File size: 2,760 Bytes
8ad78e9
 
 
 
 
89413ec
 
 
8ad78e9
 
 
 
 
 
 
 
 
 
 
89413ec
8ad78e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: other
base_model: facebook/mask2former-swin-tiny-coco-instance
tags:
- image-segmentation
- instance-segmentation
- vision
- generated_from_trainer
model-index:
- name: finetune-instance-segmentation-posture
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune-instance-segmentation-posture

This model is a fine-tuned version of [facebook/mask2former-swin-tiny-coco-instance](https://huggingface.co/facebook/mask2former-swin-tiny-coco-instance) on the qubvel-hf/ade20k-mini dataset.
It achieves the following results on the evaluation set:
- Loss: 30.5625
- Map: 0.2089
- Map 50: 0.4081
- Map 75: 0.1963
- Map Small: 0.1412
- Map Medium: 0.6277
- Map Large: 0.8115
- Mar 1: 0.0944
- Mar 10: 0.25
- Mar 100: 0.2879
- Mar Small: 0.2137
- Mar Medium: 0.7147
- Mar Large: 0.8531
- Map Person: 0.1381
- Mar 100 Person: 0.2036
- Map Car: 0.2797
- Mar 100 Car: 0.3722

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 2.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Person | Mar 100 Person | Map Car | Mar 100 Car |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:----------:|:--------------:|:-------:|:-----------:|
| 34.1337       | 1.0   | 100  | 32.3431         | 0.1958 | 0.3913 | 0.181  | 0.1319    | 0.6051     | 0.7775    | 0.0924 | 0.2465 | 0.2845  | 0.2104    | 0.7094     | 0.8587    | 0.1243     | 0.2001         | 0.2673  | 0.3689      |
| 28.4514       | 2.0   | 200  | 30.5625         | 0.2089 | 0.4081 | 0.1963 | 0.1412    | 0.6277     | 0.8115    | 0.0944 | 0.25   | 0.2879  | 0.2137    | 0.7147     | 0.8531    | 0.1381     | 0.2036         | 0.2797  | 0.3722      |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1