video.duration |
|
audio = video.audio |
|
assert audio is not None |
|
audio.write_audiofile(wav_name,fps=16000,verbose=False,logger=None) |
|
return wav_name |
|
|
|
def librosa_pad_lr(x, fsize, fshift, pad_sides=1): |
|
'''compute right padding (final frame) or both sides padding (first and final frames) |
|
''' |
|
assert pad_sides in (1, 2) |
|
|
|
pad = (x.shape[0] // fshift + 1) * fshift - x.shape[0] |
|
if pad_sides == 1: |
|
return 0, pad |
|
else: |
|
return pad // 2, pad // 2 + pad % 2 |
|
|
|
def extract_mel_from_fname(wav_path, |
|
fft_size=512, |
|
hop_size=320, |
|
win_length=512, |
|
window="hann", |
|
num_mels=80, |
|
fmin=80, |
|
fmax=7600, |
|
eps=1e-6, |
|
sample_rate=16000, |
|
min_level_db=-100): |
|
if isinstance(wav_path, str): |
|
wav, _ = librosa.core.load(wav_path, sr=sample_rate) |
|
else: |
|
wav = wav_path |
|
|
|
|
|
x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size, |
|
win_length=win_length, window=window, center=False) |
|
spc = np.abs(x_stft) |
|
|
|
|
|
fmin = 0 if fmin == -1 else fmin |
|
fmax = sample_rate / 2 if fmax == -1 else fmax |
|
mel_basis = librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax) |
|
mel = mel_basis @ spc |
|
|
|
mel = np.log10(np.maximum(eps, mel)) |
|
mel = mel.T |
|
|
|
l_pad, r_pad = librosa_pad_lr(wav, fft_size, hop_size, 1) |
|
wav = np.pad(wav, (l_pad, r_pad), mode='constant', constant_values=0.0) |
|
|
|
return wav.T, mel |
|
|
|
def extract_f0_from_wav_and_mel(wav, mel, |
|
hop_size=320, |
|
audio_sample_rate=16000, |
|
): |
|
time_step = hop_size / audio_sample_rate * 1000 |
|
f0_min = 80 |
|
f0_max = 750 |
|
f0 = parselmouth.Sound(wav, audio_sample_rate).to_pitch_ac( |
|
time_step=time_step / 1000, voicing_threshold=0.6, |
|
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] |
|
|
|
delta_l = len(mel) - len(f0) |
|
assert np.abs(delta_l) <= 8 |
|
if delta_l > 0: |
|
f0 = np.concatenate([f0, [f0[-1]] * delta_l], 0) |
|
f0 = f0[:len(mel)] |
|
pitch_coarse = f0_to_coarse(f0) |
|
return f0, pitch_coarse |
|
|
|
|
|
def extract_mel_f0_from_fname(wav_name=None, out_name=None): |
|
try: |
|
out_name = wav_name.replace(".wav", "_mel_f0.npy").replace("/audio/", "/mel_f0/") |
|
os.makedirs(os.path.dirname(out_name), exist_ok=True) |
|
|
|
wav, mel = extract_mel_from_fname(wav_name) |
|
f0, f0_coarse = extract_f0_from_wav_and_mel(wav, mel) |
|
out_dict = { |
|
"mel": mel, |
|
"f0": f0, |
|
} |
|
np.save(out_name, out_dict) |
|
except Exception as e: |
|
print(e) |
|
|
|
def extract_mel_f0_from_video_name(mp4_name, wav_name=None, out_name=None): |
|
if mp4_name.endswith(".mp4"): |
|
wav_name = split_wav(mp4_name, wav_name) |
|
if out_name is None: |
|
out_name = mp4_name.replace(".mp4", "_mel_f0.npy").replace("/video/", "/mel_f0/") |
|
elif mp4_name.endswith(".wav"): |
|
wav_name = mp4_name |
|
if out_name is None: |
|
out_name = mp4_name.replace(".wav", "_mel_f0.npy").replace("/audio/", "/mel_f0/") |
|
|
|
os.makedirs(os.path.dirname(out_name), exist_ok=True) |
|
|
|
wav, mel = extract_mel_from_fname(wav_name) |
|
|
|
f0, f0_coarse = extract_f0_from_wav_and_mel(wav, mel) |
|
out_dict = { |
|
"mel": mel, |
|
"f0": f0, |
|
} |
|
np.save(out_name, out_dict) |
|
|
|
|
|
if __name__ == '__main__': |
|
from argparse import ArgumentParser |
|
parser = ArgumentParser() |
|
parser.add_argument('--video_id', type=str, default='May', help='') |
|
args = parser.parse_args() |
|
|
|
person_id = args.video_id |
|
|
|
wav_16k_name = f"data/processed/videos/{person_id}/aud.wav" |
|
out_name = f"data/processed/videos/{person_id}/aud_mel_f0.npy" |
|
extract_mel_f0_from_video_name(wav_16k_name, out_name) |
|
print(f"Saved at {out_name}") |