|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
from pytorch3d.ops import cubify |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
class TestCubify(TestCaseMixin, unittest.TestCase): |
|
def test_allempty(self): |
|
N, V = 32, 14 |
|
device = torch.device("cuda:0") |
|
voxels = torch.zeros((N, V, V, V), dtype=torch.float32, device=device) |
|
meshes = cubify(voxels, 0.5) |
|
self.assertTrue(meshes.isempty()) |
|
|
|
def test_cubify(self): |
|
N, V = 4, 2 |
|
device = torch.device("cuda:0") |
|
voxels = torch.zeros((N, V, V, V), dtype=torch.float32, device=device) |
|
|
|
|
|
voxels[0, 0, 0, 0] = 1.0 |
|
|
|
voxels[1] = 1.0 |
|
|
|
|
|
voxels[3, :, :, 1] = 1.0 |
|
voxels[3, 1, 1, 0] = 1.0 |
|
|
|
|
|
meshes = cubify(voxels, 0.5) |
|
|
|
|
|
verts, faces = meshes.get_mesh_verts_faces(0) |
|
self.assertClose(faces.max().cpu(), torch.tensor(verts.size(0) - 1)) |
|
self.assertClose( |
|
verts, |
|
torch.tensor( |
|
[ |
|
[-1.0, -1.0, -1.0], |
|
[-1.0, -1.0, 1.0], |
|
[1.0, -1.0, -1.0], |
|
[1.0, -1.0, 1.0], |
|
[-1.0, 1.0, -1.0], |
|
[-1.0, 1.0, 1.0], |
|
[1.0, 1.0, -1.0], |
|
[1.0, 1.0, 1.0], |
|
], |
|
dtype=torch.float32, |
|
device=device, |
|
), |
|
) |
|
self.assertClose( |
|
faces, |
|
torch.tensor( |
|
[ |
|
[0, 1, 4], |
|
[1, 5, 4], |
|
[4, 5, 6], |
|
[5, 7, 6], |
|
[0, 4, 6], |
|
[0, 6, 2], |
|
[0, 3, 1], |
|
[0, 2, 3], |
|
[6, 7, 3], |
|
[6, 3, 2], |
|
[1, 7, 5], |
|
[1, 3, 7], |
|
], |
|
dtype=torch.int64, |
|
device=device, |
|
), |
|
) |
|
|
|
verts, faces = meshes.get_mesh_verts_faces(1) |
|
self.assertClose(faces.max().cpu(), torch.tensor(verts.size(0) - 1)) |
|
self.assertClose( |
|
verts, |
|
torch.tensor( |
|
[ |
|
[-1.0, -1.0, -1.0], |
|
[-1.0, -1.0, 1.0], |
|
[-1.0, -1.0, 3.0], |
|
[1.0, -1.0, -1.0], |
|
[1.0, -1.0, 1.0], |
|
[1.0, -1.0, 3.0], |
|
[3.0, -1.0, -1.0], |
|
[3.0, -1.0, 1.0], |
|
[3.0, -1.0, 3.0], |
|
[-1.0, 1.0, -1.0], |
|
[-1.0, 1.0, 1.0], |
|
[-1.0, 1.0, 3.0], |
|
[1.0, 1.0, -1.0], |
|
[1.0, 1.0, 3.0], |
|
[3.0, 1.0, -1.0], |
|
[3.0, 1.0, 1.0], |
|
[3.0, 1.0, 3.0], |
|
[-1.0, 3.0, -1.0], |
|
[-1.0, 3.0, 1.0], |
|
[-1.0, 3.0, 3.0], |
|
[1.0, 3.0, -1.0], |
|
[1.0, 3.0, 1.0], |
|
[1.0, 3.0, 3.0], |
|
[3.0, 3.0, -1.0], |
|
[3.0, 3.0, 1.0], |
|
[3.0, 3.0, 3.0], |
|
], |
|
dtype=torch.float32, |
|
device=device, |
|
), |
|
) |
|
self.assertClose( |
|
faces, |
|
torch.tensor( |
|
[ |
|
[0, 1, 9], |
|
[1, 10, 9], |
|
[0, 9, 12], |
|
[0, 12, 3], |
|
[0, 4, 1], |
|
[0, 3, 4], |
|
[1, 2, 10], |
|
[2, 11, 10], |
|
[1, 5, 2], |
|
[1, 4, 5], |
|
[2, 13, 11], |
|
[2, 5, 13], |
|
[3, 12, 14], |
|
[3, 14, 6], |
|
[3, 7, 4], |
|
[3, 6, 7], |
|
[14, 15, 7], |
|
[14, 7, 6], |
|
[4, 8, 5], |
|
[4, 7, 8], |
|
[15, 16, 8], |
|
[15, 8, 7], |
|
[5, 16, 13], |
|
[5, 8, 16], |
|
[9, 10, 17], |
|
[10, 18, 17], |
|
[17, 18, 20], |
|
[18, 21, 20], |
|
[9, 17, 20], |
|
[9, 20, 12], |
|
[10, 11, 18], |
|
[11, 19, 18], |
|
[18, 19, 21], |
|
[19, 22, 21], |
|
[11, 22, 19], |
|
[11, 13, 22], |
|
[20, 21, 23], |
|
[21, 24, 23], |
|
[12, 20, 23], |
|
[12, 23, 14], |
|
[23, 24, 15], |
|
[23, 15, 14], |
|
[21, 22, 24], |
|
[22, 25, 24], |
|
[24, 25, 16], |
|
[24, 16, 15], |
|
[13, 25, 22], |
|
[13, 16, 25], |
|
], |
|
dtype=torch.int64, |
|
device=device, |
|
), |
|
) |
|
|
|
|
|
verts, faces = meshes.get_mesh_verts_faces(2) |
|
self.assertTrue(verts.size(0) == 0) |
|
self.assertTrue(faces.size(0) == 0) |
|
|
|
|
|
verts, faces = meshes.get_mesh_verts_faces(3) |
|
self.assertClose( |
|
verts, |
|
torch.tensor( |
|
[ |
|
[1.0, -1.0, -1.0], |
|
[1.0, -1.0, 1.0], |
|
[1.0, -1.0, 3.0], |
|
[3.0, -1.0, -1.0], |
|
[3.0, -1.0, 1.0], |
|
[3.0, -1.0, 3.0], |
|
[-1.0, 1.0, 1.0], |
|
[-1.0, 1.0, 3.0], |
|
[1.0, 1.0, -1.0], |
|
[1.0, 1.0, 1.0], |
|
[1.0, 1.0, 3.0], |
|
[3.0, 1.0, -1.0], |
|
[3.0, 1.0, 1.0], |
|
[3.0, 1.0, 3.0], |
|
[-1.0, 3.0, 1.0], |
|
[-1.0, 3.0, 3.0], |
|
[1.0, 3.0, -1.0], |
|
[1.0, 3.0, 1.0], |
|
[1.0, 3.0, 3.0], |
|
[3.0, 3.0, -1.0], |
|
[3.0, 3.0, 1.0], |
|
[3.0, 3.0, 3.0], |
|
], |
|
dtype=torch.float32, |
|
device=device, |
|
), |
|
) |
|
self.assertClose( |
|
faces, |
|
torch.tensor( |
|
[ |
|
[0, 1, 8], |
|
[1, 9, 8], |
|
[0, 8, 11], |
|
[0, 11, 3], |
|
[0, 4, 1], |
|
[0, 3, 4], |
|
[11, 12, 4], |
|
[11, 4, 3], |
|
[1, 2, 9], |
|
[2, 10, 9], |
|
[1, 5, 2], |
|
[1, 4, 5], |
|
[12, 13, 5], |
|
[12, 5, 4], |
|
[2, 13, 10], |
|
[2, 5, 13], |
|
[6, 7, 14], |
|
[7, 15, 14], |
|
[14, 15, 17], |
|
[15, 18, 17], |
|
[6, 14, 17], |
|
[6, 17, 9], |
|
[6, 10, 7], |
|
[6, 9, 10], |
|
[7, 18, 15], |
|
[7, 10, 18], |
|
[8, 9, 16], |
|
[9, 17, 16], |
|
[16, 17, 19], |
|
[17, 20, 19], |
|
[8, 16, 19], |
|
[8, 19, 11], |
|
[19, 20, 12], |
|
[19, 12, 11], |
|
[17, 18, 20], |
|
[18, 21, 20], |
|
[20, 21, 13], |
|
[20, 13, 12], |
|
[10, 21, 18], |
|
[10, 13, 21], |
|
], |
|
dtype=torch.int64, |
|
device=device, |
|
), |
|
) |
|
|
|
def test_align(self): |
|
N, V = 1, 2 |
|
device = torch.device("cuda:0") |
|
voxels = torch.ones((N, V, V, V), dtype=torch.float32, device=device) |
|
|
|
|
|
mesh = cubify(voxels, 0.5) |
|
verts, faces = mesh.get_mesh_verts_faces(0) |
|
self.assertClose(verts.min(), torch.tensor(-1.0, device=device)) |
|
self.assertClose(verts.max(), torch.tensor(3.0, device=device)) |
|
|
|
|
|
mesh = cubify(voxels, 0.5, align="corner") |
|
verts, faces = mesh.get_mesh_verts_faces(0) |
|
self.assertClose(verts.min(), torch.tensor(-1.0, device=device)) |
|
self.assertClose(verts.max(), torch.tensor(1.0, device=device)) |
|
|
|
|
|
mesh = cubify(voxels, 0.5, align="center") |
|
verts, faces = mesh.get_mesh_verts_faces(0) |
|
self.assertClose(verts.min(), torch.tensor(-2.0, device=device)) |
|
self.assertClose(verts.max(), torch.tensor(2.0, device=device)) |
|
|
|
|
|
with self.assertRaisesRegex(ValueError, "Align mode must be one of"): |
|
cubify(voxels, 0.5, align="") |
|
|
|
|
|
with self.assertRaisesRegex(ValueError, "Align mode must be one of"): |
|
cubify(voxels, 0.5, align="topright") |
|
|
|
|
|
N, V = 1, 4 |
|
voxels = torch.zeros((N, V, V, V), dtype=torch.float32, device=device) |
|
voxels[0, : V // 2, : V // 2, : V // 2] = 1.0 |
|
mesh = cubify(voxels, 0.5, align="corner") |
|
verts, faces = mesh.get_mesh_verts_faces(0) |
|
self.assertClose(verts.min(), torch.tensor(-1.0, device=device)) |
|
self.assertClose(verts.max(), torch.tensor(0.0, device=device)) |
|
|
|
@staticmethod |
|
def cubify_with_init(batch_size: int, V: int): |
|
device = torch.device("cuda:0") |
|
voxels = torch.rand((batch_size, V, V, V), dtype=torch.float32, device=device) |
|
torch.cuda.synchronize() |
|
|
|
def convert(): |
|
cubify(voxels, 0.5) |
|
torch.cuda.synchronize() |
|
|
|
return convert |
|
|