|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from pytorch3d.ops import utils as oputil |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
class TestOpsUtils(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(42) |
|
np.random.seed(42) |
|
|
|
def test_wmean(self): |
|
device = torch.device("cuda:0") |
|
n_points = 20 |
|
|
|
x = torch.rand(n_points, 3, device=device) |
|
weight = torch.rand(n_points, device=device) |
|
x_np = x.cpu().data.numpy() |
|
weight_np = weight.cpu().data.numpy() |
|
|
|
|
|
mean = oputil.wmean(x, keepdim=False) |
|
mean_gt = np.average(x_np, axis=-2) |
|
self.assertClose(mean.cpu().data.numpy(), mean_gt) |
|
|
|
|
|
mean = oputil.wmean(x, weight=weight, keepdim=False) |
|
mean_gt = np.average(x_np, axis=-2, weights=weight_np) |
|
self.assertClose(mean.cpu().data.numpy(), mean_gt) |
|
|
|
|
|
mean = oputil.wmean(x, weight=weight, keepdim=True) |
|
self.assertClose(mean[0].cpu().data.numpy(), mean_gt) |
|
|
|
|
|
mean = oputil.wmean(x, weight=weight > 0.5, keepdim=False) |
|
mean_gt = np.average(x_np, axis=-2, weights=weight_np > 0.5) |
|
self.assertClose(mean.cpu().data.numpy(), mean_gt) |
|
|
|
|
|
x = torch.rand(10, n_points, 3, device=device) |
|
x_np = x.cpu().data.numpy() |
|
mean = oputil.wmean(x, weight=weight, keepdim=False) |
|
mean_gt = np.average(x_np, axis=-2, weights=weight_np) |
|
self.assertClose(mean.cpu().data.numpy(), mean_gt) |
|
|
|
weight = weight[None, None, :].repeat(3, 1, 1) |
|
mean = oputil.wmean(x, weight=weight, keepdim=False) |
|
self.assertClose(mean[0].cpu().data.numpy(), mean_gt) |
|
|
|
|
|
weight = torch.rand(x.shape[0], device=device) |
|
with self.assertRaises(ValueError) as context: |
|
oputil.wmean(x, weight=weight, keepdim=False) |
|
self.assertTrue("weights are not compatible" in str(context.exception)) |
|
|
|
|
|
weight = torch.rand(x.shape[0], n_points, device=device) |
|
weight_np = np.tile( |
|
weight[:, :, None].cpu().data.numpy(), (1, 1, x_np.shape[-1]) |
|
) |
|
mean = oputil.wmean(x, dim=0, weight=weight, keepdim=False) |
|
mean_gt = np.average(x_np, axis=0, weights=weight_np) |
|
self.assertClose(mean.cpu().data.numpy(), mean_gt) |
|
|
|
|
|
mean = oputil.wmean(x, dim=(0, 1), weight=weight, keepdim=False) |
|
mean_gt = np.average(x_np, axis=(0, 1), weights=weight_np) |
|
self.assertClose(mean.cpu().data.numpy(), mean_gt) |
|
|
|
def test_masked_gather_errors(self): |
|
idx = torch.randint(0, 10, size=(5, 10, 4, 2)) |
|
points = torch.randn(size=(5, 10, 3)) |
|
with self.assertRaisesRegex(ValueError, "format is not supported"): |
|
oputil.masked_gather(points, idx) |
|
|
|
points = torch.randn(size=(2, 10, 3)) |
|
with self.assertRaisesRegex(ValueError, "same batch dimension"): |
|
oputil.masked_gather(points, idx) |
|
|