Upload ExHuBERT
Browse files- ExHuBERT_model.py +451 -0
- config.json +3 -0
ExHuBERT_model.py
ADDED
|
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import HubertForSequenceClassification
|
| 7 |
+
from transformers.activations import ACT2FN
|
| 8 |
+
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
| 9 |
+
from transformers.file_utils import ModelOutput
|
| 10 |
+
from transformers.modeling_outputs import BaseModelOutput
|
| 11 |
+
from transformers.models.hubert import HubertConfig
|
| 12 |
+
from transformers.models.hubert.modeling_hubert import HubertPreTrainedModel, HubertFeatureEncoder, \
|
| 13 |
+
HubertFeatureProjection, _compute_mask_indices, \
|
| 14 |
+
HubertPositionalConvEmbedding, HubertAttention
|
| 15 |
+
import torch.nn.functional as F
|
| 16 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 17 |
+
|
| 18 |
+
######
|
| 19 |
+
#
|
| 20 |
+
#######
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
_HIDDEN_STATES_START_POSITION = 1
|
| 25 |
+
|
| 26 |
+
# General docstring
|
| 27 |
+
_CONFIG_FOR_DOC = "HubertConfig"
|
| 28 |
+
|
| 29 |
+
# Base docstring
|
| 30 |
+
_CHECKPOINT_FOR_DOC = "facebook/hubert-large-ls960-ft"
|
| 31 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
|
| 32 |
+
|
| 33 |
+
# CTC docstring
|
| 34 |
+
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
|
| 35 |
+
_CTC_EXPECTED_LOSS = 22.68
|
| 36 |
+
|
| 37 |
+
# Audio class docstring
|
| 38 |
+
_SEQ_CLASS_CHECKPOINT = "superb/hubert-base-superb-ks"
|
| 39 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
|
| 40 |
+
_SEQ_CLASS_EXPECTED_LOSS = 8.53
|
| 41 |
+
|
| 42 |
+
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 43 |
+
"facebook/hubert-base-ls960",
|
| 44 |
+
# See all Hubert models at https://huggingface.co/models?filter=hubert
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# SwiGLU function
|
| 49 |
+
# From """GLU Variants Improve Transformer """
|
| 50 |
+
# https://doi.org/10.48550/arXiv.2002.05202
|
| 51 |
+
class SwiGLU(nn.Module):
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
x, gate = x.chunk(2, dim=-1)
|
| 54 |
+
return F.silu(gate) * x
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@dataclass
|
| 58 |
+
class SpeechClassifierOutput(ModelOutput):
|
| 59 |
+
"""
|
| 60 |
+
Speech Classifier Output dataclass
|
| 61 |
+
"""
|
| 62 |
+
loss: Optional[torch.FloatTensor] = None
|
| 63 |
+
logits: torch.FloatTensor = None
|
| 64 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 65 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class ExHuBERTFeedForward(nn.Module):
|
| 69 |
+
def __init__(self, config):
|
| 70 |
+
super().__init__()
|
| 71 |
+
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
|
| 72 |
+
|
| 73 |
+
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 74 |
+
if isinstance(config.hidden_act, str):
|
| 75 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 76 |
+
else:
|
| 77 |
+
self.intermediate_act_fn = config.hidden_act
|
| 78 |
+
|
| 79 |
+
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 80 |
+
self.output_dropout = nn.Dropout(config.hidden_dropout)
|
| 81 |
+
|
| 82 |
+
def forward(self, hidden_states):
|
| 83 |
+
hidden_states = self.intermediate_dense(hidden_states)
|
| 84 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 85 |
+
hidden_states = self.intermediate_dropout(hidden_states)
|
| 86 |
+
|
| 87 |
+
hidden_states = self.output_dense(hidden_states)
|
| 88 |
+
hidden_states = self.output_dropout(hidden_states)
|
| 89 |
+
return hidden_states
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->Hubert
|
| 93 |
+
class ExHuBERTEncoderLayer(nn.Module):
|
| 94 |
+
def __init__(self, config):
|
| 95 |
+
super().__init__()
|
| 96 |
+
self.attention = HubertAttention(
|
| 97 |
+
embed_dim=config.hidden_size,
|
| 98 |
+
num_heads=config.num_attention_heads,
|
| 99 |
+
dropout=config.attention_dropout,
|
| 100 |
+
is_decoder=False,
|
| 101 |
+
)
|
| 102 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 103 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 104 |
+
self.feed_forward = ExHuBERTFeedForward(config)
|
| 105 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 106 |
+
self.gate_bb_linear = nn.Linear(config.hidden_size, config.hidden_size)
|
| 107 |
+
|
| 108 |
+
def forward(
|
| 109 |
+
self,
|
| 110 |
+
hidden_states: torch.Tensor,
|
| 111 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 112 |
+
output_attentions: bool = False,
|
| 113 |
+
):
|
| 114 |
+
attn_residual = hidden_states
|
| 115 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 116 |
+
hidden_states, attn_weights, _ = self.attention(
|
| 117 |
+
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
| 118 |
+
)
|
| 119 |
+
hidden_states = self.dropout(hidden_states)
|
| 120 |
+
hidden_states = attn_residual + hidden_states
|
| 121 |
+
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
|
| 122 |
+
|
| 123 |
+
hidden_states = self.gate_bb_linear(hidden_states)
|
| 124 |
+
outputs = (hidden_states,)
|
| 125 |
+
|
| 126 |
+
if output_attentions:
|
| 127 |
+
outputs += (attn_weights,)
|
| 128 |
+
|
| 129 |
+
return outputs
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class ExHuBERTEncoder(nn.Module):
|
| 133 |
+
def __init__(self, config):
|
| 134 |
+
super().__init__()
|
| 135 |
+
self.config = config
|
| 136 |
+
self.pos_conv_embed = HubertPositionalConvEmbedding(config)
|
| 137 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 138 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 139 |
+
self.layers = nn.ModuleList(
|
| 140 |
+
[ExHuBERTEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
| 141 |
+
)
|
| 142 |
+
self.gradient_checkpointing = False
|
| 143 |
+
|
| 144 |
+
def forward(
|
| 145 |
+
self,
|
| 146 |
+
hidden_states,
|
| 147 |
+
attention_mask=None,
|
| 148 |
+
output_attentions=False,
|
| 149 |
+
output_hidden_states=False,
|
| 150 |
+
return_dict=True,
|
| 151 |
+
):
|
| 152 |
+
all_hidden_states = () if output_hidden_states else None
|
| 153 |
+
all_self_attentions = () if output_attentions else None
|
| 154 |
+
|
| 155 |
+
if attention_mask is not None:
|
| 156 |
+
# make sure padded tokens are not attended to
|
| 157 |
+
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
|
| 158 |
+
hidden_states[~expand_attention_mask] = 0
|
| 159 |
+
|
| 160 |
+
# extend attention_mask
|
| 161 |
+
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
|
| 162 |
+
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
| 163 |
+
attention_mask = attention_mask.expand(
|
| 164 |
+
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
position_embeddings = self.pos_conv_embed(hidden_states)
|
| 168 |
+
hidden_states = hidden_states + position_embeddings
|
| 169 |
+
hidden_states = self.dropout(hidden_states)
|
| 170 |
+
|
| 171 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
| 172 |
+
|
| 173 |
+
skip = torch.zeros_like(hidden_states)
|
| 174 |
+
skip_bool = False
|
| 175 |
+
for layer in self.layers:
|
| 176 |
+
|
| 177 |
+
if output_hidden_states:
|
| 178 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 179 |
+
|
| 180 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
| 181 |
+
dropout_probability = torch.rand([])
|
| 182 |
+
|
| 183 |
+
# skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
|
| 184 |
+
skip_the_layer = False
|
| 185 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
| 186 |
+
# under deepspeed zero3 all gpus must run in sync
|
| 187 |
+
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
|
| 188 |
+
if self.gradient_checkpointing and self.training:
|
| 189 |
+
# create gradient checkpointing function
|
| 190 |
+
def create_custom_forward(module):
|
| 191 |
+
def custom_forward(*inputs):
|
| 192 |
+
return module(*inputs, output_attentions)
|
| 193 |
+
|
| 194 |
+
return custom_forward
|
| 195 |
+
|
| 196 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 197 |
+
create_custom_forward(layer),
|
| 198 |
+
hidden_states,
|
| 199 |
+
attention_mask,
|
| 200 |
+
)
|
| 201 |
+
else:
|
| 202 |
+
layer_outputs = layer(
|
| 203 |
+
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
| 204 |
+
)
|
| 205 |
+
hidden_states = layer_outputs[0]
|
| 206 |
+
|
| 207 |
+
if skip_the_layer:
|
| 208 |
+
layer_outputs = (None, None)
|
| 209 |
+
|
| 210 |
+
if output_attentions:
|
| 211 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 212 |
+
if skip_bool is True:
|
| 213 |
+
hidden_states = hidden_states + skip
|
| 214 |
+
|
| 215 |
+
skip_bool = False
|
| 216 |
+
else:
|
| 217 |
+
skip = hidden_states
|
| 218 |
+
skip_bool = True
|
| 219 |
+
|
| 220 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 221 |
+
|
| 222 |
+
if output_hidden_states:
|
| 223 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 224 |
+
|
| 225 |
+
if not return_dict:
|
| 226 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
| 227 |
+
return BaseModelOutput(
|
| 228 |
+
last_hidden_state=hidden_states,
|
| 229 |
+
hidden_states=all_hidden_states,
|
| 230 |
+
attentions=all_self_attentions,
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
class ExHuBERT_model_(HubertPreTrainedModel):
|
| 235 |
+
def __init__(self, config: HubertConfig):
|
| 236 |
+
super().__init__(config)
|
| 237 |
+
setattr(config, 'num_hidden_layers', 48)
|
| 238 |
+
self.config = config
|
| 239 |
+
self.feature_extractor = HubertFeatureEncoder(config)
|
| 240 |
+
self.feature_projection = HubertFeatureProjection(config)
|
| 241 |
+
|
| 242 |
+
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
| 243 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
| 244 |
+
|
| 245 |
+
self.encoder = ExHuBERTEncoder(config)
|
| 246 |
+
|
| 247 |
+
# Initialize weights and apply final processing
|
| 248 |
+
self.post_init()
|
| 249 |
+
|
| 250 |
+
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
|
| 251 |
+
def _mask_hidden_states(
|
| 252 |
+
self,
|
| 253 |
+
hidden_states: torch.FloatTensor,
|
| 254 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
| 255 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 256 |
+
):
|
| 257 |
+
"""
|
| 258 |
+
Masks extracted features along time axis and/or along feature axis according to
|
| 259 |
+
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
| 260 |
+
"""
|
| 261 |
+
|
| 262 |
+
# `config.apply_spec_augment` can set masking to False
|
| 263 |
+
if not getattr(self.config, "apply_spec_augment", True):
|
| 264 |
+
return hidden_states
|
| 265 |
+
|
| 266 |
+
# generate indices & apply SpecAugment along time axis
|
| 267 |
+
batch_size, sequence_length, hidden_size = hidden_states.size()
|
| 268 |
+
|
| 269 |
+
if mask_time_indices is not None:
|
| 270 |
+
# apply SpecAugment along time axis with given mask_time_indices
|
| 271 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
| 272 |
+
elif self.config.mask_time_prob > 0 and self.training:
|
| 273 |
+
mask_time_indices = _compute_mask_indices(
|
| 274 |
+
(batch_size, sequence_length),
|
| 275 |
+
mask_prob=self.config.mask_time_prob,
|
| 276 |
+
mask_length=self.config.mask_time_length,
|
| 277 |
+
attention_mask=attention_mask,
|
| 278 |
+
min_masks=self.config.mask_time_min_masks,
|
| 279 |
+
)
|
| 280 |
+
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
| 281 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
| 282 |
+
|
| 283 |
+
if self.config.mask_feature_prob > 0 and self.training:
|
| 284 |
+
# generate indices & apply SpecAugment along feature axis
|
| 285 |
+
mask_feature_indices = _compute_mask_indices(
|
| 286 |
+
(batch_size, hidden_size),
|
| 287 |
+
mask_prob=self.config.mask_feature_prob,
|
| 288 |
+
mask_length=self.config.mask_feature_length,
|
| 289 |
+
min_masks=self.config.mask_feature_min_masks,
|
| 290 |
+
)
|
| 291 |
+
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
| 292 |
+
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
| 293 |
+
hidden_states[mask_feature_indices] = 0
|
| 294 |
+
|
| 295 |
+
return hidden_states
|
| 296 |
+
|
| 297 |
+
def forward(
|
| 298 |
+
self,
|
| 299 |
+
input_values: Optional[torch.Tensor],
|
| 300 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 301 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
| 302 |
+
output_attentions: Optional[bool] = None,
|
| 303 |
+
output_hidden_states: Optional[bool] = None,
|
| 304 |
+
return_dict: Optional[bool] = None,
|
| 305 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 306 |
+
|
| 307 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 308 |
+
output_hidden_states = (
|
| 309 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 310 |
+
)
|
| 311 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 312 |
+
|
| 313 |
+
extract_features = self.feature_extractor(input_values)
|
| 314 |
+
extract_features = extract_features.transpose(1, 2)
|
| 315 |
+
|
| 316 |
+
if attention_mask is not None:
|
| 317 |
+
# compute reduced attention_mask corresponding to feature vectors
|
| 318 |
+
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
|
| 319 |
+
|
| 320 |
+
hidden_states = self.feature_projection(extract_features)
|
| 321 |
+
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
|
| 322 |
+
|
| 323 |
+
encoder_outputs = self.encoder(
|
| 324 |
+
hidden_states,
|
| 325 |
+
attention_mask=attention_mask,
|
| 326 |
+
output_attentions=output_attentions,
|
| 327 |
+
output_hidden_states=output_hidden_states,
|
| 328 |
+
return_dict=return_dict,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
hidden_states = encoder_outputs[0]
|
| 332 |
+
|
| 333 |
+
if not return_dict:
|
| 334 |
+
return (hidden_states,) + encoder_outputs[1:]
|
| 335 |
+
|
| 336 |
+
return BaseModelOutput(
|
| 337 |
+
last_hidden_state=hidden_states,
|
| 338 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 339 |
+
attentions=encoder_outputs.attentions,
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class ExHuBERT(HubertPreTrainedModel,PyTorchModelHubMixin):
|
| 344 |
+
def __init__(self, config):
|
| 345 |
+
super().__init__(config)
|
| 346 |
+
setattr(config, "num_labels", 6)
|
| 347 |
+
if hasattr(config, "add_adapter") and config.add_adapter:
|
| 348 |
+
raise ValueError(
|
| 349 |
+
"Sequence classification does not support the use of Hubert adapters (config.add_adapter=True)"
|
| 350 |
+
)
|
| 351 |
+
self.hubert = ExHuBERT_model_(config)
|
| 352 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
| 353 |
+
if config.use_weighted_layer_sum:
|
| 354 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
| 355 |
+
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
| 356 |
+
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
| 357 |
+
|
| 358 |
+
# Initialize weights and apply final processing
|
| 359 |
+
self.post_init()
|
| 360 |
+
|
| 361 |
+
def freeze_feature_encoder(self):
|
| 362 |
+
"""
|
| 363 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
| 364 |
+
not be updated during training.
|
| 365 |
+
"""
|
| 366 |
+
self.hubert.feature_extractor._freeze_parameters()
|
| 367 |
+
|
| 368 |
+
def freeze_base_model(self):
|
| 369 |
+
"""
|
| 370 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
| 371 |
+
be updated during training. Only the classification head will be updated.
|
| 372 |
+
"""
|
| 373 |
+
for param in self.hubert.parameters():
|
| 374 |
+
param.requires_grad = False
|
| 375 |
+
|
| 376 |
+
def forward(
|
| 377 |
+
self,
|
| 378 |
+
input_values: Optional[torch.Tensor],
|
| 379 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 380 |
+
output_attentions: Optional[bool] = None,
|
| 381 |
+
output_hidden_states: Optional[bool] = None,
|
| 382 |
+
return_dict: Optional[bool] = None,
|
| 383 |
+
labels: Optional[torch.Tensor] = None,
|
| 384 |
+
) -> Union[Tuple, SpeechClassifierOutput]:
|
| 385 |
+
r"""
|
| 386 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 387 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 388 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 389 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 390 |
+
"""
|
| 391 |
+
|
| 392 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 393 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
| 394 |
+
|
| 395 |
+
outputs = self.hubert(
|
| 396 |
+
input_values,
|
| 397 |
+
attention_mask=attention_mask,
|
| 398 |
+
output_attentions=output_attentions,
|
| 399 |
+
output_hidden_states=output_hidden_states,
|
| 400 |
+
return_dict=return_dict,
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
if self.config.use_weighted_layer_sum:
|
| 404 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
| 405 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
| 406 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
| 407 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
| 408 |
+
else:
|
| 409 |
+
hidden_states = outputs[0]
|
| 410 |
+
|
| 411 |
+
hidden_states = self.projector(hidden_states)
|
| 412 |
+
if attention_mask is None:
|
| 413 |
+
pooled_output = hidden_states.mean(dim=1)
|
| 414 |
+
else:
|
| 415 |
+
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
|
| 416 |
+
hidden_states[~padding_mask] = 0.0
|
| 417 |
+
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
|
| 418 |
+
|
| 419 |
+
logits = self.classifier(pooled_output)
|
| 420 |
+
|
| 421 |
+
loss = None
|
| 422 |
+
|
| 423 |
+
if not return_dict:
|
| 424 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
| 425 |
+
return ((loss,) + output) if loss is not None else output
|
| 426 |
+
|
| 427 |
+
return SpeechClassifierOutput(
|
| 428 |
+
loss=loss,
|
| 429 |
+
logits=logits,
|
| 430 |
+
hidden_states=outputs.hidden_states,
|
| 431 |
+
attentions=outputs.attentions,
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
def freeze_og_encoder(self):
|
| 435 |
+
for param in self.hubert.encoder.layers[::2].parameters():
|
| 436 |
+
param.requires_grad = False
|
| 437 |
+
|
| 438 |
+
def print_trainable_parameters(model):
|
| 439 |
+
'''
|
| 440 |
+
prints all trainable parameters of a model
|
| 441 |
+
'''
|
| 442 |
+
trainable_params = 0
|
| 443 |
+
all_param = 0
|
| 444 |
+
for _, param in model.named_parameters():
|
| 445 |
+
all_param += param.numel()
|
| 446 |
+
if param.requires_grad:
|
| 447 |
+
trainable_params += param.numel()
|
| 448 |
+
print(
|
| 449 |
+
f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.2f}"
|
| 450 |
+
)
|
| 451 |
+
|
config.json
CHANGED
|
@@ -6,6 +6,9 @@
|
|
| 6 |
"ExHuBERT"
|
| 7 |
],
|
| 8 |
"attention_dropout": 0.1,
|
|
|
|
|
|
|
|
|
|
| 9 |
"bos_token_id": 1,
|
| 10 |
"classifier_proj_size": 256,
|
| 11 |
"conv_bias": true,
|
|
|
|
| 6 |
"ExHuBERT"
|
| 7 |
],
|
| 8 |
"attention_dropout": 0.1,
|
| 9 |
+
"auto_map": {
|
| 10 |
+
"AutoModelForAudioClassification": "ExHuBERT_model.ExHuBERT"
|
| 11 |
+
},
|
| 12 |
"bos_token_id": 1,
|
| 13 |
"classifier_proj_size": 256,
|
| 14 |
"conv_bias": true,
|