|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from pytorch3d import _C |
|
from pytorch3d.loss import point_mesh_edge_distance, point_mesh_face_distance |
|
from pytorch3d.structures import Meshes, packed_to_list, Pointclouds |
|
|
|
from .common_testing import get_random_cuda_device, TestCaseMixin |
|
|
|
|
|
class TestPointMeshDistance(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
np.random.seed(42) |
|
torch.manual_seed(42) |
|
|
|
@staticmethod |
|
def eps(): |
|
return 1e-8 |
|
|
|
@staticmethod |
|
def min_triangle_area(): |
|
return 5e-3 |
|
|
|
@staticmethod |
|
def init_meshes_clouds( |
|
batch_size: int = 10, |
|
num_verts: int = 1000, |
|
num_faces: int = 3000, |
|
num_points: int = 3000, |
|
device: str = "cuda:0", |
|
): |
|
device = torch.device(device) |
|
nump = torch.randint(low=1, high=num_points, size=(batch_size,)) |
|
numv = torch.randint(low=3, high=num_verts, size=(batch_size,)) |
|
numf = torch.randint(low=1, high=num_faces, size=(batch_size,)) |
|
verts_list = [] |
|
faces_list = [] |
|
points_list = [] |
|
for i in range(batch_size): |
|
|
|
verts = torch.rand((numv[i], 3), dtype=torch.float32, device=device) |
|
verts.requires_grad_(True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
faces, allf = [], 0 |
|
validf = numv[i].item() - numv[i].item() % 3 |
|
while allf < numf[i]: |
|
ff = torch.randperm(numv[i], device=device)[:validf].view(-1, 3) |
|
faces.append(ff) |
|
allf += ff.shape[0] |
|
faces = torch.cat(faces, 0) |
|
if faces.shape[0] > numf[i]: |
|
faces = faces[: numf[i]] |
|
|
|
verts_list.append(verts) |
|
faces_list.append(faces) |
|
|
|
|
|
points = torch.rand((nump[i], 3), dtype=torch.float32, device=device) |
|
points.requires_grad_(True) |
|
|
|
points_list.append(points) |
|
|
|
meshes = Meshes(verts_list, faces_list) |
|
pcls = Pointclouds(points_list) |
|
|
|
return meshes, pcls |
|
|
|
@staticmethod |
|
def _point_to_bary(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Computes the barycentric coordinates of point wrt triangle (tri) |
|
Note that point needs to live in the space spanned by tri = (a, b, c), |
|
i.e. by taking the projection of an arbitrary point on the space spanned by tri |
|
|
|
Args: |
|
point: FloatTensor of shape (3) |
|
tri: FloatTensor of shape (3, 3) |
|
Returns: |
|
bary: FloatTensor of shape (3) |
|
""" |
|
assert point.dim() == 1 and point.shape[0] == 3 |
|
assert tri.dim() == 2 and tri.shape[0] == 3 and tri.shape[1] == 3 |
|
|
|
a, b, c = tri.unbind(0) |
|
|
|
v0 = b - a |
|
v1 = c - a |
|
v2 = point - a |
|
|
|
d00 = v0.dot(v0) |
|
d01 = v0.dot(v1) |
|
d11 = v1.dot(v1) |
|
d20 = v2.dot(v0) |
|
d21 = v2.dot(v1) |
|
|
|
denom = d00 * d11 - d01 * d01 + TestPointMeshDistance.eps() |
|
s2 = (d11 * d20 - d01 * d21) / denom |
|
s3 = (d00 * d21 - d01 * d20) / denom |
|
s1 = 1.0 - s2 - s3 |
|
|
|
bary = torch.tensor([s1, s2, s3]) |
|
return bary |
|
|
|
@staticmethod |
|
def _is_inside_triangle(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Computes whether point is inside triangle tri |
|
Note that point needs to live in the space spanned by tri = (a, b, c) |
|
i.e. by taking the projection of an arbitrary point on the space spanned by tri |
|
|
|
Args: |
|
point: FloatTensor of shape (3) |
|
tri: FloatTensor of shape (3, 3) |
|
Returns: |
|
inside: BoolTensor of shape (1) |
|
""" |
|
v0 = tri[1] - tri[0] |
|
v1 = tri[2] - tri[0] |
|
area = torch.cross(v0, v1).norm() / 2.0 |
|
|
|
|
|
if area < 5e-3: |
|
return False |
|
bary = TestPointMeshDistance._point_to_bary(point, tri) |
|
inside = ((bary >= 0.0) * (bary <= 1.0)).all() |
|
return inside |
|
|
|
@staticmethod |
|
def _point_to_edge_distance( |
|
point: torch.Tensor, edge: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Computes the squared euclidean distance of points to edges |
|
Args: |
|
point: FloatTensor of shape (3) |
|
edge: FloatTensor of shape (2, 3) |
|
Returns: |
|
dist: FloatTensor of shape (1) |
|
|
|
If a, b are the start and end points of the segments, we |
|
parametrize a point p as |
|
x(t) = a + t * (b - a) |
|
To find t which describes p we minimize (x(t) - p) ^ 2 |
|
Note that p does not need to live in the space spanned by (a, b) |
|
""" |
|
s0, s1 = edge.unbind(0) |
|
|
|
s01 = s1 - s0 |
|
norm_s01 = s01.dot(s01) |
|
|
|
same_edge = norm_s01 < TestPointMeshDistance.eps() |
|
if same_edge: |
|
dist = 0.5 * (point - s0).dot(point - s0) + 0.5 * (point - s1).dot( |
|
point - s1 |
|
) |
|
return dist |
|
|
|
t = s01.dot(point - s0) / norm_s01 |
|
t = torch.clamp(t, min=0.0, max=1.0) |
|
x = s0 + t * s01 |
|
dist = (x - point).dot(x - point) |
|
return dist |
|
|
|
@staticmethod |
|
def _point_to_tri_distance(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Computes the squared euclidean distance of points to edges |
|
Args: |
|
point: FloatTensor of shape (3) |
|
tri: FloatTensor of shape (3, 3) |
|
Returns: |
|
dist: FloatTensor of shape (1) |
|
""" |
|
a, b, c = tri.unbind(0) |
|
cross = torch.cross(b - a, c - a) |
|
norm = cross.norm() |
|
normal = torch.nn.functional.normalize(cross, dim=0) |
|
|
|
|
|
|
|
|
|
tt = normal.dot(a) - normal.dot(point) |
|
p0 = point + tt * normal |
|
dist_p = tt * tt |
|
|
|
|
|
e01_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[0, 1]]) |
|
e02_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[0, 2]]) |
|
e12_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[1, 2]]) |
|
|
|
with torch.no_grad(): |
|
inside_tri = TestPointMeshDistance._is_inside_triangle(p0, tri) |
|
|
|
if inside_tri and (norm > TestPointMeshDistance.eps()): |
|
return dist_p |
|
else: |
|
if e01_dist.le(e02_dist) and e01_dist.le(e12_dist): |
|
return e01_dist |
|
elif e02_dist.le(e01_dist) and e02_dist.le(e12_dist): |
|
return e02_dist |
|
else: |
|
return e12_dist |
|
|
|
def test_point_edge_array_distance(self): |
|
""" |
|
Test CUDA implementation for PointEdgeArrayDistanceForward |
|
& PointEdgeArrayDistanceBackward |
|
""" |
|
P, E = 16, 32 |
|
device = get_random_cuda_device() |
|
points = torch.rand((P, 3), dtype=torch.float32, device=device) |
|
edges = torch.rand((E, 2, 3), dtype=torch.float32, device=device) |
|
|
|
|
|
same = torch.rand((E,), dtype=torch.float32, device=device) > 0.5 |
|
edges[same, 1] = edges[same, 0].clone().detach() |
|
|
|
points_cpu = points.clone().cpu() |
|
edges_cpu = edges.clone().cpu() |
|
|
|
points.requires_grad = True |
|
edges.requires_grad = True |
|
grad_dists = torch.rand((P, E), dtype=torch.float32, device=device) |
|
|
|
|
|
dists_naive = torch.zeros((P, E), dtype=torch.float32, device=device) |
|
for p in range(P): |
|
for e in range(E): |
|
dist = self._point_to_edge_distance(points[p], edges[e]) |
|
dists_naive[p, e] = dist |
|
|
|
|
|
dists_cuda = _C.point_edge_array_dist_forward(points, edges) |
|
dists_cpu = _C.point_edge_array_dist_forward(points_cpu, edges_cpu) |
|
|
|
|
|
self.assertClose(dists_naive.cpu(), dists_cuda.cpu()) |
|
self.assertClose(dists_naive.cpu(), dists_cpu) |
|
|
|
|
|
grad_points_cuda, grad_edges_cuda = _C.point_edge_array_dist_backward( |
|
points, edges, grad_dists |
|
) |
|
grad_points_cpu, grad_edges_cpu = _C.point_edge_array_dist_backward( |
|
points_cpu, edges_cpu, grad_dists.cpu() |
|
) |
|
|
|
dists_naive.backward(grad_dists) |
|
grad_points_naive = points.grad.cpu() |
|
grad_edges_naive = edges.grad.cpu() |
|
|
|
|
|
self.assertClose(grad_points_naive, grad_points_cuda.cpu()) |
|
self.assertClose(grad_edges_naive, grad_edges_cuda.cpu()) |
|
self.assertClose(grad_points_naive, grad_points_cpu) |
|
self.assertClose(grad_edges_naive, grad_edges_cpu) |
|
|
|
def test_point_edge_distance(self): |
|
""" |
|
Test CUDA implementation for PointEdgeDistanceForward |
|
& PointEdgeDistanceBackward |
|
""" |
|
device = get_random_cuda_device() |
|
N, V, F, P = 4, 32, 16, 24 |
|
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device) |
|
|
|
|
|
points_packed = pcls.points_packed().detach().clone() |
|
|
|
points_first_idx = pcls.cloud_to_packed_first_idx() |
|
max_p = pcls.num_points_per_cloud().max().item() |
|
|
|
|
|
verts_packed = meshes.verts_packed() |
|
edges_packed = verts_packed[meshes.edges_packed()] |
|
edges_packed = edges_packed.clone().detach() |
|
|
|
edges_first_idx = meshes.mesh_to_edges_packed_first_idx() |
|
|
|
|
|
points_packed.requires_grad = True |
|
edges_packed.requires_grad = True |
|
grad_dists = torch.rand( |
|
(points_packed.shape[0],), dtype=torch.float32, device=device |
|
) |
|
|
|
|
|
dists_cuda, idx_cuda = _C.point_edge_dist_forward( |
|
points_packed, points_first_idx, edges_packed, edges_first_idx, max_p |
|
) |
|
|
|
grad_points_cuda, grad_edges_cuda = _C.point_edge_dist_backward( |
|
points_packed, edges_packed, idx_cuda, grad_dists |
|
) |
|
|
|
dists_cpu, idx_cpu = _C.point_edge_dist_forward( |
|
points_packed.cpu(), |
|
points_first_idx.cpu(), |
|
edges_packed.cpu(), |
|
edges_first_idx.cpu(), |
|
max_p, |
|
) |
|
|
|
|
|
|
|
grad_points_cpu, grad_edges_cpu = _C.point_edge_dist_backward( |
|
points_packed.cpu(), edges_packed.cpu(), idx_cuda.cpu(), grad_dists.cpu() |
|
) |
|
|
|
|
|
edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist()) |
|
dists_naive = [] |
|
for i in range(N): |
|
points = pcls.points_list()[i] |
|
edges = edges_list[i] |
|
dists_temp = torch.zeros( |
|
(points.shape[0], edges.shape[0]), dtype=torch.float32, device=device |
|
) |
|
for p in range(points.shape[0]): |
|
for e in range(edges.shape[0]): |
|
dist = self._point_to_edge_distance(points[p], edges[e]) |
|
dists_temp[p, e] = dist |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = points_first_idx[i] |
|
end = points_first_idx[i + 1] if i < N - 1 else points_packed.shape[0] |
|
|
|
min_idx = idx_cuda[start:end] - edges_first_idx[i] |
|
iidx = torch.arange(points.shape[0], device=device) |
|
min_dist = dists_temp[iidx, min_idx] |
|
|
|
dists_naive.append(min_dist) |
|
|
|
dists_naive = torch.cat(dists_naive) |
|
|
|
|
|
self.assertClose(dists_naive.cpu(), dists_cuda.cpu()) |
|
self.assertClose(dists_naive.cpu(), dists_cpu) |
|
|
|
|
|
dists_naive.backward(grad_dists) |
|
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()]) |
|
grad_edges_naive = edges_packed.grad.cpu() |
|
|
|
|
|
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7) |
|
self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7) |
|
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7) |
|
self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7) |
|
|
|
def test_edge_point_distance(self): |
|
""" |
|
Test CUDA implementation for EdgePointDistanceForward |
|
& EdgePointDistanceBackward |
|
""" |
|
device = get_random_cuda_device() |
|
N, V, F, P = 4, 32, 16, 24 |
|
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device) |
|
|
|
|
|
points_packed = pcls.points_packed().detach().clone() |
|
|
|
points_first_idx = pcls.cloud_to_packed_first_idx() |
|
|
|
|
|
verts_packed = meshes.verts_packed() |
|
edges_packed = verts_packed[meshes.edges_packed()] |
|
edges_packed = edges_packed.clone().detach() |
|
|
|
edges_first_idx = meshes.mesh_to_edges_packed_first_idx() |
|
max_e = meshes.num_edges_per_mesh().max().item() |
|
|
|
|
|
points_packed.requires_grad = True |
|
edges_packed.requires_grad = True |
|
grad_dists = torch.rand( |
|
(edges_packed.shape[0],), dtype=torch.float32, device=device |
|
) |
|
|
|
|
|
dists_cuda, idx_cuda = _C.edge_point_dist_forward( |
|
points_packed, points_first_idx, edges_packed, edges_first_idx, max_e |
|
) |
|
|
|
|
|
grad_points_cuda, grad_edges_cuda = _C.edge_point_dist_backward( |
|
points_packed, edges_packed, idx_cuda, grad_dists |
|
) |
|
|
|
|
|
dists_cpu, idx_cpu = _C.edge_point_dist_forward( |
|
points_packed.cpu(), |
|
points_first_idx.cpu(), |
|
edges_packed.cpu(), |
|
edges_first_idx.cpu(), |
|
max_e, |
|
) |
|
|
|
|
|
grad_points_cpu, grad_edges_cpu = _C.edge_point_dist_backward( |
|
points_packed.cpu(), edges_packed.cpu(), idx_cpu, grad_dists.cpu() |
|
) |
|
|
|
|
|
edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist()) |
|
dists_naive = [] |
|
for i in range(N): |
|
points = pcls.points_list()[i] |
|
edges = edges_list[i] |
|
dists_temp = torch.zeros( |
|
(edges.shape[0], points.shape[0]), dtype=torch.float32, device=device |
|
) |
|
for e in range(edges.shape[0]): |
|
for p in range(points.shape[0]): |
|
dist = self._point_to_edge_distance(points[p], edges[e]) |
|
dists_temp[e, p] = dist |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = edges_first_idx[i] |
|
end = edges_first_idx[i + 1] if i < N - 1 else edges_packed.shape[0] |
|
|
|
min_idx = idx_cuda.cpu()[start:end] - points_first_idx[i].cpu() |
|
iidx = torch.arange(edges.shape[0], device=device) |
|
min_dist = dists_temp[iidx, min_idx] |
|
|
|
dists_naive.append(min_dist) |
|
|
|
dists_naive = torch.cat(dists_naive) |
|
|
|
|
|
self.assertClose(dists_naive.cpu(), dists_cuda.cpu()) |
|
self.assertClose(dists_naive.cpu(), dists_cpu) |
|
|
|
|
|
dists_naive.backward(grad_dists) |
|
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()]) |
|
grad_edges_naive = edges_packed.grad.cpu() |
|
|
|
|
|
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7) |
|
self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7) |
|
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7) |
|
self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7) |
|
|
|
def test_point_mesh_edge_distance(self): |
|
""" |
|
Test point_mesh_edge_distance from pytorch3d.loss |
|
""" |
|
device = get_random_cuda_device() |
|
N, V, F, P = 4, 32, 16, 24 |
|
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device) |
|
|
|
|
|
verts_op = [verts.clone().detach() for verts in meshes.verts_list()] |
|
for i in range(N): |
|
verts_op[i].requires_grad = True |
|
|
|
faces_op = [faces.clone().detach() for faces in meshes.faces_list()] |
|
meshes_op = Meshes(verts=verts_op, faces=faces_op) |
|
points_op = [points.clone().detach() for points in pcls.points_list()] |
|
for i in range(N): |
|
points_op[i].requires_grad = True |
|
pcls_op = Pointclouds(points_op) |
|
|
|
|
|
loss_op = point_mesh_edge_distance(meshes_op, pcls_op) |
|
|
|
|
|
edges_packed = meshes.edges_packed() |
|
edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist()) |
|
loss_naive = torch.zeros(N, dtype=torch.float32, device=device) |
|
for i in range(N): |
|
points = pcls.points_list()[i] |
|
verts = meshes.verts_list()[i] |
|
v_first_idx = meshes.mesh_to_verts_packed_first_idx()[i] |
|
edges = verts[edges_list[i] - v_first_idx] |
|
|
|
num_p = points.shape[0] |
|
num_e = edges.shape[0] |
|
dists = torch.zeros((num_p, num_e), dtype=torch.float32, device=device) |
|
for p in range(num_p): |
|
for e in range(num_e): |
|
dist = self._point_to_edge_distance(points[p], edges[e]) |
|
dists[p, e] = dist |
|
|
|
min_dist_p, min_idx_p = dists.min(1) |
|
min_dist_e, min_idx_e = dists.min(0) |
|
|
|
loss_naive[i] = min_dist_p.mean() + min_dist_e.mean() |
|
loss_naive = loss_naive.mean() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.assertClose(loss_op, loss_naive) |
|
|
|
|
|
rand_val = torch.rand(1).item() |
|
grad_dist = torch.tensor(rand_val, dtype=torch.float32, device=device) |
|
|
|
loss_naive.backward(grad_dist) |
|
loss_op.backward(grad_dist) |
|
|
|
|
|
for i in range(N): |
|
self.assertClose( |
|
meshes.verts_list()[i].grad, meshes_op.verts_list()[i].grad |
|
) |
|
self.assertClose(pcls.points_list()[i].grad, pcls_op.points_list()[i].grad) |
|
|
|
def test_point_face_array_distance(self): |
|
""" |
|
Test CUDA implementation for PointFaceArrayDistanceForward |
|
& PointFaceArrayDistanceBackward |
|
""" |
|
P, T = 16, 32 |
|
device = get_random_cuda_device() |
|
points = torch.rand((P, 3), dtype=torch.float32, device=device) |
|
tris = torch.rand((T, 3, 3), dtype=torch.float32, device=device) |
|
points_cpu = points.clone().cpu() |
|
tris_cpu = tris.clone().cpu() |
|
|
|
points.requires_grad = True |
|
tris.requires_grad = True |
|
grad_dists = torch.rand((P, T), dtype=torch.float32, device=device) |
|
|
|
points_temp = points.clone().detach() |
|
points_temp.requires_grad = True |
|
tris_temp = tris.clone().detach() |
|
tris_temp.requires_grad = True |
|
|
|
|
|
dists_naive = torch.zeros((P, T), dtype=torch.float32, device=device) |
|
for p in range(P): |
|
for t in range(T): |
|
dist = self._point_to_tri_distance(points[p], tris[t]) |
|
dists_naive[p, t] = dist |
|
|
|
|
|
dists_naive.backward(grad_dists) |
|
grad_points_naive = points.grad.cpu() |
|
grad_tris_naive = tris.grad.cpu() |
|
|
|
|
|
dists_cuda = _C.point_face_array_dist_forward( |
|
points, tris, TestPointMeshDistance.min_triangle_area() |
|
) |
|
dists_cpu = _C.point_face_array_dist_forward( |
|
points_cpu, tris_cpu, TestPointMeshDistance.min_triangle_area() |
|
) |
|
|
|
|
|
self.assertClose(dists_naive.cpu(), dists_cuda.cpu()) |
|
self.assertClose(dists_naive.cpu(), dists_cpu) |
|
|
|
|
|
grad_points_cuda, grad_tris_cuda = _C.point_face_array_dist_backward( |
|
points, tris, grad_dists, TestPointMeshDistance.min_triangle_area() |
|
) |
|
grad_points_cpu, grad_tris_cpu = _C.point_face_array_dist_backward( |
|
points_cpu, |
|
tris_cpu, |
|
grad_dists.cpu(), |
|
TestPointMeshDistance.min_triangle_area(), |
|
) |
|
|
|
|
|
self.assertClose(grad_points_naive, grad_points_cuda.cpu()) |
|
self.assertClose(grad_tris_naive, grad_tris_cuda.cpu(), atol=5e-6) |
|
self.assertClose(grad_points_naive, grad_points_cpu) |
|
self.assertClose(grad_tris_naive, grad_tris_cpu, atol=5e-6) |
|
|
|
def test_point_face_distance(self): |
|
""" |
|
Test CUDA implementation for PointFaceDistanceForward |
|
& PointFaceDistanceBackward |
|
""" |
|
device = get_random_cuda_device() |
|
N, V, F, P = 4, 32, 16, 24 |
|
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device) |
|
|
|
|
|
points_packed = pcls.points_packed().detach().clone() |
|
|
|
points_first_idx = pcls.cloud_to_packed_first_idx() |
|
max_p = pcls.num_points_per_cloud().max().item() |
|
|
|
|
|
verts_packed = meshes.verts_packed() |
|
faces_packed = verts_packed[meshes.faces_packed()] |
|
faces_packed = faces_packed.clone().detach() |
|
|
|
faces_first_idx = meshes.mesh_to_faces_packed_first_idx() |
|
|
|
|
|
points_packed.requires_grad = True |
|
faces_packed.requires_grad = True |
|
grad_dists = torch.rand( |
|
(points_packed.shape[0],), dtype=torch.float32, device=device |
|
) |
|
|
|
|
|
dists_cuda, idx_cuda = _C.point_face_dist_forward( |
|
points_packed, |
|
points_first_idx, |
|
faces_packed, |
|
faces_first_idx, |
|
max_p, |
|
TestPointMeshDistance.min_triangle_area(), |
|
) |
|
|
|
|
|
grad_points_cuda, grad_faces_cuda = _C.point_face_dist_backward( |
|
points_packed, |
|
faces_packed, |
|
idx_cuda, |
|
grad_dists, |
|
TestPointMeshDistance.min_triangle_area(), |
|
) |
|
|
|
|
|
dists_cpu, idx_cpu = _C.point_face_dist_forward( |
|
points_packed.cpu(), |
|
points_first_idx.cpu(), |
|
faces_packed.cpu(), |
|
faces_first_idx.cpu(), |
|
max_p, |
|
TestPointMeshDistance.min_triangle_area(), |
|
) |
|
|
|
|
|
|
|
grad_points_cpu, grad_faces_cpu = _C.point_face_dist_backward( |
|
points_packed.cpu(), |
|
faces_packed.cpu(), |
|
idx_cuda.cpu(), |
|
grad_dists.cpu(), |
|
TestPointMeshDistance.min_triangle_area(), |
|
) |
|
|
|
|
|
faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist()) |
|
dists_naive = [] |
|
for i in range(N): |
|
points = pcls.points_list()[i] |
|
tris = faces_list[i] |
|
dists_temp = torch.zeros( |
|
(points.shape[0], tris.shape[0]), dtype=torch.float32, device=device |
|
) |
|
for p in range(points.shape[0]): |
|
for t in range(tris.shape[0]): |
|
dist = self._point_to_tri_distance(points[p], tris[t]) |
|
dists_temp[p, t] = dist |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = points_first_idx[i] |
|
end = points_first_idx[i + 1] if i < N - 1 else points_packed.shape[0] |
|
|
|
min_idx = idx_cuda.cpu()[start:end] - faces_first_idx[i].cpu() |
|
iidx = torch.arange(points.shape[0], device=device) |
|
min_dist = dists_temp[iidx, min_idx] |
|
|
|
dists_naive.append(min_dist) |
|
|
|
dists_naive = torch.cat(dists_naive) |
|
|
|
|
|
self.assertClose(dists_naive.cpu(), dists_cuda.cpu()) |
|
self.assertClose(dists_naive.cpu(), dists_cpu) |
|
|
|
|
|
dists_naive.backward(grad_dists) |
|
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()]) |
|
grad_faces_naive = faces_packed.grad.cpu() |
|
|
|
|
|
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7) |
|
self.assertClose(grad_faces_naive, grad_faces_cuda.cpu(), atol=5e-7) |
|
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7) |
|
self.assertClose(grad_faces_naive, grad_faces_cpu, atol=5e-7) |
|
|
|
def test_face_point_distance(self): |
|
""" |
|
Test CUDA implementation for FacePointDistanceForward |
|
& FacePointDistanceBackward |
|
""" |
|
device = get_random_cuda_device() |
|
N, V, F, P = 4, 32, 16, 24 |
|
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device) |
|
|
|
|
|
points_packed = pcls.points_packed().detach().clone() |
|
|
|
points_first_idx = pcls.cloud_to_packed_first_idx() |
|
|
|
|
|
verts_packed = meshes.verts_packed() |
|
faces_packed = verts_packed[meshes.faces_packed()] |
|
faces_packed = faces_packed.clone().detach() |
|
|
|
faces_first_idx = meshes.mesh_to_faces_packed_first_idx() |
|
max_f = meshes.num_faces_per_mesh().max().item() |
|
|
|
|
|
points_packed.requires_grad = True |
|
faces_packed.requires_grad = True |
|
grad_dists = torch.rand( |
|
(faces_packed.shape[0],), dtype=torch.float32, device=device |
|
) |
|
|
|
|
|
dists_cuda, idx_cuda = _C.face_point_dist_forward( |
|
points_packed, |
|
points_first_idx, |
|
faces_packed, |
|
faces_first_idx, |
|
max_f, |
|
TestPointMeshDistance.min_triangle_area(), |
|
) |
|
|
|
|
|
grad_points_cuda, grad_faces_cuda = _C.face_point_dist_backward( |
|
points_packed, |
|
faces_packed, |
|
idx_cuda, |
|
grad_dists, |
|
TestPointMeshDistance.min_triangle_area(), |
|
) |
|
|
|
|
|
dists_cpu, idx_cpu = _C.face_point_dist_forward( |
|
points_packed.cpu(), |
|
points_first_idx.cpu(), |
|
faces_packed.cpu(), |
|
faces_first_idx.cpu(), |
|
max_f, |
|
TestPointMeshDistance.min_triangle_area(), |
|
) |
|
|
|
|
|
grad_points_cpu, grad_faces_cpu = _C.face_point_dist_backward( |
|
points_packed.cpu(), |
|
faces_packed.cpu(), |
|
idx_cpu, |
|
grad_dists.cpu(), |
|
TestPointMeshDistance.min_triangle_area(), |
|
) |
|
|
|
|
|
faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist()) |
|
dists_naive = [] |
|
for i in range(N): |
|
points = pcls.points_list()[i] |
|
tris = faces_list[i] |
|
dists_temp = torch.zeros( |
|
(tris.shape[0], points.shape[0]), dtype=torch.float32, device=device |
|
) |
|
for t in range(tris.shape[0]): |
|
for p in range(points.shape[0]): |
|
dist = self._point_to_tri_distance(points[p], tris[t]) |
|
dists_temp[t, p] = dist |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = faces_first_idx[i] |
|
end = faces_first_idx[i + 1] if i < N - 1 else faces_packed.shape[0] |
|
|
|
min_idx = idx_cuda.cpu()[start:end] - points_first_idx[i].cpu() |
|
iidx = torch.arange(tris.shape[0], device=device) |
|
min_dist = dists_temp[iidx, min_idx] |
|
|
|
dists_naive.append(min_dist) |
|
|
|
dists_naive = torch.cat(dists_naive) |
|
|
|
|
|
self.assertClose(dists_naive.cpu(), dists_cuda.cpu()) |
|
self.assertClose(dists_naive.cpu(), dists_cpu) |
|
|
|
|
|
dists_naive.backward(grad_dists) |
|
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()]) |
|
grad_faces_naive = faces_packed.grad |
|
|
|
|
|
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7) |
|
self.assertClose(grad_faces_naive.cpu(), grad_faces_cuda.cpu(), atol=5e-7) |
|
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7) |
|
self.assertClose(grad_faces_naive.cpu(), grad_faces_cpu, atol=5e-7) |
|
|
|
def test_point_mesh_face_distance(self): |
|
""" |
|
Test point_mesh_face_distance from pytorch3d.loss |
|
""" |
|
device = get_random_cuda_device() |
|
N, V, F, P = 4, 32, 16, 24 |
|
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device) |
|
|
|
|
|
verts_op = [verts.clone().detach() for verts in meshes.verts_list()] |
|
for i in range(N): |
|
verts_op[i].requires_grad = True |
|
|
|
faces_op = [faces.clone().detach() for faces in meshes.faces_list()] |
|
meshes_op = Meshes(verts=verts_op, faces=faces_op) |
|
points_op = [points.clone().detach() for points in pcls.points_list()] |
|
for i in range(N): |
|
points_op[i].requires_grad = True |
|
pcls_op = Pointclouds(points_op) |
|
|
|
|
|
loss_naive = torch.zeros(N, dtype=torch.float32, device=device) |
|
for i in range(N): |
|
points = pcls.points_list()[i] |
|
verts = meshes.verts_list()[i] |
|
faces = meshes.faces_list()[i] |
|
tris = verts[faces] |
|
|
|
num_p = points.shape[0] |
|
num_t = tris.shape[0] |
|
dists = torch.zeros((num_p, num_t), dtype=torch.float32, device=device) |
|
for p in range(num_p): |
|
for t in range(num_t): |
|
dist = self._point_to_tri_distance(points[p], tris[t]) |
|
dists[p, t] = dist |
|
|
|
min_dist_p, min_idx_p = dists.min(1) |
|
min_dist_t, min_idx_t = dists.min(0) |
|
|
|
loss_naive[i] = min_dist_p.mean() + min_dist_t.mean() |
|
loss_naive = loss_naive.mean() |
|
|
|
|
|
loss_op = point_mesh_face_distance(meshes_op, pcls_op) |
|
|
|
|
|
self.assertClose(loss_op, loss_naive) |
|
|
|
|
|
rand_val = torch.rand(1).item() |
|
grad_dist = torch.tensor(rand_val, dtype=torch.float32, device=device) |
|
|
|
loss_naive.backward(grad_dist) |
|
loss_op.backward(grad_dist) |
|
|
|
|
|
for i in range(N): |
|
self.assertClose( |
|
meshes.verts_list()[i].grad, meshes_op.verts_list()[i].grad |
|
) |
|
self.assertClose(pcls.points_list()[i].grad, pcls_op.points_list()[i].grad) |
|
|
|
def test_small_faces_case(self): |
|
for device in [torch.device("cpu"), torch.device("cuda:0")]: |
|
mesh_vertices = torch.tensor( |
|
[ |
|
[-0.0021, -0.3769, 0.7146], |
|
[-0.0161, -0.3771, 0.7146], |
|
[-0.0021, -0.3771, 0.7147], |
|
], |
|
dtype=torch.float32, |
|
device=device, |
|
) |
|
mesh1_faces = torch.tensor([[0, 2, 1]], device=device) |
|
mesh2_faces = torch.tensor([[2, 0, 1]], device=device) |
|
pcd_points = torch.tensor([[-0.3623, -0.5340, 0.7727]], device=device) |
|
mesh1 = Meshes(verts=[mesh_vertices], faces=[mesh1_faces]) |
|
mesh2 = Meshes(verts=[mesh_vertices], faces=[mesh2_faces]) |
|
pcd = Pointclouds(points=[pcd_points]) |
|
|
|
loss1 = point_mesh_face_distance(mesh1, pcd) |
|
loss2 = point_mesh_face_distance(mesh2, pcd) |
|
self.assertClose(loss1, loss2) |
|
|
|
@staticmethod |
|
def point_mesh_edge(N: int, V: int, F: int, P: int, device: str): |
|
device = torch.device(device) |
|
meshes, pcls = TestPointMeshDistance.init_meshes_clouds( |
|
N, V, F, P, device=device |
|
) |
|
torch.cuda.synchronize() |
|
|
|
def loss(): |
|
point_mesh_edge_distance(meshes, pcls) |
|
torch.cuda.synchronize() |
|
|
|
return loss |
|
|
|
@staticmethod |
|
def point_mesh_face(N: int, V: int, F: int, P: int, device: str): |
|
device = torch.device(device) |
|
meshes, pcls = TestPointMeshDistance.init_meshes_clouds( |
|
N, V, F, P, device=device |
|
) |
|
torch.cuda.synchronize() |
|
|
|
def loss(): |
|
point_mesh_face_distance(meshes, pcls) |
|
torch.cuda.synchronize() |
|
|
|
return loss |
|
|