|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This example demonstrates scene optimization with the plain |
|
pulsar interface. For this, a reference image has been pre-generated |
|
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png`). |
|
The scene is initialized with random spheres. Gradient-based |
|
optimization is used to converge towards a faithful |
|
scene representation. |
|
""" |
|
import logging |
|
import math |
|
|
|
import cv2 |
|
import imageio |
|
import numpy as np |
|
import torch |
|
from pytorch3d.renderer.points.pulsar import Renderer |
|
from torch import nn, optim |
|
|
|
|
|
LOGGER = logging.getLogger(__name__) |
|
N_POINTS = 10_000 |
|
WIDTH = 1_000 |
|
HEIGHT = 1_000 |
|
DEVICE = torch.device("cuda") |
|
|
|
|
|
class SceneModel(nn.Module): |
|
""" |
|
A simple scene model to demonstrate use of pulsar in PyTorch modules. |
|
|
|
The scene model is parameterized with sphere locations (vert_pos), |
|
channel content (vert_col), radiuses (vert_rad), camera position (cam_pos), |
|
camera rotation (cam_rot) and sensor focal length and width (cam_sensor). |
|
|
|
The forward method of the model renders this scene description. Any |
|
of these parameters could instead be passed as inputs to the forward |
|
method and come from a different model. |
|
""" |
|
|
|
def __init__(self): |
|
super(SceneModel, self).__init__() |
|
self.gamma = 1.0 |
|
|
|
torch.manual_seed(1) |
|
vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0 |
|
vert_pos[:, 2] += 25.0 |
|
vert_pos[:, :2] -= 5.0 |
|
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True)) |
|
self.register_parameter( |
|
"vert_col", |
|
nn.Parameter( |
|
torch.ones(N_POINTS, 3, dtype=torch.float32) * 0.5, requires_grad=True |
|
), |
|
) |
|
self.register_parameter( |
|
"vert_rad", |
|
nn.Parameter( |
|
torch.ones(N_POINTS, dtype=torch.float32) * 0.3, requires_grad=True |
|
), |
|
) |
|
self.register_buffer( |
|
"cam_params", |
|
torch.tensor( |
|
[0.0, 0.0, 0.0, 0.0, math.pi, 0.0, 5.0, 2.0], dtype=torch.float32 |
|
), |
|
) |
|
|
|
|
|
self.renderer = Renderer( |
|
WIDTH, HEIGHT, N_POINTS, n_track=32, right_handed_system=True |
|
) |
|
|
|
def forward(self): |
|
return self.renderer.forward( |
|
self.vert_pos, |
|
self.vert_col, |
|
self.vert_rad, |
|
self.cam_params, |
|
self.gamma, |
|
45.0, |
|
return_forward_info=True, |
|
) |
|
|
|
|
|
def cli(): |
|
""" |
|
Scene optimization example using pulsar. |
|
""" |
|
LOGGER.info("Loading reference...") |
|
|
|
ref = ( |
|
torch.from_numpy( |
|
imageio.imread( |
|
"../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png" |
|
)[:, ::-1, :].copy() |
|
).to(torch.float32) |
|
/ 255.0 |
|
).to(DEVICE) |
|
|
|
model = SceneModel().to(DEVICE) |
|
|
|
optimizer = optim.SGD( |
|
[ |
|
{"params": [model.vert_col], "lr": 1e0}, |
|
{"params": [model.vert_rad], "lr": 5e-3}, |
|
{"params": [model.vert_pos], "lr": 1e-2}, |
|
] |
|
) |
|
LOGGER.info("Optimizing...") |
|
|
|
for i in range(500): |
|
optimizer.zero_grad() |
|
result, result_info = model() |
|
|
|
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8) |
|
cv2.imshow("opt", result_im[:, :, ::-1]) |
|
overlay_img = np.ascontiguousarray( |
|
((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[ |
|
:, :, ::-1 |
|
] |
|
) |
|
overlay_img = cv2.putText( |
|
overlay_img, |
|
"Step %d" % (i), |
|
(10, 40), |
|
cv2.FONT_HERSHEY_SIMPLEX, |
|
1, |
|
(0, 0, 0), |
|
2, |
|
cv2.LINE_AA, |
|
False, |
|
) |
|
cv2.imshow("overlay", overlay_img) |
|
cv2.waitKey(1) |
|
|
|
loss = ((result - ref) ** 2).sum() |
|
LOGGER.info("loss %d: %f", i, loss.item()) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
with torch.no_grad(): |
|
model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0) |
|
|
|
model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0 |
|
model.vert_rad.data[model.vert_rad < 0.001] = 0.0001 |
|
vd = ( |
|
(model.vert_col - torch.ones(3, dtype=torch.float32).to(DEVICE)) |
|
.abs() |
|
.sum(dim=1) |
|
) |
|
model.vert_pos.data[vd <= 0.2] = -1000.0 |
|
LOGGER.info("Done.") |
|
|
|
|
|
if __name__ == "__main__": |
|
logging.basicConfig(level=logging.INFO) |
|
cli() |
|
|