|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
from pytorch3d.renderer.materials import Materials |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
class TestMaterials(TestCaseMixin, unittest.TestCase): |
|
def test_init(self): |
|
""" |
|
Initialize Materials class with the default values. |
|
""" |
|
device = torch.device("cuda:0") |
|
mat = Materials(device=device) |
|
self.assertTrue(torch.is_tensor(mat.ambient_color)) |
|
self.assertTrue(torch.is_tensor(mat.diffuse_color)) |
|
self.assertTrue(torch.is_tensor(mat.specular_color)) |
|
self.assertTrue(torch.is_tensor(mat.shininess)) |
|
self.assertTrue(mat.ambient_color.device == device) |
|
self.assertTrue(mat.diffuse_color.device == device) |
|
self.assertTrue(mat.specular_color.device == device) |
|
self.assertTrue(mat.shininess.device == device) |
|
self.assertTrue(mat.ambient_color.shape == (1, 3)) |
|
self.assertTrue(mat.diffuse_color.shape == (1, 3)) |
|
self.assertTrue(mat.specular_color.shape == (1, 3)) |
|
self.assertTrue(mat.shininess.shape == (1,)) |
|
|
|
def test_materials_clone_to(self): |
|
device = torch.device("cuda:0") |
|
cpu = torch.device("cpu") |
|
mat = Materials() |
|
new_mat = mat.clone().to(device) |
|
self.assertTrue(mat.ambient_color.device == cpu) |
|
self.assertTrue(mat.diffuse_color.device == cpu) |
|
self.assertTrue(mat.specular_color.device == cpu) |
|
self.assertTrue(mat.shininess.device == cpu) |
|
self.assertTrue(new_mat.ambient_color.device == device) |
|
self.assertTrue(new_mat.diffuse_color.device == device) |
|
self.assertTrue(new_mat.specular_color.device == device) |
|
self.assertTrue(new_mat.shininess.device == device) |
|
self.assertSeparate(new_mat.ambient_color, mat.ambient_color) |
|
self.assertSeparate(new_mat.diffuse_color, mat.diffuse_color) |
|
self.assertSeparate(new_mat.specular_color, mat.specular_color) |
|
self.assertSeparate(new_mat.shininess, mat.shininess) |
|
|
|
def test_initialize_materials_broadcast(self): |
|
materials = Materials( |
|
ambient_color=torch.randn(10, 3), |
|
diffuse_color=torch.randn(1, 3), |
|
specular_color=torch.randn(1, 3), |
|
shininess=torch.randn(1), |
|
) |
|
self.assertTrue(materials.ambient_color.shape == (10, 3)) |
|
self.assertTrue(materials.diffuse_color.shape == (10, 3)) |
|
self.assertTrue(materials.specular_color.shape == (10, 3)) |
|
self.assertTrue(materials.shininess.shape == (10,)) |
|
|
|
def test_initialize_materials_broadcast_fail(self): |
|
""" |
|
Batch dims have to be the same or 1. |
|
""" |
|
with self.assertRaises(ValueError): |
|
Materials( |
|
ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3) |
|
) |
|
|
|
def test_initialize_materials_dimensions_fail(self): |
|
""" |
|
Color should have shape (N, 3) or (1, 3), Shininess should have shape |
|
(1), (1, 1), (N) or (N, 1) |
|
""" |
|
with self.assertRaises(ValueError): |
|
Materials(ambient_color=torch.randn(10, 4)) |
|
|
|
with self.assertRaises(ValueError): |
|
Materials(shininess=torch.randn(10, 2)) |
|
|
|
def test_initialize_materials_mixed_inputs(self): |
|
mat = Materials(ambient_color=torch.randn(1, 3), diffuse_color=((1, 1, 1),)) |
|
self.assertTrue(mat.ambient_color.shape == (1, 3)) |
|
self.assertTrue(mat.diffuse_color.shape == (1, 3)) |
|
|
|
def test_initialize_materials_mixed_inputs_broadcast(self): |
|
mat = Materials(ambient_color=torch.randn(10, 3), diffuse_color=((1, 1, 1),)) |
|
self.assertTrue(mat.ambient_color.shape == (10, 3)) |
|
self.assertTrue(mat.diffuse_color.shape == (10, 3)) |
|
self.assertTrue(mat.specular_color.shape == (10, 3)) |
|
self.assertTrue(mat.shininess.shape == (10,)) |
|
|