|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from pytorch3d.transforms import acos_linear_extrapolation |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
class TestAcosLinearExtrapolation(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(42) |
|
np.random.seed(42) |
|
|
|
@staticmethod |
|
def init_acos_boundary_values(batch_size: int = 10000): |
|
""" |
|
Initialize a tensor containing values close to the bounds of the |
|
domain of `acos`, i.e. close to -1 or 1; and random values between (-1, 1). |
|
""" |
|
device = torch.device("cuda:0") |
|
|
|
x_rand = 2 * torch.rand(batch_size // 4, dtype=torch.float32, device=device) - 1 |
|
x = [x_rand] |
|
for bound in [-1, 1]: |
|
for above_bound in [True, False]: |
|
for noise_std in [1e-4, 1e-2]: |
|
n_generate = (batch_size - batch_size // 4) // 8 |
|
x_add = ( |
|
bound |
|
+ (2 * float(above_bound) - 1) |
|
* torch.randn( |
|
n_generate, device=device, dtype=torch.float32 |
|
).abs() |
|
* noise_std |
|
) |
|
x.append(x_add) |
|
x = torch.cat(x) |
|
return x |
|
|
|
@staticmethod |
|
def acos_linear_extrapolation(batch_size: int): |
|
x = TestAcosLinearExtrapolation.init_acos_boundary_values(batch_size) |
|
torch.cuda.synchronize() |
|
|
|
def compute_acos(): |
|
acos_linear_extrapolation(x) |
|
torch.cuda.synchronize() |
|
|
|
return compute_acos |
|
|
|
def _test_acos_outside_bounds(self, x, y, dydx, bound): |
|
""" |
|
Check that `acos_linear_extrapolation` yields points on a line with correct |
|
slope, and that the function is continuous around `bound`. |
|
""" |
|
bound_t = torch.tensor(bound, device=x.device, dtype=x.dtype) |
|
|
|
x_1 = torch.stack([x, torch.ones_like(x)], dim=-1) |
|
slope, bias = torch.linalg.lstsq(x_1, y[:, None]).solution.view(-1)[:2] |
|
desired_slope = (-1.0) / torch.sqrt(1.0 - bound_t**2) |
|
|
|
self.assertClose(desired_slope.view(1), slope.view(1), atol=1e-2) |
|
|
|
self.assertClose(desired_slope.expand_as(dydx), dydx, atol=1e-2) |
|
|
|
|
|
y_bound_lin = (slope * bound_t + bias).view(1) |
|
y_bound_acos = bound_t.acos().view(1) |
|
self.assertClose(y_bound_lin, y_bound_acos, atol=1e-2) |
|
|
|
def _one_acos_test(self, x: torch.Tensor, lower_bound: float, upper_bound: float): |
|
""" |
|
Test that `acos_linear_extrapolation` returns correct values for |
|
`x` between/above/below `lower_bound`/`upper_bound`. |
|
""" |
|
x.requires_grad = True |
|
x.grad = None |
|
y = acos_linear_extrapolation(x, [lower_bound, upper_bound]) |
|
|
|
y.backward(torch.ones_like(y)) |
|
dacos_dx = x.grad |
|
x_lower = x <= lower_bound |
|
x_upper = x >= upper_bound |
|
x_mid = (~x_lower) & (~x_upper) |
|
|
|
self.assertClose(x[x_mid].acos(), y[x_mid]) |
|
|
|
|
|
self._test_acos_outside_bounds( |
|
x[x_upper], y[x_upper], dacos_dx[x_upper], upper_bound |
|
) |
|
self._test_acos_outside_bounds( |
|
x[x_lower], y[x_lower], dacos_dx[x_lower], lower_bound |
|
) |
|
|
|
def test_acos(self, batch_size: int = 10000): |
|
""" |
|
Tests whether the function returns correct outputs |
|
inside/outside the bounds. |
|
""" |
|
x = TestAcosLinearExtrapolation.init_acos_boundary_values(batch_size) |
|
bounds = 1 - 10.0 ** torch.linspace(-1, -5, 5) |
|
for lower_bound in -bounds: |
|
for upper_bound in bounds: |
|
if upper_bound < lower_bound: |
|
continue |
|
self._one_acos_test(x, float(lower_bound), float(upper_bound)) |
|
|
|
def test_finite_gradient(self, batch_size: int = 10000): |
|
""" |
|
Tests whether gradients stay finite close to the bounds. |
|
""" |
|
x = TestAcosLinearExtrapolation.init_acos_boundary_values(batch_size) |
|
x.requires_grad = True |
|
bounds = 1 - 10.0 ** torch.linspace(-1, -5, 5) |
|
for lower_bound in -bounds: |
|
for upper_bound in bounds: |
|
if upper_bound < lower_bound: |
|
continue |
|
x.grad = None |
|
y = acos_linear_extrapolation( |
|
x, |
|
[float(lower_bound), float(upper_bound)], |
|
) |
|
self.assertTrue(torch.isfinite(y).all()) |
|
loss = y.mean() |
|
loss.backward() |
|
self.assertIsNotNone(x.grad) |
|
self.assertTrue(torch.isfinite(x.grad).all()) |
|
|