|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import pickle |
|
import unittest |
|
from itertools import product |
|
|
|
import numpy as np |
|
import torch |
|
from pytorch3d.common.datatypes import Device |
|
from pytorch3d.renderer.camera_utils import join_cameras_as_batch |
|
from pytorch3d.renderer.cameras import ( |
|
camera_position_from_spherical_angles, |
|
CamerasBase, |
|
FoVOrthographicCameras, |
|
FoVPerspectiveCameras, |
|
get_world_to_view_transform, |
|
look_at_rotation, |
|
look_at_view_transform, |
|
OpenGLOrthographicCameras, |
|
OpenGLPerspectiveCameras, |
|
OrthographicCameras, |
|
PerspectiveCameras, |
|
SfMOrthographicCameras, |
|
SfMPerspectiveCameras, |
|
) |
|
from pytorch3d.renderer.fisheyecameras import FishEyeCameras |
|
from pytorch3d.transforms import Transform3d |
|
from pytorch3d.transforms.rotation_conversions import random_rotations |
|
from pytorch3d.transforms.so3 import so3_exp_map |
|
|
|
from .common_camera_utils import init_random_cameras |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
|
|
def perspective_project_naive(points, fov=60.0): |
|
""" |
|
Compute perspective projection from a given viewing angle. |
|
Args: |
|
points: (N, V, 3) representing the padded points. |
|
viewing angle: degrees |
|
Returns: |
|
(N, V, 3) tensor of projected points preserving the view space z |
|
coordinate (no z renormalization) |
|
""" |
|
device = points.device |
|
halfFov = torch.tensor((fov / 2) / 180 * np.pi, dtype=torch.float32, device=device) |
|
scale = torch.tan(halfFov[None]) |
|
scale = scale[:, None] |
|
z = points[:, :, 2] |
|
x = points[:, :, 0] / z / scale |
|
y = points[:, :, 1] / z / scale |
|
points = torch.stack((x, y, z), dim=2) |
|
return points |
|
|
|
|
|
def sfm_perspective_project_naive(points, fx=1.0, fy=1.0, p0x=0.0, p0y=0.0): |
|
""" |
|
Compute perspective projection using focal length and principal point. |
|
|
|
Args: |
|
points: (N, V, 3) representing the padded points. |
|
fx: world units |
|
fy: world units |
|
p0x: pixels |
|
p0y: pixels |
|
Returns: |
|
(N, V, 3) tensor of projected points. |
|
""" |
|
z = points[:, :, 2] |
|
x = (points[:, :, 0] * fx) / z + p0x |
|
y = (points[:, :, 1] * fy) / z + p0y |
|
points = torch.stack((x, y, 1.0 / z), dim=2) |
|
return points |
|
|
|
|
|
|
|
def orthographic_project_naive(points, scale_xyz=(1.0, 1.0, 1.0)): |
|
""" |
|
Compute orthographic projection from a given angle |
|
Args: |
|
points: (N, V, 3) representing the padded points. |
|
scaled: (N, 3) scaling factors for each of xyz directions |
|
Returns: |
|
(N, V, 3) tensor of projected points preserving the view space z |
|
coordinate (no z renormalization). |
|
""" |
|
if not torch.is_tensor(scale_xyz): |
|
scale_xyz = torch.tensor(scale_xyz) |
|
scale_xyz = scale_xyz.view(-1, 3) |
|
z = points[:, :, 2] |
|
x = points[:, :, 0] * scale_xyz[:, 0] |
|
y = points[:, :, 1] * scale_xyz[:, 1] |
|
points = torch.stack((x, y, z), dim=2) |
|
return points |
|
|
|
|
|
def ndc_to_screen_points_naive(points, imsize): |
|
""" |
|
Transforms points from PyTorch3D's NDC space to screen space |
|
Args: |
|
points: (N, V, 3) representing padded points |
|
imsize: (N, 2) image size = (height, width) |
|
Returns: |
|
(N, V, 3) tensor of transformed points |
|
""" |
|
height, width = imsize.unbind(1) |
|
width = width.view(-1, 1) |
|
half_width = width / 2.0 |
|
height = height.view(-1, 1) |
|
half_height = height / 2.0 |
|
|
|
scale = ( |
|
half_width * (height > width).float() + half_height * (height <= width).float() |
|
) |
|
|
|
x, y, z = points.unbind(2) |
|
x = -scale * x + half_width |
|
y = -scale * y + half_height |
|
return torch.stack((x, y, z), dim=2) |
|
|
|
|
|
class TestCameraHelpers(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(42) |
|
|
|
def test_look_at_view_transform_from_eye_point_tuple(self): |
|
dist = math.sqrt(2) |
|
elev = math.pi / 4 |
|
azim = 0.0 |
|
eye = ((0.0, 1.0, 1.0),) |
|
|
|
R, t = look_at_view_transform(dist, elev, azim, degrees=False) |
|
|
|
R_eye, t_eye = look_at_view_transform(dist=3, elev=2, azim=1, eye=eye) |
|
|
|
|
|
R_eye_only, t_eye_only = look_at_view_transform(eye=eye) |
|
self.assertTrue(torch.allclose(R, R_eye, atol=2e-7)) |
|
self.assertTrue(torch.allclose(t, t_eye, atol=2e-7)) |
|
self.assertTrue(torch.allclose(R, R_eye_only, atol=2e-7)) |
|
self.assertTrue(torch.allclose(t, t_eye_only, atol=2e-7)) |
|
|
|
def test_look_at_view_transform_default_values(self): |
|
dist = 1.0 |
|
elev = 0.0 |
|
azim = 0.0 |
|
|
|
R, t = look_at_view_transform(dist, elev, azim) |
|
|
|
R_default, t_default = look_at_view_transform() |
|
|
|
self.assertTrue(torch.allclose(R, R_default, atol=2e-7)) |
|
self.assertTrue(torch.allclose(t, t_default, atol=2e-7)) |
|
|
|
def test_look_at_view_transform_non_default_at_position(self): |
|
dist = 1.0 |
|
elev = 0.0 |
|
azim = 0.0 |
|
at = ((1, 1, 1),) |
|
|
|
R, t = look_at_view_transform(dist, elev, azim, at=at) |
|
|
|
R_default, t_default = look_at_view_transform() |
|
|
|
|
|
t_trans = torch.tensor([1, -1, 1], dtype=torch.float32).view(1, 3) |
|
self.assertTrue(torch.allclose(R, R_default, atol=2e-7)) |
|
self.assertTrue(torch.allclose(t, t_default + t_trans, atol=2e-7)) |
|
|
|
def test_camera_position_from_angles_python_scalar(self): |
|
dist = 2.7 |
|
elev = 90.0 |
|
azim = 0.0 |
|
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view( |
|
1, 3 |
|
) |
|
position = camera_position_from_spherical_angles(dist, elev, azim) |
|
self.assertClose(position, expected_position, atol=2e-7) |
|
|
|
def test_camera_position_from_angles_python_scalar_radians(self): |
|
dist = 2.7 |
|
elev = math.pi / 2 |
|
azim = 0.0 |
|
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32) |
|
expected_position = expected_position.view(1, 3) |
|
position = camera_position_from_spherical_angles( |
|
dist, elev, azim, degrees=False |
|
) |
|
self.assertClose(position, expected_position, atol=2e-7) |
|
|
|
def test_camera_position_from_angles_torch_scalars(self): |
|
dist = torch.tensor(2.7) |
|
elev = torch.tensor(0.0) |
|
azim = torch.tensor(90.0) |
|
expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view( |
|
1, 3 |
|
) |
|
position = camera_position_from_spherical_angles(dist, elev, azim) |
|
self.assertClose(position, expected_position, atol=2e-7) |
|
|
|
def test_camera_position_from_angles_mixed_scalars(self): |
|
dist = 2.7 |
|
elev = torch.tensor(0.0) |
|
azim = 90.0 |
|
expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view( |
|
1, 3 |
|
) |
|
position = camera_position_from_spherical_angles(dist, elev, azim) |
|
self.assertClose(position, expected_position, atol=2e-7) |
|
|
|
def test_camera_position_from_angles_torch_scalar_grads(self): |
|
dist = torch.tensor(2.7, requires_grad=True) |
|
elev = torch.tensor(45.0, requires_grad=True) |
|
azim = torch.tensor(45.0) |
|
position = camera_position_from_spherical_angles(dist, elev, azim) |
|
position.sum().backward() |
|
self.assertTrue(hasattr(elev, "grad")) |
|
self.assertTrue(hasattr(dist, "grad")) |
|
elev_grad = elev.grad.clone() |
|
dist_grad = dist.grad.clone() |
|
elev = math.pi / 180.0 * elev.detach() |
|
azim = math.pi / 180.0 * azim |
|
grad_dist = ( |
|
torch.cos(elev) * torch.sin(azim) |
|
+ torch.sin(elev) |
|
+ torch.cos(elev) * torch.cos(azim) |
|
) |
|
grad_elev = ( |
|
-(torch.sin(elev)) * torch.sin(azim) |
|
+ torch.cos(elev) |
|
- torch.sin(elev) * torch.cos(azim) |
|
) |
|
grad_elev = dist * (math.pi / 180.0) * grad_elev |
|
self.assertClose(elev_grad, grad_elev) |
|
self.assertClose(dist_grad, grad_dist) |
|
|
|
def test_camera_position_from_angles_vectors(self): |
|
dist = torch.tensor([2.0, 2.0]) |
|
elev = torch.tensor([0.0, 90.0]) |
|
azim = torch.tensor([90.0, 0.0]) |
|
expected_position = torch.tensor( |
|
[[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32 |
|
) |
|
position = camera_position_from_spherical_angles(dist, elev, azim) |
|
self.assertClose(position, expected_position, atol=2e-7) |
|
|
|
def test_camera_position_from_angles_vectors_broadcast(self): |
|
dist = torch.tensor([2.0, 3.0, 5.0]) |
|
elev = torch.tensor([0.0]) |
|
azim = torch.tensor([90.0]) |
|
expected_position = torch.tensor( |
|
[[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32 |
|
) |
|
position = camera_position_from_spherical_angles(dist, elev, azim) |
|
self.assertClose(position, expected_position, atol=3e-7) |
|
|
|
def test_camera_position_from_angles_vectors_mixed_broadcast(self): |
|
dist = torch.tensor([2.0, 3.0, 5.0]) |
|
elev = 0.0 |
|
azim = torch.tensor(90.0) |
|
expected_position = torch.tensor( |
|
[[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32 |
|
) |
|
position = camera_position_from_spherical_angles(dist, elev, azim) |
|
self.assertClose(position, expected_position, atol=3e-7) |
|
|
|
def test_camera_position_from_angles_vectors_mixed_broadcast_grads(self): |
|
dist = torch.tensor([2.0, 3.0, 5.0], requires_grad=True) |
|
elev = torch.tensor(45.0, requires_grad=True) |
|
azim = 45.0 |
|
position = camera_position_from_spherical_angles(dist, elev, azim) |
|
position.sum().backward() |
|
self.assertTrue(hasattr(elev, "grad")) |
|
self.assertTrue(hasattr(dist, "grad")) |
|
elev_grad = elev.grad.clone() |
|
dist_grad = dist.grad.clone() |
|
azim = torch.tensor(azim) |
|
elev = math.pi / 180.0 * elev.detach() |
|
azim = math.pi / 180.0 * azim |
|
grad_dist = ( |
|
torch.cos(elev) * torch.sin(azim) |
|
+ torch.sin(elev) |
|
+ torch.cos(elev) * torch.cos(azim) |
|
) |
|
grad_elev = ( |
|
-(torch.sin(elev)) * torch.sin(azim) |
|
+ torch.cos(elev) |
|
- torch.sin(elev) * torch.cos(azim) |
|
) |
|
grad_elev = (dist * (math.pi / 180.0) * grad_elev).sum() |
|
self.assertClose(elev_grad, grad_elev) |
|
self.assertClose(dist_grad, torch.full([3], grad_dist)) |
|
|
|
def test_camera_position_from_angles_vectors_bad_broadcast(self): |
|
|
|
dist = torch.tensor([2.0, 3.0, 5.0]) |
|
elev = torch.tensor([0.0, 90.0]) |
|
azim = torch.tensor([90.0]) |
|
with self.assertRaises(ValueError): |
|
camera_position_from_spherical_angles(dist, elev, azim) |
|
|
|
def test_look_at_rotation_python_list(self): |
|
camera_position = [[0.0, 0.0, -1.0]] |
|
rot_mat = look_at_rotation(camera_position) |
|
self.assertClose(rot_mat, torch.eye(3)[None], atol=2e-7) |
|
|
|
def test_look_at_rotation_input_fail(self): |
|
camera_position = [-1.0] |
|
with self.assertRaises(ValueError): |
|
look_at_rotation(camera_position) |
|
|
|
def test_look_at_rotation_list_broadcast(self): |
|
|
|
camera_positions = [[0.0, 0.0, -1.0], [0.0, 0.0, 1.0]] |
|
rot_mats_expected = torch.tensor( |
|
[ |
|
[ |
|
[1.0, 0.0, 0.0], |
|
[0.0, 1.0, 0.0], |
|
[0.0, 0.0, 1.0] |
|
], |
|
[ |
|
[-1.0, 0.0, 0.0], |
|
[ 0.0, 1.0, 0.0], |
|
[ 0.0, 0.0, -1.0] |
|
], |
|
], |
|
dtype=torch.float32 |
|
) |
|
|
|
rot_mats = look_at_rotation(camera_positions) |
|
self.assertClose(rot_mats, rot_mats_expected, atol=2e-7) |
|
|
|
def test_look_at_rotation_tensor_broadcast(self): |
|
|
|
camera_positions = torch.tensor([ |
|
[0.0, 0.0, -1.0], |
|
[0.0, 0.0, 1.0] |
|
], dtype=torch.float32) |
|
rot_mats_expected = torch.tensor( |
|
[ |
|
[ |
|
[1.0, 0.0, 0.0], |
|
[0.0, 1.0, 0.0], |
|
[0.0, 0.0, 1.0] |
|
], |
|
[ |
|
[-1.0, 0.0, 0.0], |
|
[ 0.0, 1.0, 0.0], |
|
[ 0.0, 0.0, -1.0] |
|
], |
|
], |
|
dtype=torch.float32 |
|
) |
|
|
|
rot_mats = look_at_rotation(camera_positions) |
|
self.assertClose(rot_mats, rot_mats_expected, atol=2e-7) |
|
|
|
def test_look_at_rotation_tensor_grad(self): |
|
camera_position = torch.tensor([[0.0, 0.0, -1.0]], requires_grad=True) |
|
rot_mat = look_at_rotation(camera_position) |
|
rot_mat.sum().backward() |
|
self.assertTrue(hasattr(camera_position, "grad")) |
|
self.assertClose( |
|
camera_position.grad, torch.zeros_like(camera_position), atol=2e-7 |
|
) |
|
|
|
def test_view_transform(self): |
|
T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1) |
|
R = look_at_rotation(T) |
|
RT = get_world_to_view_transform(R=R, T=T) |
|
self.assertTrue(isinstance(RT, Transform3d)) |
|
|
|
def test_look_at_view_transform_corner_case(self): |
|
dist = 2.7 |
|
elev = 90 |
|
azim = 90 |
|
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view( |
|
1, 3 |
|
) |
|
position = camera_position_from_spherical_angles(dist, elev, azim) |
|
self.assertClose(position, expected_position, atol=2e-7) |
|
R, _ = look_at_view_transform(eye=position) |
|
x_axis = R[:, :, 0] |
|
expected_x_axis = torch.tensor([0.0, 0.0, -1.0], dtype=torch.float32).view(1, 3) |
|
self.assertClose(x_axis, expected_x_axis, atol=5e-3) |
|
|
|
|
|
class TestCamerasCommon(TestCaseMixin, unittest.TestCase): |
|
def test_K(self, batch_size=10): |
|
T = torch.randn(batch_size, 3) |
|
R = random_rotations(batch_size) |
|
K = torch.randn(batch_size, 4, 4) |
|
for cam_type in ( |
|
FoVOrthographicCameras, |
|
FoVPerspectiveCameras, |
|
OrthographicCameras, |
|
PerspectiveCameras, |
|
): |
|
cam = cam_type(R=R, T=T, K=K) |
|
cam.get_projection_transform() |
|
|
|
|
|
def test_view_transform_class_method(self): |
|
T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1) |
|
R = look_at_rotation(T) |
|
RT = get_world_to_view_transform(R=R, T=T) |
|
for cam_type in ( |
|
OpenGLPerspectiveCameras, |
|
OpenGLOrthographicCameras, |
|
SfMOrthographicCameras, |
|
SfMPerspectiveCameras, |
|
FoVOrthographicCameras, |
|
FoVPerspectiveCameras, |
|
OrthographicCameras, |
|
PerspectiveCameras, |
|
): |
|
cam = cam_type(R=R, T=T) |
|
RT_class = cam.get_world_to_view_transform() |
|
self.assertTrue(torch.allclose(RT.get_matrix(), RT_class.get_matrix())) |
|
|
|
self.assertTrue(isinstance(RT, Transform3d)) |
|
|
|
def test_get_camera_center(self, batch_size=10): |
|
T = torch.randn(batch_size, 3) |
|
R = random_rotations(batch_size) |
|
for cam_type in ( |
|
OpenGLPerspectiveCameras, |
|
OpenGLOrthographicCameras, |
|
SfMOrthographicCameras, |
|
SfMPerspectiveCameras, |
|
FoVOrthographicCameras, |
|
FoVPerspectiveCameras, |
|
OrthographicCameras, |
|
PerspectiveCameras, |
|
): |
|
cam = cam_type(R=R, T=T) |
|
C = cam.get_camera_center() |
|
C_ = -torch.bmm(R, T[:, :, None])[:, :, 0] |
|
self.assertTrue(torch.allclose(C, C_, atol=1e-05)) |
|
|
|
@staticmethod |
|
def init_equiv_cameras_ndc_screen(cam_type: CamerasBase, batch_size: int): |
|
T = torch.randn(batch_size, 3) * 0.03 |
|
T[:, 2] = 4 |
|
R = so3_exp_map(torch.randn(batch_size, 3) * 3.0) |
|
screen_cam_params = {"R": R, "T": T} |
|
ndc_cam_params = {"R": R, "T": T} |
|
if cam_type in (OrthographicCameras, PerspectiveCameras): |
|
fcl = torch.rand((batch_size, 2)) * 3.0 + 0.1 |
|
prc = torch.randn((batch_size, 2)) * 0.2 |
|
|
|
image_size = torch.randint(low=2, high=64, size=(batch_size, 2)) |
|
|
|
scale = (image_size.min(dim=1, keepdim=True).values) / 2.0 |
|
|
|
ndc_cam_params["focal_length"] = fcl |
|
ndc_cam_params["principal_point"] = prc |
|
ndc_cam_params["image_size"] = image_size |
|
|
|
screen_cam_params["image_size"] = image_size |
|
screen_cam_params["focal_length"] = fcl * scale |
|
screen_cam_params["principal_point"] = ( |
|
image_size[:, [1, 0]] |
|
) / 2.0 - prc * scale |
|
screen_cam_params["in_ndc"] = False |
|
else: |
|
raise ValueError(str(cam_type)) |
|
return cam_type(**ndc_cam_params), cam_type(**screen_cam_params) |
|
|
|
def test_unproject_points(self, batch_size=50, num_points=100): |
|
""" |
|
Checks that an unprojection of a randomly projected point cloud |
|
stays the same. |
|
""" |
|
|
|
for cam_type in ( |
|
SfMOrthographicCameras, |
|
OpenGLPerspectiveCameras, |
|
OpenGLOrthographicCameras, |
|
SfMPerspectiveCameras, |
|
FoVOrthographicCameras, |
|
FoVPerspectiveCameras, |
|
OrthographicCameras, |
|
PerspectiveCameras, |
|
): |
|
|
|
cameras = init_random_cameras(cam_type, batch_size) |
|
|
|
xyz = torch.randn(batch_size, num_points, 3) * 0.3 |
|
|
|
xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz) |
|
|
|
depth = xyz_cam[:, :, 2:] |
|
|
|
xyz_proj = cameras.transform_points(xyz) |
|
xy, cam_depth = xyz_proj.split(2, dim=2) |
|
|
|
xy_depth = torch.cat((xy, depth), dim=2) |
|
|
|
for to_world in (False, True): |
|
if to_world: |
|
matching_xyz = xyz |
|
else: |
|
matching_xyz = xyz_cam |
|
|
|
|
|
|
|
if cam_type in ( |
|
OpenGLPerspectiveCameras, |
|
OpenGLOrthographicCameras, |
|
FoVPerspectiveCameras, |
|
FoVOrthographicCameras, |
|
): |
|
for scaled_depth_input in (True, False): |
|
if scaled_depth_input: |
|
xy_depth_ = xyz_proj |
|
else: |
|
xy_depth_ = xy_depth |
|
xyz_unproj = cameras.unproject_points( |
|
xy_depth_, |
|
world_coordinates=to_world, |
|
scaled_depth_input=scaled_depth_input, |
|
) |
|
self.assertTrue( |
|
torch.allclose(xyz_unproj, matching_xyz, atol=1e-4) |
|
) |
|
else: |
|
xyz_unproj = cameras.unproject_points( |
|
xy_depth, world_coordinates=to_world |
|
) |
|
self.assertTrue(torch.allclose(xyz_unproj, matching_xyz, atol=1e-4)) |
|
|
|
@staticmethod |
|
def unproject_points( |
|
cam_type, batch_size=50, num_points=100, device: Device = "cpu" |
|
): |
|
""" |
|
Checks that an unprojection of a randomly projected point cloud |
|
stays the same. |
|
""" |
|
if device == "cuda": |
|
device = torch.device("cuda:0") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
str2cls = { |
|
"OpenGLOrthographicCameras": OpenGLOrthographicCameras, |
|
"OpenGLPerspectiveCameras": OpenGLPerspectiveCameras, |
|
"SfMOrthographicCameras": SfMOrthographicCameras, |
|
"SfMPerspectiveCameras": SfMPerspectiveCameras, |
|
"FoVOrthographicCameras": FoVOrthographicCameras, |
|
"FoVPerspectiveCameras": FoVPerspectiveCameras, |
|
"OrthographicCameras": OrthographicCameras, |
|
"PerspectiveCameras": PerspectiveCameras, |
|
"FishEyeCameras": FishEyeCameras, |
|
} |
|
|
|
def run_cameras(): |
|
|
|
cameras = init_random_cameras(str2cls[cam_type], batch_size, device=device) |
|
|
|
xyz = torch.randn(num_points, 3) * 0.3 |
|
xyz = cameras.unproject_points(xyz, scaled_depth_input=True) |
|
|
|
return run_cameras |
|
|
|
def test_project_points_screen(self, batch_size=50, num_points=100): |
|
""" |
|
Checks that an unprojection of a randomly projected point cloud |
|
stays the same. |
|
""" |
|
|
|
for cam_type in ( |
|
OpenGLOrthographicCameras, |
|
OpenGLPerspectiveCameras, |
|
SfMOrthographicCameras, |
|
SfMPerspectiveCameras, |
|
FoVOrthographicCameras, |
|
FoVPerspectiveCameras, |
|
OrthographicCameras, |
|
PerspectiveCameras, |
|
): |
|
|
|
|
|
cameras = init_random_cameras(cam_type, batch_size) |
|
|
|
xy = torch.randn(batch_size, num_points, 2) * 2.0 - 1.0 |
|
z = torch.randn(batch_size, num_points, 1) * 3.0 + 1.0 |
|
xyz = torch.cat((xy, z), dim=2) |
|
|
|
image_size = torch.randint(low=32, high=64, size=(batch_size, 2)) |
|
|
|
xyz_project_ndc = cameras.transform_points_ndc(xyz) |
|
xyz_project_screen = cameras.transform_points_screen( |
|
xyz, image_size=image_size |
|
) |
|
|
|
xyz_project_screen_naive = ndc_to_screen_points_naive( |
|
xyz_project_ndc, image_size |
|
) |
|
|
|
self.assertClose(xyz_project_screen, xyz_project_screen_naive, atol=1e-4) |
|
|
|
@staticmethod |
|
def transform_points( |
|
cam_type, batch_size=50, num_points=100, device: Device = "cpu" |
|
): |
|
""" |
|
Checks that an unprojection of a randomly projected point cloud |
|
stays the same. |
|
""" |
|
|
|
if device == "cuda": |
|
device = torch.device("cuda:0") |
|
else: |
|
device = torch.device("cpu") |
|
str2cls = { |
|
"OpenGLOrthographicCameras": OpenGLOrthographicCameras, |
|
"OpenGLPerspectiveCameras": OpenGLPerspectiveCameras, |
|
"SfMOrthographicCameras": SfMOrthographicCameras, |
|
"SfMPerspectiveCameras": SfMPerspectiveCameras, |
|
"FoVOrthographicCameras": FoVOrthographicCameras, |
|
"FoVPerspectiveCameras": FoVPerspectiveCameras, |
|
"OrthographicCameras": OrthographicCameras, |
|
"PerspectiveCameras": PerspectiveCameras, |
|
"FishEyeCameras": FishEyeCameras, |
|
} |
|
|
|
def run_cameras(): |
|
|
|
cameras = init_random_cameras(str2cls[cam_type], batch_size, device=device) |
|
|
|
xy = torch.randn(num_points, 2) * 2.0 - 1.0 |
|
z = torch.randn(num_points, 1) * 3.0 + 1.0 |
|
xyz = torch.cat((xy, z), dim=-1) |
|
xy = cameras.transform_points(xyz) |
|
|
|
return run_cameras |
|
|
|
def test_equiv_project_points(self, batch_size=50, num_points=100): |
|
""" |
|
Checks that NDC and screen cameras project points to ndc correctly. |
|
Applies only to OrthographicCameras and PerspectiveCameras. |
|
""" |
|
for cam_type in (OrthographicCameras, PerspectiveCameras): |
|
|
|
( |
|
ndc_cameras, |
|
screen_cameras, |
|
) = TestCamerasCommon.init_equiv_cameras_ndc_screen(cam_type, batch_size) |
|
|
|
xy = torch.randn(batch_size, num_points, 2) * 0.3 |
|
z = torch.rand(batch_size, num_points, 1) + 3.0 + 0.1 |
|
xyz = torch.cat((xy, z), dim=2) |
|
|
|
xyz_ndc = ndc_cameras.transform_points_ndc(xyz) |
|
xyz_screen = screen_cameras.transform_points_ndc(xyz) |
|
|
|
self.assertClose(xyz_ndc, xyz_screen, atol=1e-5) |
|
|
|
def test_clone(self, batch_size: int = 10): |
|
""" |
|
Checks the clone function of the cameras. |
|
""" |
|
for cam_type in ( |
|
SfMOrthographicCameras, |
|
OpenGLPerspectiveCameras, |
|
OpenGLOrthographicCameras, |
|
SfMPerspectiveCameras, |
|
FoVOrthographicCameras, |
|
FoVPerspectiveCameras, |
|
OrthographicCameras, |
|
PerspectiveCameras, |
|
): |
|
cameras = init_random_cameras(cam_type, batch_size) |
|
cameras = cameras.to(torch.device("cpu")) |
|
cameras_clone = cameras.clone() |
|
|
|
for var in cameras.__dict__.keys(): |
|
val = getattr(cameras, var) |
|
val_clone = getattr(cameras_clone, var) |
|
if torch.is_tensor(val): |
|
self.assertClose(val, val_clone) |
|
self.assertSeparate(val, val_clone) |
|
else: |
|
self.assertTrue(val == val_clone) |
|
|
|
def test_join_cameras_as_batch_errors(self): |
|
cam0 = PerspectiveCameras(device="cuda:0") |
|
cam1 = OrthographicCameras(device="cuda:0") |
|
|
|
|
|
with self.assertRaisesRegex(ValueError, "same type"): |
|
join_cameras_as_batch([cam0, cam1]) |
|
|
|
cam2 = OrthographicCameras(device="cpu") |
|
|
|
with self.assertRaisesRegex(ValueError, "same device"): |
|
join_cameras_as_batch([cam1, cam2]) |
|
|
|
cam3 = OrthographicCameras(in_ndc=False, device="cuda:0") |
|
|
|
with self.assertRaisesRegex( |
|
ValueError, "Attribute _in_ndc is not constant across inputs" |
|
): |
|
join_cameras_as_batch([cam1, cam3]) |
|
|
|
def join_cameras_as_batch_fov(self, camera_cls): |
|
R0 = torch.randn((6, 3, 3)) |
|
R1 = torch.randn((3, 3, 3)) |
|
cam0 = camera_cls(znear=10.0, zfar=100.0, R=R0, device="cuda:0") |
|
cam1 = camera_cls(znear=10.0, zfar=200.0, R=R1, device="cuda:0") |
|
|
|
cam_batch = join_cameras_as_batch([cam0, cam1]) |
|
|
|
self.assertEqual(cam_batch._N, cam0._N + cam1._N) |
|
self.assertEqual(cam_batch.device, cam0.device) |
|
self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0).to(device="cuda:0")) |
|
|
|
def join_cameras_as_batch(self, camera_cls): |
|
R0 = torch.randn((6, 3, 3)) |
|
R1 = torch.randn((3, 3, 3)) |
|
p0 = torch.randn((6, 2, 1)) |
|
p1 = torch.randn((3, 2, 1)) |
|
f0 = 5.0 |
|
f1 = torch.randn(3, 2) |
|
f2 = torch.randn(3, 1) |
|
cam0 = camera_cls( |
|
R=R0, |
|
focal_length=f0, |
|
principal_point=p0, |
|
) |
|
cam1 = camera_cls( |
|
R=R1, |
|
focal_length=f0, |
|
principal_point=p1, |
|
) |
|
cam2 = camera_cls( |
|
R=R1, |
|
focal_length=f1, |
|
principal_point=p1, |
|
) |
|
cam3 = camera_cls( |
|
R=R1, |
|
focal_length=f2, |
|
principal_point=p1, |
|
) |
|
cam_batch = join_cameras_as_batch([cam0, cam1]) |
|
|
|
self.assertEqual(cam_batch._N, cam0._N + cam1._N) |
|
self.assertEqual(cam_batch.device, cam0.device) |
|
self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0)) |
|
self.assertClose(cam_batch.principal_point, torch.cat((p0, p1), dim=0)) |
|
self.assertEqual(cam_batch._in_ndc, cam0._in_ndc) |
|
|
|
|
|
|
|
cam_batch = join_cameras_as_batch([cam0, cam2]) |
|
self.assertEqual(cam_batch._N, cam0._N + cam2._N) |
|
self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0)) |
|
self.assertClose( |
|
cam_batch.focal_length, |
|
torch.cat([torch.tensor([[f0, f0]]).expand(6, -1), f1], dim=0), |
|
) |
|
|
|
|
|
cam_batch = join_cameras_as_batch([cam2, cam3]) |
|
self.assertClose( |
|
cam_batch.focal_length, |
|
torch.cat([f1, f2.expand(-1, 2)], dim=0), |
|
) |
|
|
|
def test_join_batch_perspective(self): |
|
self.join_cameras_as_batch_fov(FoVPerspectiveCameras) |
|
self.join_cameras_as_batch(PerspectiveCameras) |
|
|
|
def test_join_batch_orthographic(self): |
|
self.join_cameras_as_batch_fov(FoVOrthographicCameras) |
|
self.join_cameras_as_batch(OrthographicCameras) |
|
|
|
def test_iterable(self): |
|
for camera_type in [PerspectiveCameras, OrthographicCameras]: |
|
a_list = list(camera_type()) |
|
self.assertEqual(len(a_list), 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestFoVPerspectiveProjection(TestCaseMixin, unittest.TestCase): |
|
def test_perspective(self): |
|
far = 10.0 |
|
near = 1.0 |
|
cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=60.0) |
|
P = cameras.get_projection_transform() |
|
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32) |
|
projected_verts = torch.tensor( |
|
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32 |
|
) |
|
vertices = vertices[None, None, :] |
|
v1 = P.transform_points(vertices) |
|
v2 = perspective_project_naive(vertices, fov=60.0) |
|
self.assertClose(v1[..., :2], v2[..., :2]) |
|
self.assertClose(far * v1[..., 2], v2[..., 2]) |
|
self.assertClose(v1.squeeze(), projected_verts) |
|
|
|
|
|
vertices[..., 2] = near |
|
projected_verts = torch.tensor( |
|
[np.sqrt(3) / near, 2 * np.sqrt(3) / near, 0.0], dtype=torch.float32 |
|
) |
|
v1 = P.transform_points(vertices) |
|
v2 = perspective_project_naive(vertices, fov=60.0) |
|
self.assertClose(v1[..., :2], v2[..., :2]) |
|
self.assertClose(v1.squeeze(), projected_verts) |
|
|
|
def test_perspective_kwargs(self): |
|
cameras = FoVPerspectiveCameras(znear=5.0, zfar=100.0, fov=0.0) |
|
|
|
far = 10.0 |
|
P = cameras.get_projection_transform(znear=1.0, zfar=far, fov=60.0) |
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32) |
|
projected_verts = torch.tensor( |
|
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32 |
|
) |
|
vertices = vertices[None, None, :] |
|
v1 = P.transform_points(vertices) |
|
self.assertClose(v1.squeeze(), projected_verts) |
|
|
|
def test_perspective_mixed_inputs_broadcast(self): |
|
far = torch.tensor([10.0, 20.0], dtype=torch.float32) |
|
near = 1.0 |
|
fov = torch.tensor(60.0) |
|
cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov) |
|
P = cameras.get_projection_transform() |
|
vertices = torch.tensor([1, 2, 10], dtype=torch.float32) |
|
z1 = 1.0 |
|
z2 = (20.0 / (20.0 - 1.0) * 10.0 + -20.0 / (20.0 - 1.0)) / 10.0 |
|
projected_verts = torch.tensor( |
|
[ |
|
[np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z1], |
|
[np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z2], |
|
], |
|
dtype=torch.float32, |
|
) |
|
vertices = vertices[None, None, :] |
|
v1 = P.transform_points(vertices) |
|
v2 = perspective_project_naive(vertices, fov=60.0) |
|
self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2]) |
|
self.assertClose(v1.squeeze(), projected_verts) |
|
|
|
def test_perspective_mixed_inputs_grad(self): |
|
far = torch.tensor([10.0]) |
|
near = 1.0 |
|
fov = torch.tensor(60.0, requires_grad=True) |
|
cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov) |
|
P = cameras.get_projection_transform() |
|
vertices = torch.tensor([1, 2, 10], dtype=torch.float32) |
|
vertices_batch = vertices[None, None, :] |
|
v1 = P.transform_points(vertices_batch).squeeze() |
|
v1.sum().backward() |
|
self.assertTrue(hasattr(fov, "grad")) |
|
fov_grad = fov.grad.clone() |
|
half_fov_rad = (math.pi / 180.0) * fov.detach() / 2.0 |
|
grad_cotan = -(1.0 / (torch.sin(half_fov_rad) ** 2.0) * 1 / 2.0) |
|
grad_fov = (math.pi / 180.0) * grad_cotan |
|
grad_fov = (vertices[0] + vertices[1]) * grad_fov / 10.0 |
|
self.assertClose(fov_grad, grad_fov) |
|
|
|
def test_camera_class_init(self): |
|
device = torch.device("cuda:0") |
|
cam = FoVPerspectiveCameras(znear=10.0, zfar=(100.0, 200.0)) |
|
|
|
|
|
self.assertTrue(cam.znear.shape == (2,)) |
|
self.assertTrue(cam.zfar.shape == (2,)) |
|
|
|
|
|
new_cam = cam.to(device=device) |
|
self.assertTrue(new_cam.device == device) |
|
|
|
def test_getitem(self): |
|
N_CAMERAS = 6 |
|
R_matrix = torch.randn((N_CAMERAS, 3, 3)) |
|
cam = FoVPerspectiveCameras(znear=10.0, zfar=100.0, R=R_matrix) |
|
|
|
|
|
|
|
c0 = cam[0] |
|
self.assertTrue(isinstance(c0, FoVPerspectiveCameras)) |
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys()) |
|
|
|
|
|
self.assertEqual(len(c0), 1) |
|
self.assertClose(c0.zfar, torch.tensor([100.0])) |
|
self.assertClose(c0.znear, torch.tensor([10.0])) |
|
self.assertClose(c0.R, R_matrix[0:1, ...]) |
|
self.assertEqual(c0.device, torch.device("cpu")) |
|
|
|
|
|
c012 = cam[[0, 1, 2]] |
|
self.assertEqual(len(c012), 3) |
|
self.assertClose(c012.zfar, torch.tensor([100.0] * 3)) |
|
self.assertClose(c012.znear, torch.tensor([10.0] * 3)) |
|
self.assertClose(c012.R, R_matrix[0:3, ...]) |
|
|
|
|
|
SLICE = [1, 3, 5] |
|
index = torch.tensor(SLICE, dtype=torch.int64) |
|
c135 = cam[index] |
|
self.assertEqual(len(c135), 3) |
|
self.assertClose(c135.zfar, torch.tensor([100.0] * 3)) |
|
self.assertClose(c135.znear, torch.tensor([10.0] * 3)) |
|
self.assertClose(c135.R, R_matrix[SLICE, ...]) |
|
|
|
|
|
bool_slice = [i in SLICE for i in range(N_CAMERAS)] |
|
index = torch.tensor(bool_slice, dtype=torch.bool) |
|
c135 = cam[index] |
|
self.assertEqual(len(c135), 3) |
|
self.assertClose(c135.zfar, torch.tensor([100.0] * 3)) |
|
self.assertClose(c135.znear, torch.tensor([10.0] * 3)) |
|
self.assertClose(c135.R, R_matrix[SLICE, ...]) |
|
|
|
|
|
with self.assertRaisesRegex(IndexError, "out of bounds"): |
|
cam[N_CAMERAS] |
|
|
|
index = torch.tensor([1, 0, 1], dtype=torch.bool) |
|
with self.assertRaisesRegex(ValueError, "does not match cameras"): |
|
cam[index] |
|
|
|
with self.assertRaisesRegex(ValueError, "Invalid index type"): |
|
cam[slice(0, 1)] |
|
|
|
with self.assertRaisesRegex(ValueError, "Invalid index type"): |
|
cam[[True, False]] |
|
|
|
index = torch.tensor(SLICE, dtype=torch.float32) |
|
with self.assertRaisesRegex(ValueError, "Invalid index type"): |
|
cam[index] |
|
|
|
def test_get_full_transform(self): |
|
cam = FoVPerspectiveCameras() |
|
T = torch.tensor([0.0, 0.0, 1.0]).view(1, -1) |
|
R = look_at_rotation(T) |
|
P = cam.get_full_projection_transform(R=R, T=T) |
|
self.assertTrue(isinstance(P, Transform3d)) |
|
self.assertClose(cam.R, R) |
|
self.assertClose(cam.T, T) |
|
|
|
def test_transform_points(self): |
|
|
|
|
|
far = 10.0 |
|
cam = FoVPerspectiveCameras(znear=1.0, zfar=far, fov=60.0) |
|
points = torch.tensor([1, 2, far], dtype=torch.float32) |
|
points = points.view(1, 1, 3).expand(5, 10, -1) |
|
projected_points = torch.tensor( |
|
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32 |
|
) |
|
projected_points = projected_points.view(1, 1, 3).expand(5, 10, -1) |
|
new_points = cam.transform_points(points) |
|
self.assertClose(new_points, projected_points) |
|
|
|
def test_perspective_type(self): |
|
cam = FoVPerspectiveCameras(znear=1.0, zfar=10.0, fov=60.0) |
|
self.assertTrue(cam.is_perspective()) |
|
self.assertEqual(cam.get_znear(), 1.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestFoVOrthographicProjection(TestCaseMixin, unittest.TestCase): |
|
def test_orthographic(self): |
|
far = 10.0 |
|
near = 1.0 |
|
cameras = FoVOrthographicCameras(znear=near, zfar=far) |
|
P = cameras.get_projection_transform() |
|
|
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32) |
|
projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32) |
|
vertices = vertices[None, None, :] |
|
v1 = P.transform_points(vertices) |
|
v2 = orthographic_project_naive(vertices) |
|
self.assertClose(v1[..., :2], v2[..., :2]) |
|
self.assertClose(v1.squeeze(), projected_verts) |
|
|
|
vertices[..., 2] = near |
|
projected_verts[2] = 0.0 |
|
v1 = P.transform_points(vertices) |
|
v2 = orthographic_project_naive(vertices) |
|
self.assertClose(v1[..., :2], v2[..., :2]) |
|
self.assertClose(v1.squeeze(), projected_verts) |
|
|
|
def test_orthographic_scaled(self): |
|
vertices = torch.tensor([1, 2, 0.5], dtype=torch.float32) |
|
vertices = vertices[None, None, :] |
|
scale = torch.tensor([[2.0, 0.5, 20]]) |
|
|
|
|
|
projected_verts = torch.tensor([2, 1, 1], dtype=torch.float32) |
|
cameras = FoVOrthographicCameras(znear=1.0, zfar=10.0, scale_xyz=scale) |
|
P = cameras.get_projection_transform() |
|
v1 = P.transform_points(vertices) |
|
v2 = orthographic_project_naive(vertices, scale) |
|
self.assertClose(v1[..., :2], v2[..., :2]) |
|
self.assertClose(v1, projected_verts[None, None]) |
|
|
|
def test_orthographic_kwargs(self): |
|
cameras = FoVOrthographicCameras(znear=5.0, zfar=100.0) |
|
far = 10.0 |
|
P = cameras.get_projection_transform(znear=1.0, zfar=far) |
|
vertices = torch.tensor([1, 2, far], dtype=torch.float32) |
|
projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32) |
|
vertices = vertices[None, None, :] |
|
v1 = P.transform_points(vertices) |
|
self.assertClose(v1.squeeze(), projected_verts) |
|
|
|
def test_orthographic_mixed_inputs_broadcast(self): |
|
far = torch.tensor([10.0, 20.0]) |
|
near = 1.0 |
|
cameras = FoVOrthographicCameras(znear=near, zfar=far) |
|
P = cameras.get_projection_transform() |
|
vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32) |
|
z2 = 1.0 / (20.0 - 1.0) * 10.0 + -1.0 / (20.0 - 1.0) |
|
projected_verts = torch.tensor( |
|
[[1.0, 2.0, 1.0], [1.0, 2.0, z2]], dtype=torch.float32 |
|
) |
|
vertices = vertices[None, None, :] |
|
v1 = P.transform_points(vertices) |
|
v2 = orthographic_project_naive(vertices) |
|
self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2]) |
|
self.assertClose(v1.squeeze(), projected_verts) |
|
|
|
def test_orthographic_mixed_inputs_grad(self): |
|
far = torch.tensor([10.0]) |
|
near = 1.0 |
|
scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True) |
|
cameras = FoVOrthographicCameras(znear=near, zfar=far, scale_xyz=scale) |
|
P = cameras.get_projection_transform() |
|
vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32) |
|
vertices_batch = vertices[None, None, :] |
|
v1 = P.transform_points(vertices_batch) |
|
v1.sum().backward() |
|
self.assertTrue(hasattr(scale, "grad")) |
|
scale_grad = scale.grad.clone() |
|
grad_scale = torch.tensor( |
|
[ |
|
[ |
|
vertices[0] * P._matrix[:, 0, 0], |
|
vertices[1] * P._matrix[:, 1, 1], |
|
vertices[2] * P._matrix[:, 2, 2], |
|
] |
|
] |
|
) |
|
self.assertClose(scale_grad, grad_scale) |
|
|
|
def test_perspective_type(self): |
|
cam = FoVOrthographicCameras(znear=1.0, zfar=10.0) |
|
self.assertFalse(cam.is_perspective()) |
|
self.assertEqual(cam.get_znear(), 1.0) |
|
|
|
def test_getitem(self): |
|
R_matrix = torch.randn((6, 3, 3)) |
|
scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True) |
|
cam = FoVOrthographicCameras( |
|
znear=10.0, zfar=100.0, R=R_matrix, scale_xyz=scale |
|
) |
|
|
|
|
|
|
|
c0 = cam[0] |
|
self.assertTrue(isinstance(c0, FoVOrthographicCameras)) |
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys()) |
|
|
|
|
|
index = torch.tensor([1, 3, 5], dtype=torch.int64) |
|
c135 = cam[index] |
|
self.assertEqual(len(c135), 3) |
|
self.assertClose(c135.zfar, torch.tensor([100.0] * 3)) |
|
self.assertClose(c135.znear, torch.tensor([10.0] * 3)) |
|
self.assertClose(c135.min_x, torch.tensor([-1.0] * 3)) |
|
self.assertClose(c135.max_x, torch.tensor([1.0] * 3)) |
|
self.assertClose(c135.R, R_matrix[[1, 3, 5], ...]) |
|
self.assertClose(c135.scale_xyz, scale.expand(3, -1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestOrthographicProjection(TestCaseMixin, unittest.TestCase): |
|
def test_orthographic(self): |
|
cameras = OrthographicCameras() |
|
P = cameras.get_projection_transform() |
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32) |
|
projected_verts = vertices.clone() |
|
v1 = P.transform_points(vertices) |
|
v2 = orthographic_project_naive(vertices) |
|
|
|
self.assertClose(v1[..., :2], v2[..., :2]) |
|
self.assertClose(v1, projected_verts) |
|
|
|
def test_orthographic_scaled(self): |
|
focal_length_x = 10.0 |
|
focal_length_y = 15.0 |
|
|
|
cameras = OrthographicCameras(focal_length=((focal_length_x, focal_length_y),)) |
|
P = cameras.get_projection_transform() |
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32) |
|
projected_verts = vertices.clone() |
|
projected_verts[:, :, 0] *= focal_length_x |
|
projected_verts[:, :, 1] *= focal_length_y |
|
v1 = P.transform_points(vertices) |
|
v2 = orthographic_project_naive( |
|
vertices, scale_xyz=(focal_length_x, focal_length_y, 1.0) |
|
) |
|
v3 = cameras.transform_points(vertices) |
|
self.assertClose(v1[..., :2], v2[..., :2]) |
|
self.assertClose(v3[..., :2], v2[..., :2]) |
|
self.assertClose(v1, projected_verts) |
|
|
|
def test_orthographic_kwargs(self): |
|
cameras = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),)) |
|
P = cameras.get_projection_transform( |
|
focal_length=2.0, principal_point=((2.5, 3.5),) |
|
) |
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32) |
|
projected_verts = vertices.clone() |
|
projected_verts[:, :, :2] *= 2.0 |
|
projected_verts[:, :, 0] += 2.5 |
|
projected_verts[:, :, 1] += 3.5 |
|
v1 = P.transform_points(vertices) |
|
self.assertClose(v1, projected_verts) |
|
|
|
def test_perspective_type(self): |
|
cam = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),)) |
|
self.assertFalse(cam.is_perspective()) |
|
self.assertIsNone(cam.get_znear()) |
|
|
|
def test_getitem(self): |
|
R_matrix = torch.randn((6, 3, 3)) |
|
principal_point = torch.randn((6, 2, 1)) |
|
focal_length = 5.0 |
|
cam = OrthographicCameras( |
|
R=R_matrix, |
|
focal_length=focal_length, |
|
principal_point=principal_point, |
|
) |
|
|
|
|
|
|
|
c0 = cam[0] |
|
self.assertTrue(isinstance(c0, OrthographicCameras)) |
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys()) |
|
|
|
|
|
index = torch.tensor([1, 3, 5], dtype=torch.int64) |
|
c135 = cam[index] |
|
self.assertEqual(len(c135), 3) |
|
self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3)) |
|
self.assertClose(c135.R, R_matrix[[1, 3, 5], ...]) |
|
self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestPerspectiveProjection(TestCaseMixin, unittest.TestCase): |
|
def test_perspective(self): |
|
cameras = PerspectiveCameras() |
|
P = cameras.get_projection_transform() |
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32) |
|
v1 = P.transform_points(vertices) |
|
v2 = sfm_perspective_project_naive(vertices) |
|
self.assertClose(v1, v2) |
|
|
|
def test_perspective_scaled(self): |
|
focal_length_x = 10.0 |
|
focal_length_y = 15.0 |
|
p0x = 15.0 |
|
p0y = 30.0 |
|
|
|
cameras = PerspectiveCameras( |
|
focal_length=((focal_length_x, focal_length_y),), |
|
principal_point=((p0x, p0y),), |
|
) |
|
P = cameras.get_projection_transform() |
|
|
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32) |
|
v1 = P.transform_points(vertices) |
|
v2 = sfm_perspective_project_naive( |
|
vertices, fx=focal_length_x, fy=focal_length_y, p0x=p0x, p0y=p0y |
|
) |
|
v3 = cameras.transform_points(vertices) |
|
self.assertClose(v1, v2) |
|
self.assertClose(v3[..., :2], v2[..., :2]) |
|
|
|
def test_perspective_kwargs(self): |
|
cameras = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),)) |
|
P = cameras.get_projection_transform( |
|
focal_length=2.0, principal_point=((2.5, 3.5),) |
|
) |
|
vertices = torch.randn([3, 4, 3], dtype=torch.float32) |
|
v1 = P.transform_points(vertices) |
|
v2 = sfm_perspective_project_naive(vertices, fx=2.0, fy=2.0, p0x=2.5, p0y=3.5) |
|
self.assertClose(v1, v2, atol=1e-6) |
|
|
|
def test_perspective_type(self): |
|
cam = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),)) |
|
self.assertTrue(cam.is_perspective()) |
|
self.assertIsNone(cam.get_znear()) |
|
|
|
def test_getitem(self): |
|
R_matrix = torch.randn((6, 3, 3)) |
|
principal_point = torch.randn((6, 2, 1)) |
|
focal_length = 5.0 |
|
cam = PerspectiveCameras( |
|
R=R_matrix, |
|
focal_length=focal_length, |
|
principal_point=principal_point, |
|
) |
|
|
|
|
|
|
|
c0 = cam[0] |
|
self.assertTrue(isinstance(c0, PerspectiveCameras)) |
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys()) |
|
|
|
|
|
index = torch.tensor([1, 3, 5], dtype=torch.int64) |
|
c135 = cam[index] |
|
self.assertEqual(len(c135), 3) |
|
self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3)) |
|
self.assertClose(c135.R, R_matrix[[1, 3, 5], ...]) |
|
self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...]) |
|
|
|
|
|
self.assertEqual(cam._in_ndc, c0._in_ndc) |
|
|
|
def test_clone_picklable(self): |
|
camera = PerspectiveCameras() |
|
pickle.dumps(camera) |
|
pickle.dumps(camera.clone()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestFishEyeProjection(TestCaseMixin, unittest.TestCase): |
|
def setUpSimpleCase(self) -> None: |
|
super().setUp() |
|
focal = torch.tensor([[240]], dtype=torch.float32) |
|
principal_point = torch.tensor([[320, 240]]) |
|
p_3d = torch.tensor( |
|
[ |
|
[2.0, 3.0, 1.0], |
|
[3.0, 2.0, 1.0], |
|
], |
|
dtype=torch.float32, |
|
) |
|
return focal, principal_point, p_3d |
|
|
|
def setUpAriaCase(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(42) |
|
focal = torch.tensor([[608.9255557152]], dtype=torch.float32) |
|
principal_point = torch.tensor( |
|
[[712.0114821205, 706.8666571177]], dtype=torch.float32 |
|
) |
|
radial_params = torch.tensor( |
|
[ |
|
[ |
|
0.3877090026, |
|
-0.315613384, |
|
-0.3434984955, |
|
1.8565874201, |
|
-2.1799372221, |
|
0.7713834763, |
|
], |
|
], |
|
dtype=torch.float32, |
|
) |
|
tangential_params = torch.tensor( |
|
[[-0.0002747019, 0.0005228974]], dtype=torch.float32 |
|
) |
|
thin_prism_params = torch.tensor( |
|
[ |
|
[0.000134884, -0.000084822, -0.0009420014, -0.0001276838], |
|
], |
|
dtype=torch.float32, |
|
) |
|
return ( |
|
focal, |
|
principal_point, |
|
radial_params, |
|
tangential_params, |
|
thin_prism_params, |
|
) |
|
|
|
def setUpBatchCameras(self, combination: None) -> None: |
|
super().setUp() |
|
focal, principal_point, p_3d = self.setUpSimpleCase() |
|
radial_params = torch.tensor( |
|
[ |
|
[0, 0, 0, 0, 0, 0], |
|
], |
|
dtype=torch.float32, |
|
) |
|
tangential_params = torch.tensor([[0, 0]], dtype=torch.float32) |
|
thin_prism_params = torch.tensor([[0, 0, 0, 0]], dtype=torch.float32) |
|
( |
|
focal1, |
|
principal_point1, |
|
radial_params1, |
|
tangential_params1, |
|
thin_prism_params1, |
|
) = self.setUpAriaCase() |
|
focal = torch.cat([focal, focal1], dim=0) |
|
principal_point = torch.cat([principal_point, principal_point1], dim=0) |
|
radial_params = torch.cat([radial_params, radial_params1], dim=0) |
|
tangential_params = torch.cat([tangential_params, tangential_params1], dim=0) |
|
thin_prism_params = torch.cat([thin_prism_params, thin_prism_params1], dim=0) |
|
if combination is None: |
|
combination = [True, True, True] |
|
cameras = FishEyeCameras( |
|
use_radial=combination[0], |
|
use_tangential=combination[1], |
|
use_thin_prism=combination[2], |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
radial_params=radial_params, |
|
tangential_params=tangential_params, |
|
thin_prism_params=thin_prism_params, |
|
) |
|
|
|
return cameras |
|
|
|
def test_distortion_params_set_to_zeors(self): |
|
|
|
|
|
|
|
focal, principal_point, p_3d = self.setUpSimpleCase() |
|
cameras = FishEyeCameras( |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
) |
|
uv_case1 = cameras.transform_points(p_3d) |
|
self.assertClose( |
|
uv_case1, |
|
torch.tensor( |
|
[[493.0993, 499.6489, 1.0], [579.6489, 413.0993, 1.0]], |
|
), |
|
) |
|
|
|
|
|
cameras = FishEyeCameras( |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
use_tangential=False, |
|
use_thin_prism=False, |
|
) |
|
uv_case2 = cameras.transform_points(p_3d) |
|
self.assertClose(uv_case2, uv_case1) |
|
|
|
def test_fisheye_against_perspective_cameras(self): |
|
|
|
|
|
focal, principal_point, p_3d = self.setUpSimpleCase() |
|
cameras = PerspectiveCameras( |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
) |
|
P = cameras.get_projection_transform() |
|
uv_perspective = P.transform_points(p_3d) |
|
|
|
|
|
cameras = FishEyeCameras( |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
use_radial=False, |
|
use_tangential=False, |
|
use_thin_prism=False, |
|
) |
|
uv = cameras.transform_points(p_3d) |
|
self.assertClose(uv, uv_perspective) |
|
|
|
def test_project_shape_broadcasts(self): |
|
focal, principal_point, p_3d = self.setUpSimpleCase() |
|
torch.set_printoptions(precision=6) |
|
combinations = product([0, 1], repeat=3) |
|
for combination in combinations: |
|
cameras = FishEyeCameras( |
|
use_radial=combination[0], |
|
use_tangential=combination[1], |
|
use_thin_prism=combination[2], |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
) |
|
|
|
|
|
|
|
|
|
points = p_3d.repeat(1, 1, 1) |
|
cameras = FishEyeCameras( |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
use_radial=False, |
|
use_tangential=False, |
|
use_thin_prism=False, |
|
) |
|
uv = cameras.transform_points(p_3d) |
|
uv_point_batch = cameras.transform_points(points) |
|
self.assertClose(uv_point_batch, uv.repeat(1, 1, 1)) |
|
|
|
points = p_3d.repeat(3, 1, 1) |
|
uv_point_batch = cameras.transform_points(points) |
|
self.assertClose(uv_point_batch, uv.repeat(3, 1, 1)) |
|
|
|
|
|
|
|
|
|
torch.set_printoptions(sci_mode=False) |
|
p_3d = torch.tensor( |
|
[ |
|
[2.0, 3.0, 1.0], |
|
[3.0, 2.0, 1.0], |
|
] |
|
) |
|
expected_res = torch.tensor( |
|
[ |
|
[ |
|
[ |
|
[800.000000, 960.000000, 1.000000], |
|
[1040.000000, 720.000000, 1.000000], |
|
], |
|
[ |
|
[1929.862549, 2533.643311, 1.000000], |
|
[2538.788086, 1924.717773, 1.000000], |
|
], |
|
], |
|
[ |
|
[ |
|
[800.000000, 960.000000, 1.000000], |
|
[1040.000000, 720.000000, 1.000000], |
|
], |
|
[ |
|
[1927.272095, 2524.220459, 1.000000], |
|
[2536.197754, 1915.295166, 1.000000], |
|
], |
|
], |
|
[ |
|
[ |
|
[800.000000, 960.000000, 1.000000], |
|
[1040.000000, 720.000000, 1.000000], |
|
], |
|
[ |
|
[1930.050293, 2538.434814, 1.000000], |
|
[2537.956543, 1927.569092, 1.000000], |
|
], |
|
], |
|
[ |
|
[ |
|
[800.000000, 960.000000, 1.000000], |
|
[1040.000000, 720.000000, 1.000000], |
|
], |
|
[ |
|
[1927.459839, 2529.011963, 1.000000], |
|
[2535.366211, 1918.146484, 1.000000], |
|
], |
|
], |
|
[ |
|
[ |
|
[493.099304, 499.648926, 1.000000], |
|
[579.648926, 413.099304, 1.000000], |
|
], |
|
[ |
|
[1662.673950, 2132.860352, 1.000000], |
|
[2138.005127, 1657.529053, 1.000000], |
|
], |
|
], |
|
[ |
|
[ |
|
[493.099304, 499.648926, 1.000000], |
|
[579.648926, 413.099304, 1.000000], |
|
], |
|
[ |
|
[1660.083496, 2123.437744, 1.000000], |
|
[2135.414795, 1648.106445, 1.000000], |
|
], |
|
], |
|
[ |
|
[ |
|
[493.099304, 499.648926, 1.000000], |
|
[579.648926, 413.099304, 1.000000], |
|
], |
|
[ |
|
[1662.861816, 2137.651855, 1.000000], |
|
[2137.173828, 1660.380371, 1.000000], |
|
], |
|
], |
|
[ |
|
[ |
|
[493.099304, 499.648926, 1.000000], |
|
[579.648926, 413.099304, 1.000000], |
|
], |
|
[ |
|
[1660.271240, 2128.229248, 1.000000], |
|
[2134.583496, 1650.957764, 1.000000], |
|
], |
|
], |
|
] |
|
) |
|
combinations = product([0, 1], repeat=3) |
|
for i, combination in enumerate(combinations): |
|
cameras = self.setUpBatchCameras(combination) |
|
uv_point_batch = cameras.transform_points(p_3d) |
|
self.assertClose(uv_point_batch, expected_res[i]) |
|
|
|
uv_point_batch = cameras.transform_points(p_3d.repeat(1, 1, 1)) |
|
self.assertClose(uv_point_batch, expected_res[i].repeat(1, 1, 1)) |
|
|
|
def test_cuda(self): |
|
""" |
|
Test cuda device |
|
""" |
|
focal, principal_point, p_3d = self.setUpSimpleCase() |
|
cameras_cuda = FishEyeCameras( |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
device="cuda:0", |
|
) |
|
uv = cameras_cuda.transform_points(p_3d) |
|
expected_res = torch.tensor( |
|
[[493.0993, 499.6489, 1.0], [579.6489, 413.0993, 1.0]], |
|
) |
|
self.assertClose(uv, expected_res.to("cuda:0")) |
|
|
|
rep_3d = cameras_cuda.unproject_points(uv) |
|
self.assertClose(rep_3d, p_3d.to("cuda:0")) |
|
|
|
def test_unproject_shape_broadcasts(self): |
|
|
|
|
|
|
|
( |
|
focal, |
|
principal_point, |
|
radial_params, |
|
tangential_params, |
|
thin_prism_params, |
|
) = self.setUpAriaCase() |
|
xy_depth = torch.tensor( |
|
[ |
|
[2134.5814033, 1650.95653328, 1.0], |
|
[1074.25442904, 1159.52461285, 1.0], |
|
] |
|
) |
|
cameras = FishEyeCameras( |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
radial_params=radial_params, |
|
tangential_params=tangential_params, |
|
thin_prism_params=thin_prism_params, |
|
) |
|
rep_3d = cameras.unproject_points(xy_depth) |
|
expected_res = torch.tensor( |
|
[ |
|
[[2.999442, 1.990583, 1.000000], [0.666728, 0.833142, 1.000000]], |
|
[[2.997338, 2.005411, 1.000000], [0.666859, 0.834456, 1.000000]], |
|
[[3.002090, 1.985229, 1.000000], [0.666537, 0.832025, 1.000000]], |
|
[[2.999999, 2.000000, 1.000000], [0.666667, 0.833333, 1.000000]], |
|
[[2.999442, 1.990583, 1.000000], [0.666728, 0.833142, 1.000000]], |
|
[[2.997338, 2.005411, 1.000000], [0.666859, 0.834456, 1.000000]], |
|
[[3.002090, 1.985229, 1.000000], [0.666537, 0.832025, 1.000000]], |
|
[[2.999999, 2.000000, 1.000000], [0.666667, 0.833333, 1.000000]], |
|
] |
|
) |
|
torch.set_printoptions(precision=6) |
|
combinations = product([0, 1], repeat=3) |
|
for i, combination in enumerate(combinations): |
|
cameras = FishEyeCameras( |
|
use_radial=combination[0], |
|
use_tangential=combination[1], |
|
use_thin_prism=combination[2], |
|
focal_length=focal, |
|
principal_point=principal_point, |
|
radial_params=radial_params, |
|
tangential_params=tangential_params, |
|
thin_prism_params=thin_prism_params, |
|
) |
|
rep_3d = cameras.unproject_points(xy_depth) |
|
self.assertClose(rep_3d, expected_res[i]) |
|
rep_3d = cameras.unproject_points(xy_depth.repeat(3, 1, 1)) |
|
self.assertClose(rep_3d, expected_res[i].repeat(3, 1, 1)) |
|
|
|
|
|
|
|
|
|
cameras = FishEyeCameras( |
|
use_radial=combination[0], |
|
use_tangential=combination[1], |
|
use_thin_prism=combination[2], |
|
focal_length=focal.repeat(2, 1), |
|
principal_point=principal_point.repeat(2, 1), |
|
radial_params=radial_params.repeat(2, 1), |
|
tangential_params=tangential_params.repeat(2, 1), |
|
thin_prism_params=thin_prism_params.repeat(2, 1), |
|
) |
|
rep_3d = cameras.unproject_points(xy_depth) |
|
self.assertClose(rep_3d, expected_res[i].repeat(2, 1, 1)) |
|
|
|
def test_unhandled_shape(self): |
|
""" |
|
Test error handling when shape of transforms |
|
and points are not expected. |
|
""" |
|
cameras = self.setUpBatchCameras(None) |
|
points = torch.rand(3, 3, 1) |
|
with self.assertRaises(ValueError): |
|
cameras.transform_points(points) |
|
|
|
def test_getitem(self): |
|
|
|
|
|
cam = self.setUpBatchCameras(None) |
|
c0 = cam[0] |
|
self.assertTrue(isinstance(c0, FishEyeCameras)) |
|
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys()) |
|
|