amphora commited on
Commit
5b38284
·
verified ·
1 Parent(s): ad3b4da

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 3b-w-cot/README.md +165 -0
  2. 3b-w-cot/added_tokens.json +24 -0
  3. 3b-w-cot/checkpoint-249/added_tokens.json +24 -0
  4. 3b-w-cot/checkpoint-249/config.json +28 -0
  5. 3b-w-cot/checkpoint-249/generation_config.json +14 -0
  6. 3b-w-cot/checkpoint-249/latest +1 -0
  7. 3b-w-cot/checkpoint-249/merges.txt +0 -0
  8. 3b-w-cot/checkpoint-249/model-00001-of-00002.safetensors +3 -0
  9. 3b-w-cot/checkpoint-249/model-00002-of-00002.safetensors +3 -0
  10. 3b-w-cot/checkpoint-249/model.safetensors.index.json +442 -0
  11. 3b-w-cot/checkpoint-249/rng_state_0.pth +3 -0
  12. 3b-w-cot/checkpoint-249/rng_state_1.pth +3 -0
  13. 3b-w-cot/checkpoint-249/scheduler.pt +3 -0
  14. 3b-w-cot/checkpoint-249/special_tokens_map.json +31 -0
  15. 3b-w-cot/checkpoint-249/tokenizer.json +3 -0
  16. 3b-w-cot/checkpoint-249/tokenizer_config.json +208 -0
  17. 3b-w-cot/checkpoint-249/trainer_state.json +1808 -0
  18. 3b-w-cot/checkpoint-249/training_args.bin +3 -0
  19. 3b-w-cot/checkpoint-249/vocab.json +0 -0
  20. 3b-w-cot/checkpoint-249/zero_to_fp32.py +760 -0
  21. 3b-w-cot/checkpoint-498/added_tokens.json +24 -0
  22. 3b-w-cot/checkpoint-498/config.json +28 -0
  23. 3b-w-cot/checkpoint-498/generation_config.json +14 -0
  24. 3b-w-cot/checkpoint-498/latest +1 -0
  25. 3b-w-cot/checkpoint-498/merges.txt +0 -0
  26. 3b-w-cot/checkpoint-498/model-00001-of-00002.safetensors +3 -0
  27. 3b-w-cot/checkpoint-498/model-00002-of-00002.safetensors +3 -0
  28. 3b-w-cot/checkpoint-498/model.safetensors.index.json +442 -0
  29. 3b-w-cot/checkpoint-498/rng_state_0.pth +3 -0
  30. 3b-w-cot/checkpoint-498/rng_state_1.pth +3 -0
  31. 3b-w-cot/checkpoint-498/scheduler.pt +3 -0
  32. 3b-w-cot/checkpoint-498/special_tokens_map.json +31 -0
  33. 3b-w-cot/checkpoint-498/tokenizer.json +3 -0
  34. 3b-w-cot/checkpoint-498/tokenizer_config.json +208 -0
  35. 3b-w-cot/checkpoint-498/trainer_state.json +3575 -0
  36. 3b-w-cot/checkpoint-498/training_args.bin +3 -0
  37. 3b-w-cot/checkpoint-498/vocab.json +0 -0
  38. 3b-w-cot/checkpoint-498/zero_to_fp32.py +760 -0
  39. 3b-w-cot/checkpoint-747/added_tokens.json +24 -0
  40. 3b-w-cot/checkpoint-747/config.json +28 -0
  41. 3b-w-cot/checkpoint-747/generation_config.json +14 -0
  42. 3b-w-cot/checkpoint-747/latest +1 -0
  43. 3b-w-cot/checkpoint-747/merges.txt +0 -0
  44. 3b-w-cot/checkpoint-747/model-00001-of-00002.safetensors +3 -0
  45. 3b-w-cot/checkpoint-747/model-00002-of-00002.safetensors +3 -0
  46. 3b-w-cot/checkpoint-747/model.safetensors.index.json +442 -0
  47. 3b-w-cot/checkpoint-747/rng_state_0.pth +3 -0
  48. 3b-w-cot/checkpoint-747/rng_state_1.pth +3 -0
  49. 3b-w-cot/checkpoint-747/scheduler.pt +3 -0
  50. 3b-w-cot/checkpoint-747/special_tokens_map.json +31 -0
3b-w-cot/README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-3B-Instruct
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - train.jsonl
9
+ model-index:
10
+ - name: outputs/out
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
18
+ <details><summary>See axolotl config</summary>
19
+
20
+ axolotl version: `0.7.0`
21
+ ```yaml
22
+ base_model: Qwen/Qwen2.5-3B-Instruct
23
+ model_type: AutoModelForCausalLM
24
+ tokenizer_type: AutoTokenizer
25
+ trust_remote_code: false
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: false
29
+ strict: false
30
+
31
+ output_dir: ./outputs/out
32
+ chat_template: qwen_25
33
+ datasets:
34
+ - path: train.jsonl
35
+ type: chat_template
36
+ field_messages: messages
37
+ message_field_role: role
38
+ message_field_content: content
39
+ roles:
40
+ system:
41
+ - system
42
+ user:
43
+ - user
44
+ assistant:
45
+ - assistant
46
+
47
+ dataset_prepared_path: last_run_prepared
48
+ val_set_size: 0.005
49
+ output_dir: ./outputs/out
50
+ eval_sample_packing: False
51
+
52
+ sequence_len: 8192
53
+ sample_packing: False
54
+ pad_to_sequence_len: False
55
+
56
+ wandb_project: mergedbench
57
+ wandb_entity:
58
+ wandb_watch:
59
+ wandb_name:
60
+ wandb_log_model:
61
+
62
+ plugins:
63
+ - axolotl.integrations.liger.LigerPlugin
64
+ liger_rope: true
65
+ liger_rms_norm: true
66
+ liger_swiglu: true
67
+ liger_fused_linear_cross_entropy: true
68
+
69
+ gradient_accumulation_steps: 4
70
+ micro_batch_size: 8
71
+ eval_batch_size: 4
72
+ num_epochs: 3
73
+ optimizer: paged_adamw_8bit
74
+ lr_scheduler: cosine
75
+ learning_rate: 2e-5
76
+
77
+ train_on_inputs: false
78
+ group_by_length: false
79
+ bf16: auto
80
+ fp16:
81
+ tf32: false
82
+
83
+ gradient_checkpointing: true
84
+ gradient_checkpointing_kwargs:
85
+ use_reentrant: false
86
+ early_stopping_patience:
87
+ resume_from_checkpoint:
88
+ logging_steps: 1
89
+ xformers_attention:
90
+ flash_attention: true
91
+
92
+ warmup_steps: 30
93
+ evals_per_epoch: 3
94
+ eval_max_new_tokens: 128
95
+ eval_table_size:
96
+ saves_per_epoch: 1
97
+ debug:
98
+ deepspeed: deepspeed_configs/zero1.json
99
+ weight_decay: 0.01
100
+ fsdp:
101
+ fsdp_config:
102
+ special_tokens:
103
+ ```
104
+
105
+ </details><br>
106
+
107
+ # outputs/out
108
+
109
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the train.jsonl dataset.
110
+ It achieves the following results on the evaluation set:
111
+ - Loss: 0.2847
112
+
113
+ ## Model description
114
+
115
+ More information needed
116
+
117
+ ## Intended uses & limitations
118
+
119
+ More information needed
120
+
121
+ ## Training and evaluation data
122
+
123
+ More information needed
124
+
125
+ ## Training procedure
126
+
127
+ ### Training hyperparameters
128
+
129
+ The following hyperparameters were used during training:
130
+ - learning_rate: 2e-05
131
+ - train_batch_size: 8
132
+ - eval_batch_size: 4
133
+ - seed: 42
134
+ - distributed_type: multi-GPU
135
+ - num_devices: 2
136
+ - gradient_accumulation_steps: 4
137
+ - total_train_batch_size: 64
138
+ - total_eval_batch_size: 8
139
+ - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
140
+ - lr_scheduler_type: cosine
141
+ - lr_scheduler_warmup_steps: 30
142
+ - num_epochs: 3.0
143
+
144
+ ### Training results
145
+
146
+ | Training Loss | Epoch | Step | Validation Loss |
147
+ |:-------------:|:------:|:----:|:---------------:|
148
+ | 1.4163 | 0.0040 | 1 | 1.4218 |
149
+ | 0.3799 | 0.3323 | 83 | 0.3376 |
150
+ | 0.3263 | 0.6647 | 166 | 0.3207 |
151
+ | 0.3213 | 0.9970 | 249 | 0.3041 |
152
+ | 0.2369 | 1.3283 | 332 | 0.3128 |
153
+ | 0.2436 | 1.6607 | 415 | 0.3041 |
154
+ | 0.2159 | 1.9930 | 498 | 0.2962 |
155
+ | 0.1832 | 2.3243 | 581 | 0.2914 |
156
+ | 0.1941 | 2.6567 | 664 | 0.2865 |
157
+ | 0.185 | 2.9890 | 747 | 0.2847 |
158
+
159
+
160
+ ### Framework versions
161
+
162
+ - Transformers 4.48.3
163
+ - Pytorch 2.5.1+cu121
164
+ - Datasets 3.2.0
165
+ - Tokenizers 0.21.0
3b-w-cot/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-w-cot/checkpoint-249/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-w-cot/checkpoint-249/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.3",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
3b-w-cot/checkpoint-249/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
3b-w-cot/checkpoint-249/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step249
3b-w-cot/checkpoint-249/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-w-cot/checkpoint-249/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d98d3d655ac51584b495c5652e2bb2cb14f1632265a8d91ec83deece94fc4242
3
+ size 4957560304
3b-w-cot/checkpoint-249/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e5b0033ab9498c19469e02588eda7896057da2526c4590819382584ce0c317
3
+ size 1836696752
3b-w-cot/checkpoint-249/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6794207232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-w-cot/checkpoint-249/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7e52325e9d729519836af640f8f754a93ee06730fb2953b5309434b53b17562
3
+ size 14512
3b-w-cot/checkpoint-249/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a93593cf0342eb47876986e1063102e1546354426a2324c46ddcf1cbecae803
3
+ size 14512
3b-w-cot/checkpoint-249/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe57fe36c47ba8cc85686021517d2af1000494c57709a51ad19a90ac2cb505a7
3
+ size 1064
3b-w-cot/checkpoint-249/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
3b-w-cot/checkpoint-249/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
3b-w-cot/checkpoint-249/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
3b-w-cot/checkpoint-249/trainer_state.json ADDED
@@ -0,0 +1,1808 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.996996996996997,
5
+ "eval_steps": 83,
6
+ "global_step": 249,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004004004004004004,
13
+ "grad_norm": 6.739165782928467,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 1.4163,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.004004004004004004,
20
+ "eval_loss": 1.4217944145202637,
21
+ "eval_runtime": 5.678,
22
+ "eval_samples_per_second": 14.266,
23
+ "eval_steps_per_second": 1.937,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.008008008008008008,
28
+ "grad_norm": 6.897192001342773,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 1.3767,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.012012012012012012,
35
+ "grad_norm": 6.74431037902832,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 1.3848,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.016016016016016016,
42
+ "grad_norm": 6.999237537384033,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 1.4294,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.02002002002002002,
49
+ "grad_norm": 4.510103702545166,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 1.2646,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.024024024024024024,
56
+ "grad_norm": 4.533900737762451,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 1.2563,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.028028028028028028,
63
+ "grad_norm": 3.565216541290283,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 1.1061,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.03203203203203203,
70
+ "grad_norm": 3.1937592029571533,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 1.0445,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.036036036036036036,
77
+ "grad_norm": 3.0942018032073975,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.8555,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04004004004004004,
84
+ "grad_norm": 4.628591060638428,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.8539,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.044044044044044044,
91
+ "grad_norm": 5.402413845062256,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.7684,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.04804804804804805,
98
+ "grad_norm": 1.96303391456604,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.6347,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.05205205205205205,
105
+ "grad_norm": 1.33661687374115,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.6692,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.056056056056056056,
112
+ "grad_norm": 0.9704915285110474,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.6385,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.06006006006006006,
119
+ "grad_norm": 0.7543495893478394,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.5901,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.06406406406406406,
126
+ "grad_norm": 1.3593250513076782,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.5645,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.06806806806806807,
133
+ "grad_norm": 1.147750735282898,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.5508,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.07207207207207207,
140
+ "grad_norm": 0.8024477958679199,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.5282,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.07607607607607608,
147
+ "grad_norm": 0.7931386232376099,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.4929,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.08008008008008008,
154
+ "grad_norm": 0.6702373623847961,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.4868,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.08408408408408409,
161
+ "grad_norm": 0.747148871421814,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.4857,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.08808808808808809,
168
+ "grad_norm": 0.5935061573982239,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.4908,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.0920920920920921,
175
+ "grad_norm": 0.5696635842323303,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.4437,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.0960960960960961,
182
+ "grad_norm": 0.5861401557922363,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.4442,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.1001001001001001,
189
+ "grad_norm": 0.5833226442337036,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.4585,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.1041041041041041,
196
+ "grad_norm": 0.48214447498321533,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.3994,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.10810810810810811,
203
+ "grad_norm": 0.49264758825302124,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.4609,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.11211211211211211,
210
+ "grad_norm": 0.5025641322135925,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.4816,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.11611611611611612,
217
+ "grad_norm": 0.46342933177948,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.4435,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.12012012012012012,
224
+ "grad_norm": 0.46523571014404297,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.4208,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.12412412412412413,
231
+ "grad_norm": 0.4298263192176819,
232
+ "learning_rate": 1.9999904008949705e-05,
233
+ "loss": 0.4137,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.12812812812812813,
238
+ "grad_norm": 0.43352752923965454,
239
+ "learning_rate": 1.999961603764167e-05,
240
+ "loss": 0.4096,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.13213213213213212,
245
+ "grad_norm": 0.4369907081127167,
246
+ "learning_rate": 1.9999136091604433e-05,
247
+ "loss": 0.4128,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.13613613613613615,
252
+ "grad_norm": 0.4188078045845032,
253
+ "learning_rate": 1.99984641800521e-05,
254
+ "loss": 0.4171,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.14014014014014015,
259
+ "grad_norm": 0.4548235237598419,
260
+ "learning_rate": 1.9997600315884166e-05,
261
+ "loss": 0.4236,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.14414414414414414,
266
+ "grad_norm": 0.4751495122909546,
267
+ "learning_rate": 1.999654451568528e-05,
268
+ "loss": 0.438,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.14814814814814814,
273
+ "grad_norm": 0.4333605170249939,
274
+ "learning_rate": 1.9995296799724914e-05,
275
+ "loss": 0.4208,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.15215215215215216,
280
+ "grad_norm": 0.48084449768066406,
281
+ "learning_rate": 1.999385719195698e-05,
282
+ "loss": 0.3969,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.15615615615615616,
287
+ "grad_norm": 0.42627257108688354,
288
+ "learning_rate": 1.9992225720019377e-05,
289
+ "loss": 0.4503,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.16016016016016016,
294
+ "grad_norm": 0.41883718967437744,
295
+ "learning_rate": 1.9990402415233436e-05,
296
+ "loss": 0.4322,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.16416416416416416,
301
+ "grad_norm": 0.39587706327438354,
302
+ "learning_rate": 1.998838731260335e-05,
303
+ "loss": 0.3841,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.16816816816816818,
308
+ "grad_norm": 0.40334609150886536,
309
+ "learning_rate": 1.9986180450815485e-05,
310
+ "loss": 0.3737,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.17217217217217218,
315
+ "grad_norm": 0.3715899884700775,
316
+ "learning_rate": 1.9983781872237634e-05,
317
+ "loss": 0.387,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.17617617617617617,
322
+ "grad_norm": 0.38875311613082886,
323
+ "learning_rate": 1.9981191622918217e-05,
324
+ "loss": 0.3695,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.18018018018018017,
329
+ "grad_norm": 0.39087679982185364,
330
+ "learning_rate": 1.997840975258538e-05,
331
+ "loss": 0.3934,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.1841841841841842,
336
+ "grad_norm": 0.41504260897636414,
337
+ "learning_rate": 1.9975436314646052e-05,
338
+ "loss": 0.3769,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.1881881881881882,
343
+ "grad_norm": 0.36994805932044983,
344
+ "learning_rate": 1.9972271366184922e-05,
345
+ "loss": 0.3807,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.1921921921921922,
350
+ "grad_norm": 0.39996904134750366,
351
+ "learning_rate": 1.996891496796334e-05,
352
+ "loss": 0.3903,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.1961961961961962,
357
+ "grad_norm": 0.3904661536216736,
358
+ "learning_rate": 1.9965367184418138e-05,
359
+ "loss": 0.3785,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.2002002002002002,
364
+ "grad_norm": 0.39596742391586304,
365
+ "learning_rate": 1.9961628083660406e-05,
366
+ "loss": 0.3806,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.2042042042042042,
371
+ "grad_norm": 0.39424648880958557,
372
+ "learning_rate": 1.9957697737474198e-05,
373
+ "loss": 0.3736,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.2082082082082082,
378
+ "grad_norm": 0.41719183325767517,
379
+ "learning_rate": 1.9953576221315116e-05,
380
+ "loss": 0.4023,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.2122122122122122,
385
+ "grad_norm": 0.3773253262042999,
386
+ "learning_rate": 1.9949263614308894e-05,
387
+ "loss": 0.396,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.21621621621621623,
392
+ "grad_norm": 0.4236510992050171,
393
+ "learning_rate": 1.994475999924987e-05,
394
+ "loss": 0.4032,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.22022022022022023,
399
+ "grad_norm": 0.3507007360458374,
400
+ "learning_rate": 1.9940065462599394e-05,
401
+ "loss": 0.3615,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.22422422422422422,
406
+ "grad_norm": 0.45851731300354004,
407
+ "learning_rate": 1.9935180094484164e-05,
408
+ "loss": 0.3402,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.22822822822822822,
413
+ "grad_norm": 0.36239954829216003,
414
+ "learning_rate": 1.99301039886945e-05,
415
+ "loss": 0.3668,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.23223223223223224,
420
+ "grad_norm": 0.3855980634689331,
421
+ "learning_rate": 1.992483724268255e-05,
422
+ "loss": 0.3575,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.23623623623623624,
427
+ "grad_norm": 0.4716965854167938,
428
+ "learning_rate": 1.9919379957560413e-05,
429
+ "loss": 0.3532,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.24024024024024024,
434
+ "grad_norm": 0.45167747139930725,
435
+ "learning_rate": 1.991373223809819e-05,
436
+ "loss": 0.3537,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.24424424424424424,
441
+ "grad_norm": 0.420512855052948,
442
+ "learning_rate": 1.990789419272199e-05,
443
+ "loss": 0.3471,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.24824824824824826,
448
+ "grad_norm": 0.4863167107105255,
449
+ "learning_rate": 1.9901865933511834e-05,
450
+ "loss": 0.3741,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.25225225225225223,
455
+ "grad_norm": 0.39653480052948,
456
+ "learning_rate": 1.9895647576199507e-05,
457
+ "loss": 0.3799,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.25625625625625625,
462
+ "grad_norm": 0.38418489694595337,
463
+ "learning_rate": 1.988923924016634e-05,
464
+ "loss": 0.3577,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.2602602602602603,
469
+ "grad_norm": 0.39798790216445923,
470
+ "learning_rate": 1.988264104844091e-05,
471
+ "loss": 0.3581,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.26426426426426425,
476
+ "grad_norm": 0.41135266423225403,
477
+ "learning_rate": 1.987585312769669e-05,
478
+ "loss": 0.3306,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.2682682682682683,
483
+ "grad_norm": 0.36515921354293823,
484
+ "learning_rate": 1.9868875608249613e-05,
485
+ "loss": 0.3628,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.2722722722722723,
490
+ "grad_norm": 0.4733300507068634,
491
+ "learning_rate": 1.986170862405556e-05,
492
+ "loss": 0.3733,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.27627627627627627,
497
+ "grad_norm": 0.4218703806400299,
498
+ "learning_rate": 1.98543523127078e-05,
499
+ "loss": 0.371,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.2802802802802803,
504
+ "grad_norm": 0.35307836532592773,
505
+ "learning_rate": 1.984680681543434e-05,
506
+ "loss": 0.3568,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.28428428428428426,
511
+ "grad_norm": 0.4475674629211426,
512
+ "learning_rate": 1.9839072277095222e-05,
513
+ "loss": 0.3828,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.2882882882882883,
518
+ "grad_norm": 0.37015393376350403,
519
+ "learning_rate": 1.9831148846179743e-05,
520
+ "loss": 0.3426,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.2922922922922923,
525
+ "grad_norm": 0.39532360434532166,
526
+ "learning_rate": 1.9823036674803585e-05,
527
+ "loss": 0.3545,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.2962962962962963,
532
+ "grad_norm": 0.349669486284256,
533
+ "learning_rate": 1.981473591870593e-05,
534
+ "loss": 0.332,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.3003003003003003,
539
+ "grad_norm": 0.356000155210495,
540
+ "learning_rate": 1.980624673724643e-05,
541
+ "loss": 0.3684,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.30430430430430433,
546
+ "grad_norm": 0.4027644693851471,
547
+ "learning_rate": 1.9797569293402174e-05,
548
+ "loss": 0.3592,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.3083083083083083,
553
+ "grad_norm": 0.36116528511047363,
554
+ "learning_rate": 1.9788703753764554e-05,
555
+ "loss": 0.3433,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.3123123123123123,
560
+ "grad_norm": 0.35624876618385315,
561
+ "learning_rate": 1.9779650288536057e-05,
562
+ "loss": 0.3541,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.3163163163163163,
567
+ "grad_norm": 0.360287606716156,
568
+ "learning_rate": 1.977040907152702e-05,
569
+ "loss": 0.3413,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.3203203203203203,
574
+ "grad_norm": 0.412913978099823,
575
+ "learning_rate": 1.976098028015226e-05,
576
+ "loss": 0.4142,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.32432432432432434,
581
+ "grad_norm": 0.38022932410240173,
582
+ "learning_rate": 1.9751364095427694e-05,
583
+ "loss": 0.3481,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.3283283283283283,
588
+ "grad_norm": 0.37813299894332886,
589
+ "learning_rate": 1.974156070196686e-05,
590
+ "loss": 0.3552,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.33233233233233234,
595
+ "grad_norm": 0.3782276511192322,
596
+ "learning_rate": 1.973157028797737e-05,
597
+ "loss": 0.3799,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.33233233233233234,
602
+ "eval_loss": 0.33762940764427185,
603
+ "eval_runtime": 6.2209,
604
+ "eval_samples_per_second": 13.021,
605
+ "eval_steps_per_second": 1.768,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.33633633633633636,
610
+ "grad_norm": 0.3933849036693573,
611
+ "learning_rate": 1.9721393045257277e-05,
612
+ "loss": 0.3654,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.34034034034034033,
617
+ "grad_norm": 0.35808295011520386,
618
+ "learning_rate": 1.9711029169191437e-05,
619
+ "loss": 0.3716,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.34434434434434436,
624
+ "grad_norm": 0.3547224700450897,
625
+ "learning_rate": 1.970047885874771e-05,
626
+ "loss": 0.3397,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.3483483483483483,
631
+ "grad_norm": 0.39883747696876526,
632
+ "learning_rate": 1.968974231647318e-05,
633
+ "loss": 0.3645,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.35235235235235235,
638
+ "grad_norm": 0.3208443224430084,
639
+ "learning_rate": 1.9678819748490236e-05,
640
+ "loss": 0.3431,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.3563563563563564,
645
+ "grad_norm": 0.34669625759124756,
646
+ "learning_rate": 1.9667711364492638e-05,
647
+ "loss": 0.3613,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.36036036036036034,
652
+ "grad_norm": 0.35220351815223694,
653
+ "learning_rate": 1.965641737774147e-05,
654
+ "loss": 0.3499,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.36436436436436437,
659
+ "grad_norm": 0.3566596806049347,
660
+ "learning_rate": 1.9644938005061062e-05,
661
+ "loss": 0.3204,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.3683683683683684,
666
+ "grad_norm": 0.3813494145870209,
667
+ "learning_rate": 1.9633273466834826e-05,
668
+ "loss": 0.3526,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.37237237237237236,
673
+ "grad_norm": 0.3885157108306885,
674
+ "learning_rate": 1.9621423987001013e-05,
675
+ "loss": 0.3562,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.3763763763763764,
680
+ "grad_norm": 0.4746558666229248,
681
+ "learning_rate": 1.960938979304843e-05,
682
+ "loss": 0.3509,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.38038038038038036,
687
+ "grad_norm": 0.3623756766319275,
688
+ "learning_rate": 1.959717111601206e-05,
689
+ "loss": 0.371,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.3843843843843844,
694
+ "grad_norm": 0.3858593702316284,
695
+ "learning_rate": 1.9584768190468624e-05,
696
+ "loss": 0.3551,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.3883883883883884,
701
+ "grad_norm": 0.3788565993309021,
702
+ "learning_rate": 1.95721812545321e-05,
703
+ "loss": 0.3669,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.3923923923923924,
708
+ "grad_norm": 0.3729216754436493,
709
+ "learning_rate": 1.9559410549849125e-05,
710
+ "loss": 0.34,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.3963963963963964,
715
+ "grad_norm": 0.44008028507232666,
716
+ "learning_rate": 1.9546456321594374e-05,
717
+ "loss": 0.3898,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.4004004004004004,
722
+ "grad_norm": 0.36622726917266846,
723
+ "learning_rate": 1.9533318818465837e-05,
724
+ "loss": 0.3624,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.4044044044044044,
729
+ "grad_norm": 0.39071497321128845,
730
+ "learning_rate": 1.9519998292680062e-05,
731
+ "loss": 0.3518,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.4084084084084084,
736
+ "grad_norm": 0.40084153413772583,
737
+ "learning_rate": 1.9506494999967298e-05,
738
+ "loss": 0.3483,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.4124124124124124,
743
+ "grad_norm": 0.3901435434818268,
744
+ "learning_rate": 1.94928091995666e-05,
745
+ "loss": 0.3577,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.4164164164164164,
750
+ "grad_norm": 0.34764233231544495,
751
+ "learning_rate": 1.9478941154220833e-05,
752
+ "loss": 0.3487,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.42042042042042044,
757
+ "grad_norm": 0.4044027030467987,
758
+ "learning_rate": 1.9464891130171647e-05,
759
+ "loss": 0.3602,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.4244244244244244,
764
+ "grad_norm": 0.3537923991680145,
765
+ "learning_rate": 1.9450659397154353e-05,
766
+ "loss": 0.3282,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.42842842842842843,
771
+ "grad_norm": 0.35585689544677734,
772
+ "learning_rate": 1.9436246228392762e-05,
773
+ "loss": 0.361,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.43243243243243246,
778
+ "grad_norm": 0.380585253238678,
779
+ "learning_rate": 1.94216519005939e-05,
780
+ "loss": 0.3218,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.4364364364364364,
785
+ "grad_norm": 0.3388879597187042,
786
+ "learning_rate": 1.9406876693942747e-05,
787
+ "loss": 0.3563,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.44044044044044045,
792
+ "grad_norm": 0.359130859375,
793
+ "learning_rate": 1.939192089209682e-05,
794
+ "loss": 0.3386,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.4444444444444444,
799
+ "grad_norm": 0.35704970359802246,
800
+ "learning_rate": 1.9376784782180747e-05,
801
+ "loss": 0.3336,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.44844844844844844,
806
+ "grad_norm": 0.3638094961643219,
807
+ "learning_rate": 1.9361468654780748e-05,
808
+ "loss": 0.3582,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.45245245245245247,
813
+ "grad_norm": 0.3996574878692627,
814
+ "learning_rate": 1.9345972803939046e-05,
815
+ "loss": 0.3496,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.45645645645645644,
820
+ "grad_norm": 0.3565851151943207,
821
+ "learning_rate": 1.9330297527148246e-05,
822
+ "loss": 0.3273,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.46046046046046046,
827
+ "grad_norm": 0.3502778112888336,
828
+ "learning_rate": 1.9314443125345606e-05,
829
+ "loss": 0.3331,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.4644644644644645,
834
+ "grad_norm": 0.4017852544784546,
835
+ "learning_rate": 1.929840990290726e-05,
836
+ "loss": 0.3522,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.46846846846846846,
841
+ "grad_norm": 0.354686975479126,
842
+ "learning_rate": 1.928219816764238e-05,
843
+ "loss": 0.3456,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.4724724724724725,
848
+ "grad_norm": 0.34257611632347107,
849
+ "learning_rate": 1.9265808230787265e-05,
850
+ "loss": 0.3325,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.47647647647647645,
855
+ "grad_norm": 0.3504616320133209,
856
+ "learning_rate": 1.9249240406999366e-05,
857
+ "loss": 0.3516,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.4804804804804805,
862
+ "grad_norm": 0.36517202854156494,
863
+ "learning_rate": 1.9232495014351248e-05,
864
+ "loss": 0.3233,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.4844844844844845,
869
+ "grad_norm": 0.33805495500564575,
870
+ "learning_rate": 1.921557237432447e-05,
871
+ "loss": 0.3261,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.48848848848848847,
876
+ "grad_norm": 0.35013893246650696,
877
+ "learning_rate": 1.919847281180343e-05,
878
+ "loss": 0.3361,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.4924924924924925,
883
+ "grad_norm": 0.3569040298461914,
884
+ "learning_rate": 1.9181196655069126e-05,
885
+ "loss": 0.33,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.4964964964964965,
890
+ "grad_norm": 0.3355570137500763,
891
+ "learning_rate": 1.9163744235792845e-05,
892
+ "loss": 0.3263,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.5005005005005005,
897
+ "grad_norm": 0.39212533831596375,
898
+ "learning_rate": 1.9146115889029793e-05,
899
+ "loss": 0.3671,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.5045045045045045,
904
+ "grad_norm": 0.3458411395549774,
905
+ "learning_rate": 1.912831195321268e-05,
906
+ "loss": 0.3575,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.5085085085085085,
911
+ "grad_norm": 0.3606933057308197,
912
+ "learning_rate": 1.9110332770145198e-05,
913
+ "loss": 0.342,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.5125125125125125,
918
+ "grad_norm": 0.3897223472595215,
919
+ "learning_rate": 1.9092178684995487e-05,
920
+ "loss": 0.37,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.5165165165165165,
925
+ "grad_norm": 0.30565860867500305,
926
+ "learning_rate": 1.9073850046289484e-05,
927
+ "loss": 0.3331,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.5205205205205206,
932
+ "grad_norm": 0.3087623119354248,
933
+ "learning_rate": 1.9055347205904245e-05,
934
+ "loss": 0.322,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.5245245245245245,
939
+ "grad_norm": 0.34453681111335754,
940
+ "learning_rate": 1.903667051906119e-05,
941
+ "loss": 0.3405,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.5285285285285285,
946
+ "grad_norm": 0.32023486495018005,
947
+ "learning_rate": 1.901782034431927e-05,
948
+ "loss": 0.338,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.5325325325325325,
953
+ "grad_norm": 0.37953877449035645,
954
+ "learning_rate": 1.8998797043568102e-05,
955
+ "loss": 0.3406,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.5365365365365365,
960
+ "grad_norm": 0.3680444061756134,
961
+ "learning_rate": 1.8979600982021014e-05,
962
+ "loss": 0.324,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.5405405405405406,
967
+ "grad_norm": 0.3368768095970154,
968
+ "learning_rate": 1.896023252820802e-05,
969
+ "loss": 0.3194,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.5445445445445446,
974
+ "grad_norm": 0.37519025802612305,
975
+ "learning_rate": 1.8940692053968773e-05,
976
+ "loss": 0.3358,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.5485485485485485,
981
+ "grad_norm": 0.33083492517471313,
982
+ "learning_rate": 1.89209799344454e-05,
983
+ "loss": 0.3202,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.5525525525525525,
988
+ "grad_norm": 0.3258178234100342,
989
+ "learning_rate": 1.8901096548075305e-05,
990
+ "loss": 0.3186,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.5565565565565566,
995
+ "grad_norm": 0.37846943736076355,
996
+ "learning_rate": 1.8881042276583924e-05,
997
+ "loss": 0.3563,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.5605605605605606,
1002
+ "grad_norm": 0.35151371359825134,
1003
+ "learning_rate": 1.8860817504977374e-05,
1004
+ "loss": 0.337,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.5645645645645646,
1009
+ "grad_norm": 0.33033043146133423,
1010
+ "learning_rate": 1.8840422621535067e-05,
1011
+ "loss": 0.3042,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.5685685685685685,
1016
+ "grad_norm": 0.3724791705608368,
1017
+ "learning_rate": 1.881985801780225e-05,
1018
+ "loss": 0.3165,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.5725725725725725,
1023
+ "grad_norm": 0.355752170085907,
1024
+ "learning_rate": 1.8799124088582523e-05,
1025
+ "loss": 0.3693,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.5765765765765766,
1030
+ "grad_norm": 0.3422398567199707,
1031
+ "learning_rate": 1.8778221231930204e-05,
1032
+ "loss": 0.3121,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.5805805805805806,
1037
+ "grad_norm": 0.3716834783554077,
1038
+ "learning_rate": 1.8757149849142724e-05,
1039
+ "loss": 0.3338,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.5845845845845846,
1044
+ "grad_norm": 0.313723087310791,
1045
+ "learning_rate": 1.8735910344752925e-05,
1046
+ "loss": 0.3294,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.5885885885885885,
1051
+ "grad_norm": 0.33704790472984314,
1052
+ "learning_rate": 1.871450312652126e-05,
1053
+ "loss": 0.3425,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.5925925925925926,
1058
+ "grad_norm": 0.3442137837409973,
1059
+ "learning_rate": 1.8692928605428016e-05,
1060
+ "loss": 0.3243,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.5965965965965966,
1065
+ "grad_norm": 0.3326564133167267,
1066
+ "learning_rate": 1.8671187195665373e-05,
1067
+ "loss": 0.3548,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.6006006006006006,
1072
+ "grad_norm": 0.37658053636550903,
1073
+ "learning_rate": 1.8649279314629484e-05,
1074
+ "loss": 0.3545,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.6046046046046046,
1079
+ "grad_norm": 0.34806281328201294,
1080
+ "learning_rate": 1.862720538291245e-05,
1081
+ "loss": 0.3365,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.6086086086086087,
1086
+ "grad_norm": 0.3958812355995178,
1087
+ "learning_rate": 1.8604965824294253e-05,
1088
+ "loss": 0.3682,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.6126126126126126,
1093
+ "grad_norm": 0.34817248582839966,
1094
+ "learning_rate": 1.8582561065734602e-05,
1095
+ "loss": 0.3454,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.6166166166166166,
1100
+ "grad_norm": 0.3551209270954132,
1101
+ "learning_rate": 1.8559991537364767e-05,
1102
+ "loss": 0.3466,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.6206206206206206,
1107
+ "grad_norm": 0.34840643405914307,
1108
+ "learning_rate": 1.8537257672479293e-05,
1109
+ "loss": 0.3186,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.6246246246246246,
1114
+ "grad_norm": 0.3974769413471222,
1115
+ "learning_rate": 1.8514359907527693e-05,
1116
+ "loss": 0.32,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.6286286286286287,
1121
+ "grad_norm": 0.36330661177635193,
1122
+ "learning_rate": 1.8491298682106066e-05,
1123
+ "loss": 0.3261,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.6326326326326326,
1128
+ "grad_norm": 0.3402544856071472,
1129
+ "learning_rate": 1.8468074438948664e-05,
1130
+ "loss": 0.335,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.6366366366366366,
1135
+ "grad_norm": 0.3627852201461792,
1136
+ "learning_rate": 1.8444687623919388e-05,
1137
+ "loss": 0.318,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.6406406406406406,
1142
+ "grad_norm": 0.3495313823223114,
1143
+ "learning_rate": 1.842113868600322e-05,
1144
+ "loss": 0.3235,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.6446446446446447,
1149
+ "grad_norm": 0.34827110171318054,
1150
+ "learning_rate": 1.8397428077297622e-05,
1151
+ "loss": 0.335,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.6486486486486487,
1156
+ "grad_norm": 0.35586410760879517,
1157
+ "learning_rate": 1.837355625300383e-05,
1158
+ "loss": 0.3163,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.6526526526526526,
1163
+ "grad_norm": 0.3451946973800659,
1164
+ "learning_rate": 1.834952367141816e-05,
1165
+ "loss": 0.3317,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.6566566566566566,
1170
+ "grad_norm": 0.36004722118377686,
1171
+ "learning_rate": 1.8325330793923146e-05,
1172
+ "loss": 0.3313,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.6606606606606606,
1177
+ "grad_norm": 0.32603421807289124,
1178
+ "learning_rate": 1.8300978084978736e-05,
1179
+ "loss": 0.3266,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.6646646646646647,
1184
+ "grad_norm": 0.33803558349609375,
1185
+ "learning_rate": 1.8276466012113358e-05,
1186
+ "loss": 0.3263,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.6646646646646647,
1191
+ "eval_loss": 0.3206555247306824,
1192
+ "eval_runtime": 5.9746,
1193
+ "eval_samples_per_second": 13.557,
1194
+ "eval_steps_per_second": 1.841,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.6686686686686687,
1199
+ "grad_norm": 0.34881776571273804,
1200
+ "learning_rate": 1.8251795045914922e-05,
1201
+ "loss": 0.3575,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.6726726726726727,
1206
+ "grad_norm": 0.3603871464729309,
1207
+ "learning_rate": 1.8226965660021836e-05,
1208
+ "loss": 0.3215,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.6766766766766766,
1213
+ "grad_norm": 0.3549259901046753,
1214
+ "learning_rate": 1.8201978331113855e-05,
1215
+ "loss": 0.3302,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.6806806806806807,
1220
+ "grad_norm": 0.3330039381980896,
1221
+ "learning_rate": 1.817683353890297e-05,
1222
+ "loss": 0.339,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.6846846846846847,
1227
+ "grad_norm": 0.4140745997428894,
1228
+ "learning_rate": 1.8151531766124186e-05,
1229
+ "loss": 0.4009,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.6886886886886887,
1234
+ "grad_norm": 0.3429993987083435,
1235
+ "learning_rate": 1.8126073498526254e-05,
1236
+ "loss": 0.3203,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.6926926926926927,
1241
+ "grad_norm": 0.3445993661880493,
1242
+ "learning_rate": 1.8100459224862336e-05,
1243
+ "loss": 0.3352,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.6966966966966966,
1248
+ "grad_norm": 0.3043835461139679,
1249
+ "learning_rate": 1.8074689436880643e-05,
1250
+ "loss": 0.3294,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.7007007007007007,
1255
+ "grad_norm": 0.3373521566390991,
1256
+ "learning_rate": 1.804876462931498e-05,
1257
+ "loss": 0.3204,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.7047047047047047,
1262
+ "grad_norm": 0.33019447326660156,
1263
+ "learning_rate": 1.8022685299875245e-05,
1264
+ "loss": 0.3339,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.7087087087087087,
1269
+ "grad_norm": 0.32447516918182373,
1270
+ "learning_rate": 1.799645194923788e-05,
1271
+ "loss": 0.3216,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.7127127127127127,
1276
+ "grad_norm": 0.3202582597732544,
1277
+ "learning_rate": 1.7970065081036266e-05,
1278
+ "loss": 0.3104,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.7167167167167167,
1283
+ "grad_norm": 0.3486015200614929,
1284
+ "learning_rate": 1.7943525201851038e-05,
1285
+ "loss": 0.3307,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.7207207207207207,
1290
+ "grad_norm": 0.36710435152053833,
1291
+ "learning_rate": 1.7916832821200375e-05,
1292
+ "loss": 0.3472,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.7247247247247247,
1297
+ "grad_norm": 0.347162127494812,
1298
+ "learning_rate": 1.7889988451530208e-05,
1299
+ "loss": 0.3358,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.7287287287287287,
1304
+ "grad_norm": 0.3109472692012787,
1305
+ "learning_rate": 1.7862992608204384e-05,
1306
+ "loss": 0.2959,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.7327327327327328,
1311
+ "grad_norm": 0.34007692337036133,
1312
+ "learning_rate": 1.783584580949477e-05,
1313
+ "loss": 0.3199,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.7367367367367368,
1318
+ "grad_norm": 0.31094032526016235,
1319
+ "learning_rate": 1.7808548576571314e-05,
1320
+ "loss": 0.315,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.7407407407407407,
1325
+ "grad_norm": 0.367898553609848,
1326
+ "learning_rate": 1.7781101433492026e-05,
1327
+ "loss": 0.346,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.7447447447447447,
1332
+ "grad_norm": 0.3379008173942566,
1333
+ "learning_rate": 1.7753504907192923e-05,
1334
+ "loss": 0.3299,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.7487487487487487,
1339
+ "grad_norm": 0.3236868977546692,
1340
+ "learning_rate": 1.7725759527477923e-05,
1341
+ "loss": 0.3081,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.7527527527527528,
1346
+ "grad_norm": 0.34538552165031433,
1347
+ "learning_rate": 1.769786582700864e-05,
1348
+ "loss": 0.3259,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.7567567567567568,
1353
+ "grad_norm": 0.3106057941913605,
1354
+ "learning_rate": 1.7669824341294203e-05,
1355
+ "loss": 0.3123,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.7607607607607607,
1360
+ "grad_norm": 0.3219281733036041,
1361
+ "learning_rate": 1.7641635608680942e-05,
1362
+ "loss": 0.3165,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.7647647647647647,
1367
+ "grad_norm": 0.3259471356868744,
1368
+ "learning_rate": 1.7613300170342073e-05,
1369
+ "loss": 0.3453,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.7687687687687688,
1374
+ "grad_norm": 0.33405622839927673,
1375
+ "learning_rate": 1.7584818570267287e-05,
1376
+ "loss": 0.3233,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.7727727727727728,
1381
+ "grad_norm": 0.3420588970184326,
1382
+ "learning_rate": 1.755619135525233e-05,
1383
+ "loss": 0.3229,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.7767767767767768,
1388
+ "grad_norm": 0.35447970032691956,
1389
+ "learning_rate": 1.7527419074888483e-05,
1390
+ "loss": 0.3356,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.7807807807807807,
1395
+ "grad_norm": 0.34441742300987244,
1396
+ "learning_rate": 1.749850228155203e-05,
1397
+ "loss": 0.3128,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.7847847847847848,
1402
+ "grad_norm": 0.33647745847702026,
1403
+ "learning_rate": 1.7469441530393652e-05,
1404
+ "loss": 0.334,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.7887887887887888,
1409
+ "grad_norm": 0.3477891981601715,
1410
+ "learning_rate": 1.7440237379327745e-05,
1411
+ "loss": 0.3535,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.7927927927927928,
1416
+ "grad_norm": 0.35994237661361694,
1417
+ "learning_rate": 1.7410890389021737e-05,
1418
+ "loss": 0.3133,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.7967967967967968,
1423
+ "grad_norm": 0.33523160219192505,
1424
+ "learning_rate": 1.7381401122885316e-05,
1425
+ "loss": 0.3403,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.8008008008008008,
1430
+ "grad_norm": 0.3123041093349457,
1431
+ "learning_rate": 1.7351770147059604e-05,
1432
+ "loss": 0.3148,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.8048048048048048,
1437
+ "grad_norm": 0.30986520648002625,
1438
+ "learning_rate": 1.7321998030406303e-05,
1439
+ "loss": 0.3327,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.8088088088088088,
1444
+ "grad_norm": 0.3334694504737854,
1445
+ "learning_rate": 1.729208534449676e-05,
1446
+ "loss": 0.3346,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.8128128128128128,
1451
+ "grad_norm": 0.32513362169265747,
1452
+ "learning_rate": 1.7262032663601003e-05,
1453
+ "loss": 0.3137,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.8168168168168168,
1458
+ "grad_norm": 0.34156233072280884,
1459
+ "learning_rate": 1.723184056467671e-05,
1460
+ "loss": 0.3218,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.8208208208208209,
1465
+ "grad_norm": 0.32721707224845886,
1466
+ "learning_rate": 1.7201509627358143e-05,
1467
+ "loss": 0.3182,
1468
+ "step": 205
1469
+ },
1470
+ {
1471
+ "epoch": 0.8248248248248248,
1472
+ "grad_norm": 0.35413238406181335,
1473
+ "learning_rate": 1.7171040433945006e-05,
1474
+ "loss": 0.2949,
1475
+ "step": 206
1476
+ },
1477
+ {
1478
+ "epoch": 0.8288288288288288,
1479
+ "grad_norm": 0.30575960874557495,
1480
+ "learning_rate": 1.7140433569391275e-05,
1481
+ "loss": 0.3267,
1482
+ "step": 207
1483
+ },
1484
+ {
1485
+ "epoch": 0.8328328328328328,
1486
+ "grad_norm": 0.3090551793575287,
1487
+ "learning_rate": 1.710968962129396e-05,
1488
+ "loss": 0.3072,
1489
+ "step": 208
1490
+ },
1491
+ {
1492
+ "epoch": 0.8368368368368369,
1493
+ "grad_norm": 0.30769091844558716,
1494
+ "learning_rate": 1.7078809179881847e-05,
1495
+ "loss": 0.3115,
1496
+ "step": 209
1497
+ },
1498
+ {
1499
+ "epoch": 0.8408408408408409,
1500
+ "grad_norm": 0.2806401550769806,
1501
+ "learning_rate": 1.704779283800412e-05,
1502
+ "loss": 0.3172,
1503
+ "step": 210
1504
+ },
1505
+ {
1506
+ "epoch": 0.8448448448448449,
1507
+ "grad_norm": 0.322110652923584,
1508
+ "learning_rate": 1.701664119111904e-05,
1509
+ "loss": 0.319,
1510
+ "step": 211
1511
+ },
1512
+ {
1513
+ "epoch": 0.8488488488488488,
1514
+ "grad_norm": 0.3080562353134155,
1515
+ "learning_rate": 1.6985354837282462e-05,
1516
+ "loss": 0.3247,
1517
+ "step": 212
1518
+ },
1519
+ {
1520
+ "epoch": 0.8528528528528528,
1521
+ "grad_norm": 0.3051875829696655,
1522
+ "learning_rate": 1.6953934377136375e-05,
1523
+ "loss": 0.3195,
1524
+ "step": 213
1525
+ },
1526
+ {
1527
+ "epoch": 0.8568568568568569,
1528
+ "grad_norm": 0.31982743740081787,
1529
+ "learning_rate": 1.6922380413897382e-05,
1530
+ "loss": 0.3202,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.8608608608608609,
1535
+ "grad_norm": 0.3235834538936615,
1536
+ "learning_rate": 1.689069355334509e-05,
1537
+ "loss": 0.3532,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.8648648648648649,
1542
+ "grad_norm": 0.32920244336128235,
1543
+ "learning_rate": 1.6858874403810507e-05,
1544
+ "loss": 0.3412,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.8688688688688688,
1549
+ "grad_norm": 0.3245142102241516,
1550
+ "learning_rate": 1.682692357616435e-05,
1551
+ "loss": 0.3074,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.8728728728728729,
1556
+ "grad_norm": 0.30122387409210205,
1557
+ "learning_rate": 1.679484168380532e-05,
1558
+ "loss": 0.3166,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.8768768768768769,
1563
+ "grad_norm": 0.30446872115135193,
1564
+ "learning_rate": 1.676262934264832e-05,
1565
+ "loss": 0.3177,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.8808808808808809,
1570
+ "grad_norm": 0.3006502091884613,
1571
+ "learning_rate": 1.6730287171112652e-05,
1572
+ "loss": 0.3225,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.8848848848848849,
1577
+ "grad_norm": 0.33892446756362915,
1578
+ "learning_rate": 1.669781579011011e-05,
1579
+ "loss": 0.335,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.8888888888888888,
1584
+ "grad_norm": 0.34253889322280884,
1585
+ "learning_rate": 1.666521582303309e-05,
1586
+ "loss": 0.3329,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.8928928928928929,
1591
+ "grad_norm": 0.291759729385376,
1592
+ "learning_rate": 1.6632487895742612e-05,
1593
+ "loss": 0.3173,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.8968968968968969,
1598
+ "grad_norm": 0.3063089847564697,
1599
+ "learning_rate": 1.6599632636556292e-05,
1600
+ "loss": 0.3345,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.9009009009009009,
1605
+ "grad_norm": 0.30597245693206787,
1606
+ "learning_rate": 1.6566650676236307e-05,
1607
+ "loss": 0.3435,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.9049049049049049,
1612
+ "grad_norm": 0.3654542863368988,
1613
+ "learning_rate": 1.653354264797725e-05,
1614
+ "loss": 0.32,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.908908908908909,
1619
+ "grad_norm": 0.30520570278167725,
1620
+ "learning_rate": 1.6500309187394005e-05,
1621
+ "loss": 0.3099,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.9129129129129129,
1626
+ "grad_norm": 0.3210243582725525,
1627
+ "learning_rate": 1.6466950932509532e-05,
1628
+ "loss": 0.316,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.9169169169169169,
1633
+ "grad_norm": 0.316346138715744,
1634
+ "learning_rate": 1.643346852374261e-05,
1635
+ "loss": 0.2977,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.9209209209209209,
1640
+ "grad_norm": 0.3127054274082184,
1641
+ "learning_rate": 1.6399862603895563e-05,
1642
+ "loss": 0.2942,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.924924924924925,
1647
+ "grad_norm": 0.3078126013278961,
1648
+ "learning_rate": 1.6366133818141893e-05,
1649
+ "loss": 0.3008,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.928928928928929,
1654
+ "grad_norm": 0.3247736096382141,
1655
+ "learning_rate": 1.633228281401392e-05,
1656
+ "loss": 0.3142,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.9329329329329329,
1661
+ "grad_norm": 0.3431578576564789,
1662
+ "learning_rate": 1.6298310241390326e-05,
1663
+ "loss": 0.3093,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.9369369369369369,
1668
+ "grad_norm": 0.31279513239860535,
1669
+ "learning_rate": 1.6264216752483697e-05,
1670
+ "loss": 0.3175,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.9409409409409409,
1675
+ "grad_norm": 0.33988532423973083,
1676
+ "learning_rate": 1.6230003001828e-05,
1677
+ "loss": 0.324,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.944944944944945,
1682
+ "grad_norm": 0.3213682472705841,
1683
+ "learning_rate": 1.6195669646266003e-05,
1684
+ "loss": 0.3321,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.948948948948949,
1689
+ "grad_norm": 0.357149213552475,
1690
+ "learning_rate": 1.616121734493668e-05,
1691
+ "loss": 0.3342,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.9529529529529529,
1696
+ "grad_norm": 0.31976473331451416,
1697
+ "learning_rate": 1.6126646759262548e-05,
1698
+ "loss": 0.3181,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.9569569569569569,
1703
+ "grad_norm": 0.328274130821228,
1704
+ "learning_rate": 1.609195855293697e-05,
1705
+ "loss": 0.3161,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.960960960960961,
1710
+ "grad_norm": 0.3303963840007782,
1711
+ "learning_rate": 1.6057153391911422e-05,
1712
+ "loss": 0.3076,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.964964964964965,
1717
+ "grad_norm": 0.34692683815956116,
1718
+ "learning_rate": 1.6022231944382693e-05,
1719
+ "loss": 0.3351,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.968968968968969,
1724
+ "grad_norm": 0.3468174636363983,
1725
+ "learning_rate": 1.598719488078007e-05,
1726
+ "loss": 0.3224,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.972972972972973,
1731
+ "grad_norm": 0.3575330972671509,
1732
+ "learning_rate": 1.5952042873752463e-05,
1733
+ "loss": 0.3189,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.9769769769769769,
1738
+ "grad_norm": 0.35199496150016785,
1739
+ "learning_rate": 1.5916776598155478e-05,
1740
+ "loss": 0.3515,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 0.980980980980981,
1745
+ "grad_norm": 0.34917882084846497,
1746
+ "learning_rate": 1.5881396731038493e-05,
1747
+ "loss": 0.3354,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 0.984984984984985,
1752
+ "grad_norm": 0.32909733057022095,
1753
+ "learning_rate": 1.584590395163162e-05,
1754
+ "loss": 0.3009,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 0.988988988988989,
1759
+ "grad_norm": 0.3109247088432312,
1760
+ "learning_rate": 1.5810298941332696e-05,
1761
+ "loss": 0.3164,
1762
+ "step": 247
1763
+ },
1764
+ {
1765
+ "epoch": 0.992992992992993,
1766
+ "grad_norm": 0.30618447065353394,
1767
+ "learning_rate": 1.5774582383694196e-05,
1768
+ "loss": 0.2923,
1769
+ "step": 248
1770
+ },
1771
+ {
1772
+ "epoch": 0.996996996996997,
1773
+ "grad_norm": 0.32330596446990967,
1774
+ "learning_rate": 1.5738754964410084e-05,
1775
+ "loss": 0.3213,
1776
+ "step": 249
1777
+ },
1778
+ {
1779
+ "epoch": 0.996996996996997,
1780
+ "eval_loss": 0.304058700799942,
1781
+ "eval_runtime": 6.1571,
1782
+ "eval_samples_per_second": 13.156,
1783
+ "eval_steps_per_second": 1.787,
1784
+ "step": 249
1785
+ }
1786
+ ],
1787
+ "logging_steps": 1,
1788
+ "max_steps": 747,
1789
+ "num_input_tokens_seen": 0,
1790
+ "num_train_epochs": 3,
1791
+ "save_steps": 249,
1792
+ "stateful_callbacks": {
1793
+ "TrainerControl": {
1794
+ "args": {
1795
+ "should_epoch_stop": false,
1796
+ "should_evaluate": false,
1797
+ "should_log": false,
1798
+ "should_save": true,
1799
+ "should_training_stop": false
1800
+ },
1801
+ "attributes": {}
1802
+ }
1803
+ },
1804
+ "total_flos": 4.146380399234253e+17,
1805
+ "train_batch_size": 8,
1806
+ "trial_name": null,
1807
+ "trial_params": null
1808
+ }
3b-w-cot/checkpoint-249/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ae10bafaded3f1f05741f3f17290afb1efc74a263062c027a77525fa9902f1e
3
+ size 10744
3b-w-cot/checkpoint-249/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
3b-w-cot/checkpoint-249/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
3b-w-cot/checkpoint-498/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-w-cot/checkpoint-498/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.3",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
3b-w-cot/checkpoint-498/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
3b-w-cot/checkpoint-498/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step497
3b-w-cot/checkpoint-498/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-w-cot/checkpoint-498/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a482673aeb9035cfc2e8a145055294d02953cff436fcd5b63164f9b40fc9adf
3
+ size 4957560304
3b-w-cot/checkpoint-498/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e832a210ed1cb3d1081c2621ce9afe15bc8f73253d8d03114ccdfd08679c29cd
3
+ size 1836696752
3b-w-cot/checkpoint-498/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6794207232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-w-cot/checkpoint-498/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91bd7f619e4cd37883f469c08e90105c4d218fd82ffc43ae58fa9fdbcc37fce5
3
+ size 14512
3b-w-cot/checkpoint-498/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b0a7593f9ab52bf47328c6d50954dce1fcd69866aa6f5f35851aef7f7af3899
3
+ size 14512
3b-w-cot/checkpoint-498/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4826800cd376d53466d2abcda597b68ee000b75ad68cf3b3811bc19eb99665f
3
+ size 1064
3b-w-cot/checkpoint-498/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
3b-w-cot/checkpoint-498/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
3b-w-cot/checkpoint-498/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
3b-w-cot/checkpoint-498/trainer_state.json ADDED
@@ -0,0 +1,3575 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.992992992992993,
5
+ "eval_steps": 83,
6
+ "global_step": 498,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004004004004004004,
13
+ "grad_norm": 6.739165782928467,
14
+ "learning_rate": 6.666666666666667e-07,
15
+ "loss": 1.4163,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.004004004004004004,
20
+ "eval_loss": 1.4217944145202637,
21
+ "eval_runtime": 5.678,
22
+ "eval_samples_per_second": 14.266,
23
+ "eval_steps_per_second": 1.937,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.008008008008008008,
28
+ "grad_norm": 6.897192001342773,
29
+ "learning_rate": 1.3333333333333334e-06,
30
+ "loss": 1.3767,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.012012012012012012,
35
+ "grad_norm": 6.74431037902832,
36
+ "learning_rate": 2.0000000000000003e-06,
37
+ "loss": 1.3848,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.016016016016016016,
42
+ "grad_norm": 6.999237537384033,
43
+ "learning_rate": 2.666666666666667e-06,
44
+ "loss": 1.4294,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.02002002002002002,
49
+ "grad_norm": 4.510103702545166,
50
+ "learning_rate": 3.3333333333333333e-06,
51
+ "loss": 1.2646,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.024024024024024024,
56
+ "grad_norm": 4.533900737762451,
57
+ "learning_rate": 4.000000000000001e-06,
58
+ "loss": 1.2563,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.028028028028028028,
63
+ "grad_norm": 3.565216541290283,
64
+ "learning_rate": 4.666666666666667e-06,
65
+ "loss": 1.1061,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.03203203203203203,
70
+ "grad_norm": 3.1937592029571533,
71
+ "learning_rate": 5.333333333333334e-06,
72
+ "loss": 1.0445,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.036036036036036036,
77
+ "grad_norm": 3.0942018032073975,
78
+ "learning_rate": 6e-06,
79
+ "loss": 0.8555,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04004004004004004,
84
+ "grad_norm": 4.628591060638428,
85
+ "learning_rate": 6.666666666666667e-06,
86
+ "loss": 0.8539,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.044044044044044044,
91
+ "grad_norm": 5.402413845062256,
92
+ "learning_rate": 7.333333333333333e-06,
93
+ "loss": 0.7684,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.04804804804804805,
98
+ "grad_norm": 1.96303391456604,
99
+ "learning_rate": 8.000000000000001e-06,
100
+ "loss": 0.6347,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.05205205205205205,
105
+ "grad_norm": 1.33661687374115,
106
+ "learning_rate": 8.666666666666668e-06,
107
+ "loss": 0.6692,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.056056056056056056,
112
+ "grad_norm": 0.9704915285110474,
113
+ "learning_rate": 9.333333333333334e-06,
114
+ "loss": 0.6385,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.06006006006006006,
119
+ "grad_norm": 0.7543495893478394,
120
+ "learning_rate": 1e-05,
121
+ "loss": 0.5901,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.06406406406406406,
126
+ "grad_norm": 1.3593250513076782,
127
+ "learning_rate": 1.0666666666666667e-05,
128
+ "loss": 0.5645,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.06806806806806807,
133
+ "grad_norm": 1.147750735282898,
134
+ "learning_rate": 1.1333333333333334e-05,
135
+ "loss": 0.5508,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.07207207207207207,
140
+ "grad_norm": 0.8024477958679199,
141
+ "learning_rate": 1.2e-05,
142
+ "loss": 0.5282,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.07607607607607608,
147
+ "grad_norm": 0.7931386232376099,
148
+ "learning_rate": 1.2666666666666667e-05,
149
+ "loss": 0.4929,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.08008008008008008,
154
+ "grad_norm": 0.6702373623847961,
155
+ "learning_rate": 1.3333333333333333e-05,
156
+ "loss": 0.4868,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.08408408408408409,
161
+ "grad_norm": 0.747148871421814,
162
+ "learning_rate": 1.4e-05,
163
+ "loss": 0.4857,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.08808808808808809,
168
+ "grad_norm": 0.5935061573982239,
169
+ "learning_rate": 1.4666666666666666e-05,
170
+ "loss": 0.4908,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.0920920920920921,
175
+ "grad_norm": 0.5696635842323303,
176
+ "learning_rate": 1.5333333333333334e-05,
177
+ "loss": 0.4437,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.0960960960960961,
182
+ "grad_norm": 0.5861401557922363,
183
+ "learning_rate": 1.6000000000000003e-05,
184
+ "loss": 0.4442,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.1001001001001001,
189
+ "grad_norm": 0.5833226442337036,
190
+ "learning_rate": 1.6666666666666667e-05,
191
+ "loss": 0.4585,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.1041041041041041,
196
+ "grad_norm": 0.48214447498321533,
197
+ "learning_rate": 1.7333333333333336e-05,
198
+ "loss": 0.3994,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.10810810810810811,
203
+ "grad_norm": 0.49264758825302124,
204
+ "learning_rate": 1.8e-05,
205
+ "loss": 0.4609,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.11211211211211211,
210
+ "grad_norm": 0.5025641322135925,
211
+ "learning_rate": 1.866666666666667e-05,
212
+ "loss": 0.4816,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.11611611611611612,
217
+ "grad_norm": 0.46342933177948,
218
+ "learning_rate": 1.9333333333333333e-05,
219
+ "loss": 0.4435,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.12012012012012012,
224
+ "grad_norm": 0.46523571014404297,
225
+ "learning_rate": 2e-05,
226
+ "loss": 0.4208,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.12412412412412413,
231
+ "grad_norm": 0.4298263192176819,
232
+ "learning_rate": 1.9999904008949705e-05,
233
+ "loss": 0.4137,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.12812812812812813,
238
+ "grad_norm": 0.43352752923965454,
239
+ "learning_rate": 1.999961603764167e-05,
240
+ "loss": 0.4096,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.13213213213213212,
245
+ "grad_norm": 0.4369907081127167,
246
+ "learning_rate": 1.9999136091604433e-05,
247
+ "loss": 0.4128,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.13613613613613615,
252
+ "grad_norm": 0.4188078045845032,
253
+ "learning_rate": 1.99984641800521e-05,
254
+ "loss": 0.4171,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.14014014014014015,
259
+ "grad_norm": 0.4548235237598419,
260
+ "learning_rate": 1.9997600315884166e-05,
261
+ "loss": 0.4236,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.14414414414414414,
266
+ "grad_norm": 0.4751495122909546,
267
+ "learning_rate": 1.999654451568528e-05,
268
+ "loss": 0.438,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.14814814814814814,
273
+ "grad_norm": 0.4333605170249939,
274
+ "learning_rate": 1.9995296799724914e-05,
275
+ "loss": 0.4208,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.15215215215215216,
280
+ "grad_norm": 0.48084449768066406,
281
+ "learning_rate": 1.999385719195698e-05,
282
+ "loss": 0.3969,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.15615615615615616,
287
+ "grad_norm": 0.42627257108688354,
288
+ "learning_rate": 1.9992225720019377e-05,
289
+ "loss": 0.4503,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.16016016016016016,
294
+ "grad_norm": 0.41883718967437744,
295
+ "learning_rate": 1.9990402415233436e-05,
296
+ "loss": 0.4322,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.16416416416416416,
301
+ "grad_norm": 0.39587706327438354,
302
+ "learning_rate": 1.998838731260335e-05,
303
+ "loss": 0.3841,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.16816816816816818,
308
+ "grad_norm": 0.40334609150886536,
309
+ "learning_rate": 1.9986180450815485e-05,
310
+ "loss": 0.3737,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.17217217217217218,
315
+ "grad_norm": 0.3715899884700775,
316
+ "learning_rate": 1.9983781872237634e-05,
317
+ "loss": 0.387,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.17617617617617617,
322
+ "grad_norm": 0.38875311613082886,
323
+ "learning_rate": 1.9981191622918217e-05,
324
+ "loss": 0.3695,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.18018018018018017,
329
+ "grad_norm": 0.39087679982185364,
330
+ "learning_rate": 1.997840975258538e-05,
331
+ "loss": 0.3934,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.1841841841841842,
336
+ "grad_norm": 0.41504260897636414,
337
+ "learning_rate": 1.9975436314646052e-05,
338
+ "loss": 0.3769,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.1881881881881882,
343
+ "grad_norm": 0.36994805932044983,
344
+ "learning_rate": 1.9972271366184922e-05,
345
+ "loss": 0.3807,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.1921921921921922,
350
+ "grad_norm": 0.39996904134750366,
351
+ "learning_rate": 1.996891496796334e-05,
352
+ "loss": 0.3903,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.1961961961961962,
357
+ "grad_norm": 0.3904661536216736,
358
+ "learning_rate": 1.9965367184418138e-05,
359
+ "loss": 0.3785,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.2002002002002002,
364
+ "grad_norm": 0.39596742391586304,
365
+ "learning_rate": 1.9961628083660406e-05,
366
+ "loss": 0.3806,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.2042042042042042,
371
+ "grad_norm": 0.39424648880958557,
372
+ "learning_rate": 1.9957697737474198e-05,
373
+ "loss": 0.3736,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.2082082082082082,
378
+ "grad_norm": 0.41719183325767517,
379
+ "learning_rate": 1.9953576221315116e-05,
380
+ "loss": 0.4023,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.2122122122122122,
385
+ "grad_norm": 0.3773253262042999,
386
+ "learning_rate": 1.9949263614308894e-05,
387
+ "loss": 0.396,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.21621621621621623,
392
+ "grad_norm": 0.4236510992050171,
393
+ "learning_rate": 1.994475999924987e-05,
394
+ "loss": 0.4032,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.22022022022022023,
399
+ "grad_norm": 0.3507007360458374,
400
+ "learning_rate": 1.9940065462599394e-05,
401
+ "loss": 0.3615,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.22422422422422422,
406
+ "grad_norm": 0.45851731300354004,
407
+ "learning_rate": 1.9935180094484164e-05,
408
+ "loss": 0.3402,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.22822822822822822,
413
+ "grad_norm": 0.36239954829216003,
414
+ "learning_rate": 1.99301039886945e-05,
415
+ "loss": 0.3668,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.23223223223223224,
420
+ "grad_norm": 0.3855980634689331,
421
+ "learning_rate": 1.992483724268255e-05,
422
+ "loss": 0.3575,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.23623623623623624,
427
+ "grad_norm": 0.4716965854167938,
428
+ "learning_rate": 1.9919379957560413e-05,
429
+ "loss": 0.3532,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.24024024024024024,
434
+ "grad_norm": 0.45167747139930725,
435
+ "learning_rate": 1.991373223809819e-05,
436
+ "loss": 0.3537,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.24424424424424424,
441
+ "grad_norm": 0.420512855052948,
442
+ "learning_rate": 1.990789419272199e-05,
443
+ "loss": 0.3471,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.24824824824824826,
448
+ "grad_norm": 0.4863167107105255,
449
+ "learning_rate": 1.9901865933511834e-05,
450
+ "loss": 0.3741,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.25225225225225223,
455
+ "grad_norm": 0.39653480052948,
456
+ "learning_rate": 1.9895647576199507e-05,
457
+ "loss": 0.3799,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.25625625625625625,
462
+ "grad_norm": 0.38418489694595337,
463
+ "learning_rate": 1.988923924016634e-05,
464
+ "loss": 0.3577,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.2602602602602603,
469
+ "grad_norm": 0.39798790216445923,
470
+ "learning_rate": 1.988264104844091e-05,
471
+ "loss": 0.3581,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.26426426426426425,
476
+ "grad_norm": 0.41135266423225403,
477
+ "learning_rate": 1.987585312769669e-05,
478
+ "loss": 0.3306,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.2682682682682683,
483
+ "grad_norm": 0.36515921354293823,
484
+ "learning_rate": 1.9868875608249613e-05,
485
+ "loss": 0.3628,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.2722722722722723,
490
+ "grad_norm": 0.4733300507068634,
491
+ "learning_rate": 1.986170862405556e-05,
492
+ "loss": 0.3733,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.27627627627627627,
497
+ "grad_norm": 0.4218703806400299,
498
+ "learning_rate": 1.98543523127078e-05,
499
+ "loss": 0.371,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.2802802802802803,
504
+ "grad_norm": 0.35307836532592773,
505
+ "learning_rate": 1.984680681543434e-05,
506
+ "loss": 0.3568,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.28428428428428426,
511
+ "grad_norm": 0.4475674629211426,
512
+ "learning_rate": 1.9839072277095222e-05,
513
+ "loss": 0.3828,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.2882882882882883,
518
+ "grad_norm": 0.37015393376350403,
519
+ "learning_rate": 1.9831148846179743e-05,
520
+ "loss": 0.3426,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.2922922922922923,
525
+ "grad_norm": 0.39532360434532166,
526
+ "learning_rate": 1.9823036674803585e-05,
527
+ "loss": 0.3545,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.2962962962962963,
532
+ "grad_norm": 0.349669486284256,
533
+ "learning_rate": 1.981473591870593e-05,
534
+ "loss": 0.332,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.3003003003003003,
539
+ "grad_norm": 0.356000155210495,
540
+ "learning_rate": 1.980624673724643e-05,
541
+ "loss": 0.3684,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.30430430430430433,
546
+ "grad_norm": 0.4027644693851471,
547
+ "learning_rate": 1.9797569293402174e-05,
548
+ "loss": 0.3592,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.3083083083083083,
553
+ "grad_norm": 0.36116528511047363,
554
+ "learning_rate": 1.9788703753764554e-05,
555
+ "loss": 0.3433,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.3123123123123123,
560
+ "grad_norm": 0.35624876618385315,
561
+ "learning_rate": 1.9779650288536057e-05,
562
+ "loss": 0.3541,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.3163163163163163,
567
+ "grad_norm": 0.360287606716156,
568
+ "learning_rate": 1.977040907152702e-05,
569
+ "loss": 0.3413,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.3203203203203203,
574
+ "grad_norm": 0.412913978099823,
575
+ "learning_rate": 1.976098028015226e-05,
576
+ "loss": 0.4142,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.32432432432432434,
581
+ "grad_norm": 0.38022932410240173,
582
+ "learning_rate": 1.9751364095427694e-05,
583
+ "loss": 0.3481,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.3283283283283283,
588
+ "grad_norm": 0.37813299894332886,
589
+ "learning_rate": 1.974156070196686e-05,
590
+ "loss": 0.3552,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.33233233233233234,
595
+ "grad_norm": 0.3782276511192322,
596
+ "learning_rate": 1.973157028797737e-05,
597
+ "loss": 0.3799,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.33233233233233234,
602
+ "eval_loss": 0.33762940764427185,
603
+ "eval_runtime": 6.2209,
604
+ "eval_samples_per_second": 13.021,
605
+ "eval_steps_per_second": 1.768,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.33633633633633636,
610
+ "grad_norm": 0.3933849036693573,
611
+ "learning_rate": 1.9721393045257277e-05,
612
+ "loss": 0.3654,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.34034034034034033,
617
+ "grad_norm": 0.35808295011520386,
618
+ "learning_rate": 1.9711029169191437e-05,
619
+ "loss": 0.3716,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.34434434434434436,
624
+ "grad_norm": 0.3547224700450897,
625
+ "learning_rate": 1.970047885874771e-05,
626
+ "loss": 0.3397,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.3483483483483483,
631
+ "grad_norm": 0.39883747696876526,
632
+ "learning_rate": 1.968974231647318e-05,
633
+ "loss": 0.3645,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.35235235235235235,
638
+ "grad_norm": 0.3208443224430084,
639
+ "learning_rate": 1.9678819748490236e-05,
640
+ "loss": 0.3431,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.3563563563563564,
645
+ "grad_norm": 0.34669625759124756,
646
+ "learning_rate": 1.9667711364492638e-05,
647
+ "loss": 0.3613,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.36036036036036034,
652
+ "grad_norm": 0.35220351815223694,
653
+ "learning_rate": 1.965641737774147e-05,
654
+ "loss": 0.3499,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.36436436436436437,
659
+ "grad_norm": 0.3566596806049347,
660
+ "learning_rate": 1.9644938005061062e-05,
661
+ "loss": 0.3204,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.3683683683683684,
666
+ "grad_norm": 0.3813494145870209,
667
+ "learning_rate": 1.9633273466834826e-05,
668
+ "loss": 0.3526,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.37237237237237236,
673
+ "grad_norm": 0.3885157108306885,
674
+ "learning_rate": 1.9621423987001013e-05,
675
+ "loss": 0.3562,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.3763763763763764,
680
+ "grad_norm": 0.4746558666229248,
681
+ "learning_rate": 1.960938979304843e-05,
682
+ "loss": 0.3509,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.38038038038038036,
687
+ "grad_norm": 0.3623756766319275,
688
+ "learning_rate": 1.959717111601206e-05,
689
+ "loss": 0.371,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.3843843843843844,
694
+ "grad_norm": 0.3858593702316284,
695
+ "learning_rate": 1.9584768190468624e-05,
696
+ "loss": 0.3551,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.3883883883883884,
701
+ "grad_norm": 0.3788565993309021,
702
+ "learning_rate": 1.95721812545321e-05,
703
+ "loss": 0.3669,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.3923923923923924,
708
+ "grad_norm": 0.3729216754436493,
709
+ "learning_rate": 1.9559410549849125e-05,
710
+ "loss": 0.34,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.3963963963963964,
715
+ "grad_norm": 0.44008028507232666,
716
+ "learning_rate": 1.9546456321594374e-05,
717
+ "loss": 0.3898,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.4004004004004004,
722
+ "grad_norm": 0.36622726917266846,
723
+ "learning_rate": 1.9533318818465837e-05,
724
+ "loss": 0.3624,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.4044044044044044,
729
+ "grad_norm": 0.39071497321128845,
730
+ "learning_rate": 1.9519998292680062e-05,
731
+ "loss": 0.3518,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.4084084084084084,
736
+ "grad_norm": 0.40084153413772583,
737
+ "learning_rate": 1.9506494999967298e-05,
738
+ "loss": 0.3483,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.4124124124124124,
743
+ "grad_norm": 0.3901435434818268,
744
+ "learning_rate": 1.94928091995666e-05,
745
+ "loss": 0.3577,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.4164164164164164,
750
+ "grad_norm": 0.34764233231544495,
751
+ "learning_rate": 1.9478941154220833e-05,
752
+ "loss": 0.3487,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.42042042042042044,
757
+ "grad_norm": 0.4044027030467987,
758
+ "learning_rate": 1.9464891130171647e-05,
759
+ "loss": 0.3602,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.4244244244244244,
764
+ "grad_norm": 0.3537923991680145,
765
+ "learning_rate": 1.9450659397154353e-05,
766
+ "loss": 0.3282,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.42842842842842843,
771
+ "grad_norm": 0.35585689544677734,
772
+ "learning_rate": 1.9436246228392762e-05,
773
+ "loss": 0.361,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.43243243243243246,
778
+ "grad_norm": 0.380585253238678,
779
+ "learning_rate": 1.94216519005939e-05,
780
+ "loss": 0.3218,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.4364364364364364,
785
+ "grad_norm": 0.3388879597187042,
786
+ "learning_rate": 1.9406876693942747e-05,
787
+ "loss": 0.3563,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.44044044044044045,
792
+ "grad_norm": 0.359130859375,
793
+ "learning_rate": 1.939192089209682e-05,
794
+ "loss": 0.3386,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.4444444444444444,
799
+ "grad_norm": 0.35704970359802246,
800
+ "learning_rate": 1.9376784782180747e-05,
801
+ "loss": 0.3336,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.44844844844844844,
806
+ "grad_norm": 0.3638094961643219,
807
+ "learning_rate": 1.9361468654780748e-05,
808
+ "loss": 0.3582,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.45245245245245247,
813
+ "grad_norm": 0.3996574878692627,
814
+ "learning_rate": 1.9345972803939046e-05,
815
+ "loss": 0.3496,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.45645645645645644,
820
+ "grad_norm": 0.3565851151943207,
821
+ "learning_rate": 1.9330297527148246e-05,
822
+ "loss": 0.3273,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.46046046046046046,
827
+ "grad_norm": 0.3502778112888336,
828
+ "learning_rate": 1.9314443125345606e-05,
829
+ "loss": 0.3331,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.4644644644644645,
834
+ "grad_norm": 0.4017852544784546,
835
+ "learning_rate": 1.929840990290726e-05,
836
+ "loss": 0.3522,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.46846846846846846,
841
+ "grad_norm": 0.354686975479126,
842
+ "learning_rate": 1.928219816764238e-05,
843
+ "loss": 0.3456,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.4724724724724725,
848
+ "grad_norm": 0.34257611632347107,
849
+ "learning_rate": 1.9265808230787265e-05,
850
+ "loss": 0.3325,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.47647647647647645,
855
+ "grad_norm": 0.3504616320133209,
856
+ "learning_rate": 1.9249240406999366e-05,
857
+ "loss": 0.3516,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.4804804804804805,
862
+ "grad_norm": 0.36517202854156494,
863
+ "learning_rate": 1.9232495014351248e-05,
864
+ "loss": 0.3233,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.4844844844844845,
869
+ "grad_norm": 0.33805495500564575,
870
+ "learning_rate": 1.921557237432447e-05,
871
+ "loss": 0.3261,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.48848848848848847,
876
+ "grad_norm": 0.35013893246650696,
877
+ "learning_rate": 1.919847281180343e-05,
878
+ "loss": 0.3361,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.4924924924924925,
883
+ "grad_norm": 0.3569040298461914,
884
+ "learning_rate": 1.9181196655069126e-05,
885
+ "loss": 0.33,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.4964964964964965,
890
+ "grad_norm": 0.3355570137500763,
891
+ "learning_rate": 1.9163744235792845e-05,
892
+ "loss": 0.3263,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.5005005005005005,
897
+ "grad_norm": 0.39212533831596375,
898
+ "learning_rate": 1.9146115889029793e-05,
899
+ "loss": 0.3671,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.5045045045045045,
904
+ "grad_norm": 0.3458411395549774,
905
+ "learning_rate": 1.912831195321268e-05,
906
+ "loss": 0.3575,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.5085085085085085,
911
+ "grad_norm": 0.3606933057308197,
912
+ "learning_rate": 1.9110332770145198e-05,
913
+ "loss": 0.342,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.5125125125125125,
918
+ "grad_norm": 0.3897223472595215,
919
+ "learning_rate": 1.9092178684995487e-05,
920
+ "loss": 0.37,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.5165165165165165,
925
+ "grad_norm": 0.30565860867500305,
926
+ "learning_rate": 1.9073850046289484e-05,
927
+ "loss": 0.3331,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.5205205205205206,
932
+ "grad_norm": 0.3087623119354248,
933
+ "learning_rate": 1.9055347205904245e-05,
934
+ "loss": 0.322,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.5245245245245245,
939
+ "grad_norm": 0.34453681111335754,
940
+ "learning_rate": 1.903667051906119e-05,
941
+ "loss": 0.3405,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.5285285285285285,
946
+ "grad_norm": 0.32023486495018005,
947
+ "learning_rate": 1.901782034431927e-05,
948
+ "loss": 0.338,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.5325325325325325,
953
+ "grad_norm": 0.37953877449035645,
954
+ "learning_rate": 1.8998797043568102e-05,
955
+ "loss": 0.3406,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.5365365365365365,
960
+ "grad_norm": 0.3680444061756134,
961
+ "learning_rate": 1.8979600982021014e-05,
962
+ "loss": 0.324,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.5405405405405406,
967
+ "grad_norm": 0.3368768095970154,
968
+ "learning_rate": 1.896023252820802e-05,
969
+ "loss": 0.3194,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.5445445445445446,
974
+ "grad_norm": 0.37519025802612305,
975
+ "learning_rate": 1.8940692053968773e-05,
976
+ "loss": 0.3358,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.5485485485485485,
981
+ "grad_norm": 0.33083492517471313,
982
+ "learning_rate": 1.89209799344454e-05,
983
+ "loss": 0.3202,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.5525525525525525,
988
+ "grad_norm": 0.3258178234100342,
989
+ "learning_rate": 1.8901096548075305e-05,
990
+ "loss": 0.3186,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.5565565565565566,
995
+ "grad_norm": 0.37846943736076355,
996
+ "learning_rate": 1.8881042276583924e-05,
997
+ "loss": 0.3563,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.5605605605605606,
1002
+ "grad_norm": 0.35151371359825134,
1003
+ "learning_rate": 1.8860817504977374e-05,
1004
+ "loss": 0.337,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.5645645645645646,
1009
+ "grad_norm": 0.33033043146133423,
1010
+ "learning_rate": 1.8840422621535067e-05,
1011
+ "loss": 0.3042,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.5685685685685685,
1016
+ "grad_norm": 0.3724791705608368,
1017
+ "learning_rate": 1.881985801780225e-05,
1018
+ "loss": 0.3165,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.5725725725725725,
1023
+ "grad_norm": 0.355752170085907,
1024
+ "learning_rate": 1.8799124088582523e-05,
1025
+ "loss": 0.3693,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.5765765765765766,
1030
+ "grad_norm": 0.3422398567199707,
1031
+ "learning_rate": 1.8778221231930204e-05,
1032
+ "loss": 0.3121,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.5805805805805806,
1037
+ "grad_norm": 0.3716834783554077,
1038
+ "learning_rate": 1.8757149849142724e-05,
1039
+ "loss": 0.3338,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.5845845845845846,
1044
+ "grad_norm": 0.313723087310791,
1045
+ "learning_rate": 1.8735910344752925e-05,
1046
+ "loss": 0.3294,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.5885885885885885,
1051
+ "grad_norm": 0.33704790472984314,
1052
+ "learning_rate": 1.871450312652126e-05,
1053
+ "loss": 0.3425,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.5925925925925926,
1058
+ "grad_norm": 0.3442137837409973,
1059
+ "learning_rate": 1.8692928605428016e-05,
1060
+ "loss": 0.3243,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.5965965965965966,
1065
+ "grad_norm": 0.3326564133167267,
1066
+ "learning_rate": 1.8671187195665373e-05,
1067
+ "loss": 0.3548,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.6006006006006006,
1072
+ "grad_norm": 0.37658053636550903,
1073
+ "learning_rate": 1.8649279314629484e-05,
1074
+ "loss": 0.3545,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.6046046046046046,
1079
+ "grad_norm": 0.34806281328201294,
1080
+ "learning_rate": 1.862720538291245e-05,
1081
+ "loss": 0.3365,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.6086086086086087,
1086
+ "grad_norm": 0.3958812355995178,
1087
+ "learning_rate": 1.8604965824294253e-05,
1088
+ "loss": 0.3682,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.6126126126126126,
1093
+ "grad_norm": 0.34817248582839966,
1094
+ "learning_rate": 1.8582561065734602e-05,
1095
+ "loss": 0.3454,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.6166166166166166,
1100
+ "grad_norm": 0.3551209270954132,
1101
+ "learning_rate": 1.8559991537364767e-05,
1102
+ "loss": 0.3466,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.6206206206206206,
1107
+ "grad_norm": 0.34840643405914307,
1108
+ "learning_rate": 1.8537257672479293e-05,
1109
+ "loss": 0.3186,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.6246246246246246,
1114
+ "grad_norm": 0.3974769413471222,
1115
+ "learning_rate": 1.8514359907527693e-05,
1116
+ "loss": 0.32,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.6286286286286287,
1121
+ "grad_norm": 0.36330661177635193,
1122
+ "learning_rate": 1.8491298682106066e-05,
1123
+ "loss": 0.3261,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.6326326326326326,
1128
+ "grad_norm": 0.3402544856071472,
1129
+ "learning_rate": 1.8468074438948664e-05,
1130
+ "loss": 0.335,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.6366366366366366,
1135
+ "grad_norm": 0.3627852201461792,
1136
+ "learning_rate": 1.8444687623919388e-05,
1137
+ "loss": 0.318,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.6406406406406406,
1142
+ "grad_norm": 0.3495313823223114,
1143
+ "learning_rate": 1.842113868600322e-05,
1144
+ "loss": 0.3235,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.6446446446446447,
1149
+ "grad_norm": 0.34827110171318054,
1150
+ "learning_rate": 1.8397428077297622e-05,
1151
+ "loss": 0.335,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.6486486486486487,
1156
+ "grad_norm": 0.35586410760879517,
1157
+ "learning_rate": 1.837355625300383e-05,
1158
+ "loss": 0.3163,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.6526526526526526,
1163
+ "grad_norm": 0.3451946973800659,
1164
+ "learning_rate": 1.834952367141816e-05,
1165
+ "loss": 0.3317,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.6566566566566566,
1170
+ "grad_norm": 0.36004722118377686,
1171
+ "learning_rate": 1.8325330793923146e-05,
1172
+ "loss": 0.3313,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.6606606606606606,
1177
+ "grad_norm": 0.32603421807289124,
1178
+ "learning_rate": 1.8300978084978736e-05,
1179
+ "loss": 0.3266,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.6646646646646647,
1184
+ "grad_norm": 0.33803558349609375,
1185
+ "learning_rate": 1.8276466012113358e-05,
1186
+ "loss": 0.3263,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.6646646646646647,
1191
+ "eval_loss": 0.3206555247306824,
1192
+ "eval_runtime": 5.9746,
1193
+ "eval_samples_per_second": 13.557,
1194
+ "eval_steps_per_second": 1.841,
1195
+ "step": 166
1196
+ },
1197
+ {
1198
+ "epoch": 0.6686686686686687,
1199
+ "grad_norm": 0.34881776571273804,
1200
+ "learning_rate": 1.8251795045914922e-05,
1201
+ "loss": 0.3575,
1202
+ "step": 167
1203
+ },
1204
+ {
1205
+ "epoch": 0.6726726726726727,
1206
+ "grad_norm": 0.3603871464729309,
1207
+ "learning_rate": 1.8226965660021836e-05,
1208
+ "loss": 0.3215,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.6766766766766766,
1213
+ "grad_norm": 0.3549259901046753,
1214
+ "learning_rate": 1.8201978331113855e-05,
1215
+ "loss": 0.3302,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.6806806806806807,
1220
+ "grad_norm": 0.3330039381980896,
1221
+ "learning_rate": 1.817683353890297e-05,
1222
+ "loss": 0.339,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.6846846846846847,
1227
+ "grad_norm": 0.4140745997428894,
1228
+ "learning_rate": 1.8151531766124186e-05,
1229
+ "loss": 0.4009,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.6886886886886887,
1234
+ "grad_norm": 0.3429993987083435,
1235
+ "learning_rate": 1.8126073498526254e-05,
1236
+ "loss": 0.3203,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.6926926926926927,
1241
+ "grad_norm": 0.3445993661880493,
1242
+ "learning_rate": 1.8100459224862336e-05,
1243
+ "loss": 0.3352,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.6966966966966966,
1248
+ "grad_norm": 0.3043835461139679,
1249
+ "learning_rate": 1.8074689436880643e-05,
1250
+ "loss": 0.3294,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.7007007007007007,
1255
+ "grad_norm": 0.3373521566390991,
1256
+ "learning_rate": 1.804876462931498e-05,
1257
+ "loss": 0.3204,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.7047047047047047,
1262
+ "grad_norm": 0.33019447326660156,
1263
+ "learning_rate": 1.8022685299875245e-05,
1264
+ "loss": 0.3339,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.7087087087087087,
1269
+ "grad_norm": 0.32447516918182373,
1270
+ "learning_rate": 1.799645194923788e-05,
1271
+ "loss": 0.3216,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.7127127127127127,
1276
+ "grad_norm": 0.3202582597732544,
1277
+ "learning_rate": 1.7970065081036266e-05,
1278
+ "loss": 0.3104,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.7167167167167167,
1283
+ "grad_norm": 0.3486015200614929,
1284
+ "learning_rate": 1.7943525201851038e-05,
1285
+ "loss": 0.3307,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.7207207207207207,
1290
+ "grad_norm": 0.36710435152053833,
1291
+ "learning_rate": 1.7916832821200375e-05,
1292
+ "loss": 0.3472,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.7247247247247247,
1297
+ "grad_norm": 0.347162127494812,
1298
+ "learning_rate": 1.7889988451530208e-05,
1299
+ "loss": 0.3358,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.7287287287287287,
1304
+ "grad_norm": 0.3109472692012787,
1305
+ "learning_rate": 1.7862992608204384e-05,
1306
+ "loss": 0.2959,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.7327327327327328,
1311
+ "grad_norm": 0.34007692337036133,
1312
+ "learning_rate": 1.783584580949477e-05,
1313
+ "loss": 0.3199,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.7367367367367368,
1318
+ "grad_norm": 0.31094032526016235,
1319
+ "learning_rate": 1.7808548576571314e-05,
1320
+ "loss": 0.315,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.7407407407407407,
1325
+ "grad_norm": 0.367898553609848,
1326
+ "learning_rate": 1.7781101433492026e-05,
1327
+ "loss": 0.346,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.7447447447447447,
1332
+ "grad_norm": 0.3379008173942566,
1333
+ "learning_rate": 1.7753504907192923e-05,
1334
+ "loss": 0.3299,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.7487487487487487,
1339
+ "grad_norm": 0.3236868977546692,
1340
+ "learning_rate": 1.7725759527477923e-05,
1341
+ "loss": 0.3081,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.7527527527527528,
1346
+ "grad_norm": 0.34538552165031433,
1347
+ "learning_rate": 1.769786582700864e-05,
1348
+ "loss": 0.3259,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.7567567567567568,
1353
+ "grad_norm": 0.3106057941913605,
1354
+ "learning_rate": 1.7669824341294203e-05,
1355
+ "loss": 0.3123,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.7607607607607607,
1360
+ "grad_norm": 0.3219281733036041,
1361
+ "learning_rate": 1.7641635608680942e-05,
1362
+ "loss": 0.3165,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.7647647647647647,
1367
+ "grad_norm": 0.3259471356868744,
1368
+ "learning_rate": 1.7613300170342073e-05,
1369
+ "loss": 0.3453,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.7687687687687688,
1374
+ "grad_norm": 0.33405622839927673,
1375
+ "learning_rate": 1.7584818570267287e-05,
1376
+ "loss": 0.3233,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.7727727727727728,
1381
+ "grad_norm": 0.3420588970184326,
1382
+ "learning_rate": 1.755619135525233e-05,
1383
+ "loss": 0.3229,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.7767767767767768,
1388
+ "grad_norm": 0.35447970032691956,
1389
+ "learning_rate": 1.7527419074888483e-05,
1390
+ "loss": 0.3356,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.7807807807807807,
1395
+ "grad_norm": 0.34441742300987244,
1396
+ "learning_rate": 1.749850228155203e-05,
1397
+ "loss": 0.3128,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.7847847847847848,
1402
+ "grad_norm": 0.33647745847702026,
1403
+ "learning_rate": 1.7469441530393652e-05,
1404
+ "loss": 0.334,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.7887887887887888,
1409
+ "grad_norm": 0.3477891981601715,
1410
+ "learning_rate": 1.7440237379327745e-05,
1411
+ "loss": 0.3535,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.7927927927927928,
1416
+ "grad_norm": 0.35994237661361694,
1417
+ "learning_rate": 1.7410890389021737e-05,
1418
+ "loss": 0.3133,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.7967967967967968,
1423
+ "grad_norm": 0.33523160219192505,
1424
+ "learning_rate": 1.7381401122885316e-05,
1425
+ "loss": 0.3403,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.8008008008008008,
1430
+ "grad_norm": 0.3123041093349457,
1431
+ "learning_rate": 1.7351770147059604e-05,
1432
+ "loss": 0.3148,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.8048048048048048,
1437
+ "grad_norm": 0.30986520648002625,
1438
+ "learning_rate": 1.7321998030406303e-05,
1439
+ "loss": 0.3327,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.8088088088088088,
1444
+ "grad_norm": 0.3334694504737854,
1445
+ "learning_rate": 1.729208534449676e-05,
1446
+ "loss": 0.3346,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.8128128128128128,
1451
+ "grad_norm": 0.32513362169265747,
1452
+ "learning_rate": 1.7262032663601003e-05,
1453
+ "loss": 0.3137,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.8168168168168168,
1458
+ "grad_norm": 0.34156233072280884,
1459
+ "learning_rate": 1.723184056467671e-05,
1460
+ "loss": 0.3218,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.8208208208208209,
1465
+ "grad_norm": 0.32721707224845886,
1466
+ "learning_rate": 1.7201509627358143e-05,
1467
+ "loss": 0.3182,
1468
+ "step": 205
1469
+ },
1470
+ {
1471
+ "epoch": 0.8248248248248248,
1472
+ "grad_norm": 0.35413238406181335,
1473
+ "learning_rate": 1.7171040433945006e-05,
1474
+ "loss": 0.2949,
1475
+ "step": 206
1476
+ },
1477
+ {
1478
+ "epoch": 0.8288288288288288,
1479
+ "grad_norm": 0.30575960874557495,
1480
+ "learning_rate": 1.7140433569391275e-05,
1481
+ "loss": 0.3267,
1482
+ "step": 207
1483
+ },
1484
+ {
1485
+ "epoch": 0.8328328328328328,
1486
+ "grad_norm": 0.3090551793575287,
1487
+ "learning_rate": 1.710968962129396e-05,
1488
+ "loss": 0.3072,
1489
+ "step": 208
1490
+ },
1491
+ {
1492
+ "epoch": 0.8368368368368369,
1493
+ "grad_norm": 0.30769091844558716,
1494
+ "learning_rate": 1.7078809179881847e-05,
1495
+ "loss": 0.3115,
1496
+ "step": 209
1497
+ },
1498
+ {
1499
+ "epoch": 0.8408408408408409,
1500
+ "grad_norm": 0.2806401550769806,
1501
+ "learning_rate": 1.704779283800412e-05,
1502
+ "loss": 0.3172,
1503
+ "step": 210
1504
+ },
1505
+ {
1506
+ "epoch": 0.8448448448448449,
1507
+ "grad_norm": 0.322110652923584,
1508
+ "learning_rate": 1.701664119111904e-05,
1509
+ "loss": 0.319,
1510
+ "step": 211
1511
+ },
1512
+ {
1513
+ "epoch": 0.8488488488488488,
1514
+ "grad_norm": 0.3080562353134155,
1515
+ "learning_rate": 1.6985354837282462e-05,
1516
+ "loss": 0.3247,
1517
+ "step": 212
1518
+ },
1519
+ {
1520
+ "epoch": 0.8528528528528528,
1521
+ "grad_norm": 0.3051875829696655,
1522
+ "learning_rate": 1.6953934377136375e-05,
1523
+ "loss": 0.3195,
1524
+ "step": 213
1525
+ },
1526
+ {
1527
+ "epoch": 0.8568568568568569,
1528
+ "grad_norm": 0.31982743740081787,
1529
+ "learning_rate": 1.6922380413897382e-05,
1530
+ "loss": 0.3202,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.8608608608608609,
1535
+ "grad_norm": 0.3235834538936615,
1536
+ "learning_rate": 1.689069355334509e-05,
1537
+ "loss": 0.3532,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.8648648648648649,
1542
+ "grad_norm": 0.32920244336128235,
1543
+ "learning_rate": 1.6858874403810507e-05,
1544
+ "loss": 0.3412,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.8688688688688688,
1549
+ "grad_norm": 0.3245142102241516,
1550
+ "learning_rate": 1.682692357616435e-05,
1551
+ "loss": 0.3074,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.8728728728728729,
1556
+ "grad_norm": 0.30122387409210205,
1557
+ "learning_rate": 1.679484168380532e-05,
1558
+ "loss": 0.3166,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.8768768768768769,
1563
+ "grad_norm": 0.30446872115135193,
1564
+ "learning_rate": 1.676262934264832e-05,
1565
+ "loss": 0.3177,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.8808808808808809,
1570
+ "grad_norm": 0.3006502091884613,
1571
+ "learning_rate": 1.6730287171112652e-05,
1572
+ "loss": 0.3225,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.8848848848848849,
1577
+ "grad_norm": 0.33892446756362915,
1578
+ "learning_rate": 1.669781579011011e-05,
1579
+ "loss": 0.335,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.8888888888888888,
1584
+ "grad_norm": 0.34253889322280884,
1585
+ "learning_rate": 1.666521582303309e-05,
1586
+ "loss": 0.3329,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.8928928928928929,
1591
+ "grad_norm": 0.291759729385376,
1592
+ "learning_rate": 1.6632487895742612e-05,
1593
+ "loss": 0.3173,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.8968968968968969,
1598
+ "grad_norm": 0.3063089847564697,
1599
+ "learning_rate": 1.6599632636556292e-05,
1600
+ "loss": 0.3345,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.9009009009009009,
1605
+ "grad_norm": 0.30597245693206787,
1606
+ "learning_rate": 1.6566650676236307e-05,
1607
+ "loss": 0.3435,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.9049049049049049,
1612
+ "grad_norm": 0.3654542863368988,
1613
+ "learning_rate": 1.653354264797725e-05,
1614
+ "loss": 0.32,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.908908908908909,
1619
+ "grad_norm": 0.30520570278167725,
1620
+ "learning_rate": 1.6500309187394005e-05,
1621
+ "loss": 0.3099,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.9129129129129129,
1626
+ "grad_norm": 0.3210243582725525,
1627
+ "learning_rate": 1.6466950932509532e-05,
1628
+ "loss": 0.316,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.9169169169169169,
1633
+ "grad_norm": 0.316346138715744,
1634
+ "learning_rate": 1.643346852374261e-05,
1635
+ "loss": 0.2977,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.9209209209209209,
1640
+ "grad_norm": 0.3127054274082184,
1641
+ "learning_rate": 1.6399862603895563e-05,
1642
+ "loss": 0.2942,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.924924924924925,
1647
+ "grad_norm": 0.3078126013278961,
1648
+ "learning_rate": 1.6366133818141893e-05,
1649
+ "loss": 0.3008,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.928928928928929,
1654
+ "grad_norm": 0.3247736096382141,
1655
+ "learning_rate": 1.633228281401392e-05,
1656
+ "loss": 0.3142,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.9329329329329329,
1661
+ "grad_norm": 0.3431578576564789,
1662
+ "learning_rate": 1.6298310241390326e-05,
1663
+ "loss": 0.3093,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.9369369369369369,
1668
+ "grad_norm": 0.31279513239860535,
1669
+ "learning_rate": 1.6264216752483697e-05,
1670
+ "loss": 0.3175,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.9409409409409409,
1675
+ "grad_norm": 0.33988532423973083,
1676
+ "learning_rate": 1.6230003001828e-05,
1677
+ "loss": 0.324,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.944944944944945,
1682
+ "grad_norm": 0.3213682472705841,
1683
+ "learning_rate": 1.6195669646266003e-05,
1684
+ "loss": 0.3321,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.948948948948949,
1689
+ "grad_norm": 0.357149213552475,
1690
+ "learning_rate": 1.616121734493668e-05,
1691
+ "loss": 0.3342,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.9529529529529529,
1696
+ "grad_norm": 0.31976473331451416,
1697
+ "learning_rate": 1.6126646759262548e-05,
1698
+ "loss": 0.3181,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.9569569569569569,
1703
+ "grad_norm": 0.328274130821228,
1704
+ "learning_rate": 1.609195855293697e-05,
1705
+ "loss": 0.3161,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.960960960960961,
1710
+ "grad_norm": 0.3303963840007782,
1711
+ "learning_rate": 1.6057153391911422e-05,
1712
+ "loss": 0.3076,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.964964964964965,
1717
+ "grad_norm": 0.34692683815956116,
1718
+ "learning_rate": 1.6022231944382693e-05,
1719
+ "loss": 0.3351,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.968968968968969,
1724
+ "grad_norm": 0.3468174636363983,
1725
+ "learning_rate": 1.598719488078007e-05,
1726
+ "loss": 0.3224,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.972972972972973,
1731
+ "grad_norm": 0.3575330972671509,
1732
+ "learning_rate": 1.5952042873752463e-05,
1733
+ "loss": 0.3189,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.9769769769769769,
1738
+ "grad_norm": 0.35199496150016785,
1739
+ "learning_rate": 1.5916776598155478e-05,
1740
+ "loss": 0.3515,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 0.980980980980981,
1745
+ "grad_norm": 0.34917882084846497,
1746
+ "learning_rate": 1.5881396731038493e-05,
1747
+ "loss": 0.3354,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 0.984984984984985,
1752
+ "grad_norm": 0.32909733057022095,
1753
+ "learning_rate": 1.584590395163162e-05,
1754
+ "loss": 0.3009,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 0.988988988988989,
1759
+ "grad_norm": 0.3109247088432312,
1760
+ "learning_rate": 1.5810298941332696e-05,
1761
+ "loss": 0.3164,
1762
+ "step": 247
1763
+ },
1764
+ {
1765
+ "epoch": 0.992992992992993,
1766
+ "grad_norm": 0.30618447065353394,
1767
+ "learning_rate": 1.5774582383694196e-05,
1768
+ "loss": 0.2923,
1769
+ "step": 248
1770
+ },
1771
+ {
1772
+ "epoch": 0.996996996996997,
1773
+ "grad_norm": 0.32330596446990967,
1774
+ "learning_rate": 1.5738754964410084e-05,
1775
+ "loss": 0.3213,
1776
+ "step": 249
1777
+ },
1778
+ {
1779
+ "epoch": 0.996996996996997,
1780
+ "eval_loss": 0.304058700799942,
1781
+ "eval_runtime": 6.1571,
1782
+ "eval_samples_per_second": 13.156,
1783
+ "eval_steps_per_second": 1.787,
1784
+ "step": 249
1785
+ },
1786
+ {
1787
+ "epoch": 1.0,
1788
+ "grad_norm": 0.32330596446990967,
1789
+ "learning_rate": 1.5702817371302684e-05,
1790
+ "loss": 0.3252,
1791
+ "step": 250
1792
+ },
1793
+ {
1794
+ "epoch": 1.004004004004004,
1795
+ "grad_norm": 0.1360868364572525,
1796
+ "learning_rate": 1.5666770294309467e-05,
1797
+ "loss": 0.2529,
1798
+ "step": 251
1799
+ },
1800
+ {
1801
+ "epoch": 1.008008008008008,
1802
+ "grad_norm": 0.1317552626132965,
1803
+ "learning_rate": 1.5630614425469776e-05,
1804
+ "loss": 0.238,
1805
+ "step": 252
1806
+ },
1807
+ {
1808
+ "epoch": 1.012012012012012,
1809
+ "grad_norm": 0.12073508650064468,
1810
+ "learning_rate": 1.5594350458911586e-05,
1811
+ "loss": 0.2528,
1812
+ "step": 253
1813
+ },
1814
+ {
1815
+ "epoch": 1.016016016016016,
1816
+ "grad_norm": 0.13055667281150818,
1817
+ "learning_rate": 1.5557979090838136e-05,
1818
+ "loss": 0.2519,
1819
+ "step": 254
1820
+ },
1821
+ {
1822
+ "epoch": 1.02002002002002,
1823
+ "grad_norm": 0.1332577019929886,
1824
+ "learning_rate": 1.55215010195146e-05,
1825
+ "loss": 0.2483,
1826
+ "step": 255
1827
+ },
1828
+ {
1829
+ "epoch": 1.024024024024024,
1830
+ "grad_norm": 0.14699849486351013,
1831
+ "learning_rate": 1.5484916945254642e-05,
1832
+ "loss": 0.2513,
1833
+ "step": 256
1834
+ },
1835
+ {
1836
+ "epoch": 1.028028028028028,
1837
+ "grad_norm": 0.12925884127616882,
1838
+ "learning_rate": 1.5448227570407012e-05,
1839
+ "loss": 0.2426,
1840
+ "step": 257
1841
+ },
1842
+ {
1843
+ "epoch": 1.032032032032032,
1844
+ "grad_norm": 0.14779068529605865,
1845
+ "learning_rate": 1.5411433599342038e-05,
1846
+ "loss": 0.2453,
1847
+ "step": 258
1848
+ },
1849
+ {
1850
+ "epoch": 1.0360360360360361,
1851
+ "grad_norm": 0.11822405457496643,
1852
+ "learning_rate": 1.5374535738438105e-05,
1853
+ "loss": 0.2399,
1854
+ "step": 259
1855
+ },
1856
+ {
1857
+ "epoch": 1.04004004004004,
1858
+ "grad_norm": 0.13844071328639984,
1859
+ "learning_rate": 1.5337534696068088e-05,
1860
+ "loss": 0.2291,
1861
+ "step": 260
1862
+ },
1863
+ {
1864
+ "epoch": 1.044044044044044,
1865
+ "grad_norm": 0.12040767818689346,
1866
+ "learning_rate": 1.5300431182585777e-05,
1867
+ "loss": 0.2331,
1868
+ "step": 261
1869
+ },
1870
+ {
1871
+ "epoch": 1.048048048048048,
1872
+ "grad_norm": 0.1192127987742424,
1873
+ "learning_rate": 1.5263225910312222e-05,
1874
+ "loss": 0.2424,
1875
+ "step": 262
1876
+ },
1877
+ {
1878
+ "epoch": 1.052052052052052,
1879
+ "grad_norm": 0.14699995517730713,
1880
+ "learning_rate": 1.5225919593522049e-05,
1881
+ "loss": 0.2595,
1882
+ "step": 263
1883
+ },
1884
+ {
1885
+ "epoch": 1.0560560560560561,
1886
+ "grad_norm": 0.1524747908115387,
1887
+ "learning_rate": 1.5188512948429765e-05,
1888
+ "loss": 0.232,
1889
+ "step": 264
1890
+ },
1891
+ {
1892
+ "epoch": 1.06006006006006,
1893
+ "grad_norm": 0.12861889600753784,
1894
+ "learning_rate": 1.5151006693176005e-05,
1895
+ "loss": 0.245,
1896
+ "step": 265
1897
+ },
1898
+ {
1899
+ "epoch": 1.064064064064064,
1900
+ "grad_norm": 0.15535978972911835,
1901
+ "learning_rate": 1.5113401547813732e-05,
1902
+ "loss": 0.2277,
1903
+ "step": 266
1904
+ },
1905
+ {
1906
+ "epoch": 1.068068068068068,
1907
+ "grad_norm": 0.1480809897184372,
1908
+ "learning_rate": 1.5075698234294424e-05,
1909
+ "loss": 0.2265,
1910
+ "step": 267
1911
+ },
1912
+ {
1913
+ "epoch": 1.072072072072072,
1914
+ "grad_norm": 0.1344352513551712,
1915
+ "learning_rate": 1.5037897476454219e-05,
1916
+ "loss": 0.2397,
1917
+ "step": 268
1918
+ },
1919
+ {
1920
+ "epoch": 1.0760760760760761,
1921
+ "grad_norm": 0.1348842978477478,
1922
+ "learning_rate": 1.5000000000000002e-05,
1923
+ "loss": 0.2443,
1924
+ "step": 269
1925
+ },
1926
+ {
1927
+ "epoch": 1.08008008008008,
1928
+ "grad_norm": 0.1489027589559555,
1929
+ "learning_rate": 1.496200653249549e-05,
1930
+ "loss": 0.2358,
1931
+ "step": 270
1932
+ },
1933
+ {
1934
+ "epoch": 1.0840840840840842,
1935
+ "grad_norm": 0.1447959840297699,
1936
+ "learning_rate": 1.492391780334725e-05,
1937
+ "loss": 0.2416,
1938
+ "step": 271
1939
+ },
1940
+ {
1941
+ "epoch": 1.088088088088088,
1942
+ "grad_norm": 0.13745814561843872,
1943
+ "learning_rate": 1.4885734543790707e-05,
1944
+ "loss": 0.2494,
1945
+ "step": 272
1946
+ },
1947
+ {
1948
+ "epoch": 1.092092092092092,
1949
+ "grad_norm": 0.14297857880592346,
1950
+ "learning_rate": 1.4847457486876097e-05,
1951
+ "loss": 0.2383,
1952
+ "step": 273
1953
+ },
1954
+ {
1955
+ "epoch": 1.0960960960960962,
1956
+ "grad_norm": 0.14657525718212128,
1957
+ "learning_rate": 1.4809087367454402e-05,
1958
+ "loss": 0.2339,
1959
+ "step": 274
1960
+ },
1961
+ {
1962
+ "epoch": 1.1001001001001,
1963
+ "grad_norm": 0.13032834231853485,
1964
+ "learning_rate": 1.4770624922163233e-05,
1965
+ "loss": 0.2337,
1966
+ "step": 275
1967
+ },
1968
+ {
1969
+ "epoch": 1.1041041041041042,
1970
+ "grad_norm": 0.12887558341026306,
1971
+ "learning_rate": 1.4732070889412693e-05,
1972
+ "loss": 0.2461,
1973
+ "step": 276
1974
+ },
1975
+ {
1976
+ "epoch": 1.1081081081081081,
1977
+ "grad_norm": 0.1498020589351654,
1978
+ "learning_rate": 1.4693426009371203e-05,
1979
+ "loss": 0.2622,
1980
+ "step": 277
1981
+ },
1982
+ {
1983
+ "epoch": 1.112112112112112,
1984
+ "grad_norm": 0.13239090144634247,
1985
+ "learning_rate": 1.4654691023951289e-05,
1986
+ "loss": 0.2422,
1987
+ "step": 278
1988
+ },
1989
+ {
1990
+ "epoch": 1.1161161161161162,
1991
+ "grad_norm": 0.14478150010108948,
1992
+ "learning_rate": 1.4615866676795334e-05,
1993
+ "loss": 0.233,
1994
+ "step": 279
1995
+ },
1996
+ {
1997
+ "epoch": 1.12012012012012,
1998
+ "grad_norm": 0.12946031987667084,
1999
+ "learning_rate": 1.4576953713261313e-05,
2000
+ "loss": 0.235,
2001
+ "step": 280
2002
+ },
2003
+ {
2004
+ "epoch": 1.1241241241241242,
2005
+ "grad_norm": 0.1348564624786377,
2006
+ "learning_rate": 1.4537952880408472e-05,
2007
+ "loss": 0.2386,
2008
+ "step": 281
2009
+ },
2010
+ {
2011
+ "epoch": 1.1281281281281281,
2012
+ "grad_norm": 0.13074958324432373,
2013
+ "learning_rate": 1.4498864926982996e-05,
2014
+ "loss": 0.234,
2015
+ "step": 282
2016
+ },
2017
+ {
2018
+ "epoch": 1.132132132132132,
2019
+ "grad_norm": 0.130098357796669,
2020
+ "learning_rate": 1.4459690603403623e-05,
2021
+ "loss": 0.2329,
2022
+ "step": 283
2023
+ },
2024
+ {
2025
+ "epoch": 1.1361361361361362,
2026
+ "grad_norm": 0.1510149985551834,
2027
+ "learning_rate": 1.4420430661747245e-05,
2028
+ "loss": 0.2507,
2029
+ "step": 284
2030
+ },
2031
+ {
2032
+ "epoch": 1.14014014014014,
2033
+ "grad_norm": 0.12636184692382812,
2034
+ "learning_rate": 1.4381085855734468e-05,
2035
+ "loss": 0.2305,
2036
+ "step": 285
2037
+ },
2038
+ {
2039
+ "epoch": 1.1441441441441442,
2040
+ "grad_norm": 0.14648716151714325,
2041
+ "learning_rate": 1.4341656940715147e-05,
2042
+ "loss": 0.2263,
2043
+ "step": 286
2044
+ },
2045
+ {
2046
+ "epoch": 1.1481481481481481,
2047
+ "grad_norm": 0.12833812832832336,
2048
+ "learning_rate": 1.4302144673653875e-05,
2049
+ "loss": 0.201,
2050
+ "step": 287
2051
+ },
2052
+ {
2053
+ "epoch": 1.1521521521521523,
2054
+ "grad_norm": 0.14879822731018066,
2055
+ "learning_rate": 1.426254981311545e-05,
2056
+ "loss": 0.2452,
2057
+ "step": 288
2058
+ },
2059
+ {
2060
+ "epoch": 1.1561561561561562,
2061
+ "grad_norm": 0.1363959014415741,
2062
+ "learning_rate": 1.4222873119250325e-05,
2063
+ "loss": 0.2366,
2064
+ "step": 289
2065
+ },
2066
+ {
2067
+ "epoch": 1.16016016016016,
2068
+ "grad_norm": 0.12407127767801285,
2069
+ "learning_rate": 1.4183115353780001e-05,
2070
+ "loss": 0.2276,
2071
+ "step": 290
2072
+ },
2073
+ {
2074
+ "epoch": 1.1641641641641642,
2075
+ "grad_norm": 0.1341707408428192,
2076
+ "learning_rate": 1.4143277279982415e-05,
2077
+ "loss": 0.2202,
2078
+ "step": 291
2079
+ },
2080
+ {
2081
+ "epoch": 1.1681681681681682,
2082
+ "grad_norm": 0.13136214017868042,
2083
+ "learning_rate": 1.4103359662677276e-05,
2084
+ "loss": 0.2365,
2085
+ "step": 292
2086
+ },
2087
+ {
2088
+ "epoch": 1.1721721721721723,
2089
+ "grad_norm": 0.13455568253993988,
2090
+ "learning_rate": 1.406336326821138e-05,
2091
+ "loss": 0.2329,
2092
+ "step": 293
2093
+ },
2094
+ {
2095
+ "epoch": 1.1761761761761762,
2096
+ "grad_norm": 0.130329892039299,
2097
+ "learning_rate": 1.4023288864443915e-05,
2098
+ "loss": 0.2182,
2099
+ "step": 294
2100
+ },
2101
+ {
2102
+ "epoch": 1.1801801801801801,
2103
+ "grad_norm": 0.1454066038131714,
2104
+ "learning_rate": 1.3983137220731702e-05,
2105
+ "loss": 0.232,
2106
+ "step": 295
2107
+ },
2108
+ {
2109
+ "epoch": 1.1841841841841843,
2110
+ "grad_norm": 0.12771300971508026,
2111
+ "learning_rate": 1.3942909107914431e-05,
2112
+ "loss": 0.2459,
2113
+ "step": 296
2114
+ },
2115
+ {
2116
+ "epoch": 1.1881881881881882,
2117
+ "grad_norm": 0.1486714780330658,
2118
+ "learning_rate": 1.390260529829986e-05,
2119
+ "loss": 0.2382,
2120
+ "step": 297
2121
+ },
2122
+ {
2123
+ "epoch": 1.1921921921921923,
2124
+ "grad_norm": 0.12321332842111588,
2125
+ "learning_rate": 1.3862226565648996e-05,
2126
+ "loss": 0.2226,
2127
+ "step": 298
2128
+ },
2129
+ {
2130
+ "epoch": 1.1961961961961962,
2131
+ "grad_norm": 0.11899197101593018,
2132
+ "learning_rate": 1.3821773685161224e-05,
2133
+ "loss": 0.2292,
2134
+ "step": 299
2135
+ },
2136
+ {
2137
+ "epoch": 1.2002002002002001,
2138
+ "grad_norm": 0.13106873631477356,
2139
+ "learning_rate": 1.3781247433459447e-05,
2140
+ "loss": 0.2115,
2141
+ "step": 300
2142
+ },
2143
+ {
2144
+ "epoch": 1.2042042042042043,
2145
+ "grad_norm": 0.1518913358449936,
2146
+ "learning_rate": 1.3740648588575156e-05,
2147
+ "loss": 0.2346,
2148
+ "step": 301
2149
+ },
2150
+ {
2151
+ "epoch": 1.2082082082082082,
2152
+ "grad_norm": 0.13578097522258759,
2153
+ "learning_rate": 1.3699977929933503e-05,
2154
+ "loss": 0.2208,
2155
+ "step": 302
2156
+ },
2157
+ {
2158
+ "epoch": 1.2122122122122123,
2159
+ "grad_norm": 0.13382072746753693,
2160
+ "learning_rate": 1.3659236238338339e-05,
2161
+ "loss": 0.229,
2162
+ "step": 303
2163
+ },
2164
+ {
2165
+ "epoch": 1.2162162162162162,
2166
+ "grad_norm": 0.14184784889221191,
2167
+ "learning_rate": 1.361842429595721e-05,
2168
+ "loss": 0.2418,
2169
+ "step": 304
2170
+ },
2171
+ {
2172
+ "epoch": 1.2202202202202201,
2173
+ "grad_norm": 0.13084499537944794,
2174
+ "learning_rate": 1.3577542886306367e-05,
2175
+ "loss": 0.2323,
2176
+ "step": 305
2177
+ },
2178
+ {
2179
+ "epoch": 1.2242242242242243,
2180
+ "grad_norm": 0.13019020855426788,
2181
+ "learning_rate": 1.3536592794235696e-05,
2182
+ "loss": 0.2155,
2183
+ "step": 306
2184
+ },
2185
+ {
2186
+ "epoch": 1.2282282282282282,
2187
+ "grad_norm": 0.14093178510665894,
2188
+ "learning_rate": 1.3495574805913669e-05,
2189
+ "loss": 0.236,
2190
+ "step": 307
2191
+ },
2192
+ {
2193
+ "epoch": 1.2322322322322323,
2194
+ "grad_norm": 0.13968797028064728,
2195
+ "learning_rate": 1.3454489708812237e-05,
2196
+ "loss": 0.2192,
2197
+ "step": 308
2198
+ },
2199
+ {
2200
+ "epoch": 1.2362362362362362,
2201
+ "grad_norm": 0.13795237243175507,
2202
+ "learning_rate": 1.3413338291691726e-05,
2203
+ "loss": 0.2236,
2204
+ "step": 309
2205
+ },
2206
+ {
2207
+ "epoch": 1.2402402402402402,
2208
+ "grad_norm": 0.16295593976974487,
2209
+ "learning_rate": 1.3372121344585694e-05,
2210
+ "loss": 0.2429,
2211
+ "step": 310
2212
+ },
2213
+ {
2214
+ "epoch": 1.2442442442442443,
2215
+ "grad_norm": 0.1423620730638504,
2216
+ "learning_rate": 1.3330839658785739e-05,
2217
+ "loss": 0.2411,
2218
+ "step": 311
2219
+ },
2220
+ {
2221
+ "epoch": 1.2482482482482482,
2222
+ "grad_norm": 0.1591283529996872,
2223
+ "learning_rate": 1.3289494026826337e-05,
2224
+ "loss": 0.2446,
2225
+ "step": 312
2226
+ },
2227
+ {
2228
+ "epoch": 1.2522522522522523,
2229
+ "grad_norm": 0.136406809091568,
2230
+ "learning_rate": 1.3248085242469629e-05,
2231
+ "loss": 0.223,
2232
+ "step": 313
2233
+ },
2234
+ {
2235
+ "epoch": 1.2562562562562563,
2236
+ "grad_norm": 0.12121517956256866,
2237
+ "learning_rate": 1.3206614100690139e-05,
2238
+ "loss": 0.2238,
2239
+ "step": 314
2240
+ },
2241
+ {
2242
+ "epoch": 1.2602602602602602,
2243
+ "grad_norm": 0.12819747626781464,
2244
+ "learning_rate": 1.3165081397659563e-05,
2245
+ "loss": 0.2352,
2246
+ "step": 315
2247
+ },
2248
+ {
2249
+ "epoch": 1.2642642642642643,
2250
+ "grad_norm": 0.12027258425951004,
2251
+ "learning_rate": 1.3123487930731464e-05,
2252
+ "loss": 0.2181,
2253
+ "step": 316
2254
+ },
2255
+ {
2256
+ "epoch": 1.2682682682682682,
2257
+ "grad_norm": 0.1466352492570877,
2258
+ "learning_rate": 1.3081834498425952e-05,
2259
+ "loss": 0.2352,
2260
+ "step": 317
2261
+ },
2262
+ {
2263
+ "epoch": 1.2722722722722724,
2264
+ "grad_norm": 0.12040114402770996,
2265
+ "learning_rate": 1.3040121900414371e-05,
2266
+ "loss": 0.2104,
2267
+ "step": 318
2268
+ },
2269
+ {
2270
+ "epoch": 1.2762762762762763,
2271
+ "grad_norm": 0.12626713514328003,
2272
+ "learning_rate": 1.2998350937503939e-05,
2273
+ "loss": 0.231,
2274
+ "step": 319
2275
+ },
2276
+ {
2277
+ "epoch": 1.2802802802802802,
2278
+ "grad_norm": 0.13121092319488525,
2279
+ "learning_rate": 1.2956522411622377e-05,
2280
+ "loss": 0.2376,
2281
+ "step": 320
2282
+ },
2283
+ {
2284
+ "epoch": 1.2842842842842843,
2285
+ "grad_norm": 0.13681887090206146,
2286
+ "learning_rate": 1.2914637125802514e-05,
2287
+ "loss": 0.2219,
2288
+ "step": 321
2289
+ },
2290
+ {
2291
+ "epoch": 1.2882882882882882,
2292
+ "grad_norm": 0.15647488832473755,
2293
+ "learning_rate": 1.287269588416686e-05,
2294
+ "loss": 0.2372,
2295
+ "step": 322
2296
+ },
2297
+ {
2298
+ "epoch": 1.2922922922922924,
2299
+ "grad_norm": 0.14653246104717255,
2300
+ "learning_rate": 1.2830699491912186e-05,
2301
+ "loss": 0.2245,
2302
+ "step": 323
2303
+ },
2304
+ {
2305
+ "epoch": 1.2962962962962963,
2306
+ "grad_norm": 0.12728944420814514,
2307
+ "learning_rate": 1.2788648755294056e-05,
2308
+ "loss": 0.2186,
2309
+ "step": 324
2310
+ },
2311
+ {
2312
+ "epoch": 1.3003003003003002,
2313
+ "grad_norm": 0.13707587122917175,
2314
+ "learning_rate": 1.2746544481611336e-05,
2315
+ "loss": 0.2236,
2316
+ "step": 325
2317
+ },
2318
+ {
2319
+ "epoch": 1.3043043043043043,
2320
+ "grad_norm": 0.1246773898601532,
2321
+ "learning_rate": 1.270438747919072e-05,
2322
+ "loss": 0.2195,
2323
+ "step": 326
2324
+ },
2325
+ {
2326
+ "epoch": 1.3083083083083082,
2327
+ "grad_norm": 0.13304340839385986,
2328
+ "learning_rate": 1.2662178557371198e-05,
2329
+ "loss": 0.2395,
2330
+ "step": 327
2331
+ },
2332
+ {
2333
+ "epoch": 1.3123123123123124,
2334
+ "grad_norm": 0.15779724717140198,
2335
+ "learning_rate": 1.261991852648852e-05,
2336
+ "loss": 0.2435,
2337
+ "step": 328
2338
+ },
2339
+ {
2340
+ "epoch": 1.3163163163163163,
2341
+ "grad_norm": 0.13654161989688873,
2342
+ "learning_rate": 1.2577608197859627e-05,
2343
+ "loss": 0.2316,
2344
+ "step": 329
2345
+ },
2346
+ {
2347
+ "epoch": 1.3203203203203202,
2348
+ "grad_norm": 0.15000677108764648,
2349
+ "learning_rate": 1.2535248383767102e-05,
2350
+ "loss": 0.2292,
2351
+ "step": 330
2352
+ },
2353
+ {
2354
+ "epoch": 1.3243243243243243,
2355
+ "grad_norm": 0.14126931130886078,
2356
+ "learning_rate": 1.2492839897443554e-05,
2357
+ "loss": 0.2364,
2358
+ "step": 331
2359
+ },
2360
+ {
2361
+ "epoch": 1.3283283283283283,
2362
+ "grad_norm": 0.1323651373386383,
2363
+ "learning_rate": 1.2450383553056011e-05,
2364
+ "loss": 0.2369,
2365
+ "step": 332
2366
+ },
2367
+ {
2368
+ "epoch": 1.3283283283283283,
2369
+ "eval_loss": 0.31280121207237244,
2370
+ "eval_runtime": 6.244,
2371
+ "eval_samples_per_second": 12.972,
2372
+ "eval_steps_per_second": 1.762,
2373
+ "step": 332
2374
+ },
2375
+ {
2376
+ "epoch": 1.3323323323323324,
2377
+ "grad_norm": 0.13480286300182343,
2378
+ "learning_rate": 1.2407880165690289e-05,
2379
+ "loss": 0.2203,
2380
+ "step": 333
2381
+ },
2382
+ {
2383
+ "epoch": 1.3363363363363363,
2384
+ "grad_norm": 0.13146036863327026,
2385
+ "learning_rate": 1.2365330551335348e-05,
2386
+ "loss": 0.2261,
2387
+ "step": 334
2388
+ },
2389
+ {
2390
+ "epoch": 1.3403403403403402,
2391
+ "grad_norm": 0.1318022459745407,
2392
+ "learning_rate": 1.2322735526867624e-05,
2393
+ "loss": 0.2328,
2394
+ "step": 335
2395
+ },
2396
+ {
2397
+ "epoch": 1.3443443443443444,
2398
+ "grad_norm": 0.11951415240764618,
2399
+ "learning_rate": 1.2280095910035343e-05,
2400
+ "loss": 0.2183,
2401
+ "step": 336
2402
+ },
2403
+ {
2404
+ "epoch": 1.3483483483483483,
2405
+ "grad_norm": 0.13236179947853088,
2406
+ "learning_rate": 1.2237412519442828e-05,
2407
+ "loss": 0.2292,
2408
+ "step": 337
2409
+ },
2410
+ {
2411
+ "epoch": 1.3523523523523524,
2412
+ "grad_norm": 0.16215181350708008,
2413
+ "learning_rate": 1.2194686174534771e-05,
2414
+ "loss": 0.2459,
2415
+ "step": 338
2416
+ },
2417
+ {
2418
+ "epoch": 1.3563563563563563,
2419
+ "grad_norm": 0.1451573669910431,
2420
+ "learning_rate": 1.2151917695580523e-05,
2421
+ "loss": 0.2276,
2422
+ "step": 339
2423
+ },
2424
+ {
2425
+ "epoch": 1.3603603603603602,
2426
+ "grad_norm": 0.14320491254329681,
2427
+ "learning_rate": 1.2109107903658326e-05,
2428
+ "loss": 0.2364,
2429
+ "step": 340
2430
+ },
2431
+ {
2432
+ "epoch": 1.3643643643643644,
2433
+ "grad_norm": 0.13618679344654083,
2434
+ "learning_rate": 1.2066257620639557e-05,
2435
+ "loss": 0.2227,
2436
+ "step": 341
2437
+ },
2438
+ {
2439
+ "epoch": 1.3683683683683685,
2440
+ "grad_norm": 0.1250023990869522,
2441
+ "learning_rate": 1.2023367669172947e-05,
2442
+ "loss": 0.2303,
2443
+ "step": 342
2444
+ },
2445
+ {
2446
+ "epoch": 1.3723723723723724,
2447
+ "grad_norm": 0.14609824120998383,
2448
+ "learning_rate": 1.1980438872668803e-05,
2449
+ "loss": 0.2223,
2450
+ "step": 343
2451
+ },
2452
+ {
2453
+ "epoch": 1.3763763763763763,
2454
+ "grad_norm": 0.15771915018558502,
2455
+ "learning_rate": 1.1937472055283168e-05,
2456
+ "loss": 0.2295,
2457
+ "step": 344
2458
+ },
2459
+ {
2460
+ "epoch": 1.3803803803803802,
2461
+ "grad_norm": 0.1346847116947174,
2462
+ "learning_rate": 1.189446804190203e-05,
2463
+ "loss": 0.2275,
2464
+ "step": 345
2465
+ },
2466
+ {
2467
+ "epoch": 1.3843843843843844,
2468
+ "grad_norm": 0.1324576437473297,
2469
+ "learning_rate": 1.1851427658125474e-05,
2470
+ "loss": 0.2387,
2471
+ "step": 346
2472
+ },
2473
+ {
2474
+ "epoch": 1.3883883883883885,
2475
+ "grad_norm": 0.11786400526762009,
2476
+ "learning_rate": 1.180835173025183e-05,
2477
+ "loss": 0.2151,
2478
+ "step": 347
2479
+ },
2480
+ {
2481
+ "epoch": 1.3923923923923924,
2482
+ "grad_norm": 0.12627920508384705,
2483
+ "learning_rate": 1.1765241085261802e-05,
2484
+ "loss": 0.2249,
2485
+ "step": 348
2486
+ },
2487
+ {
2488
+ "epoch": 1.3963963963963963,
2489
+ "grad_norm": 0.15186864137649536,
2490
+ "learning_rate": 1.172209655080262e-05,
2491
+ "loss": 0.2319,
2492
+ "step": 349
2493
+ },
2494
+ {
2495
+ "epoch": 1.4004004004004005,
2496
+ "grad_norm": 0.17141692340373993,
2497
+ "learning_rate": 1.1678918955172112e-05,
2498
+ "loss": 0.2421,
2499
+ "step": 350
2500
+ },
2501
+ {
2502
+ "epoch": 1.4044044044044044,
2503
+ "grad_norm": 0.13851796090602875,
2504
+ "learning_rate": 1.163570912730283e-05,
2505
+ "loss": 0.2168,
2506
+ "step": 351
2507
+ },
2508
+ {
2509
+ "epoch": 1.4084084084084085,
2510
+ "grad_norm": 0.12362354248762131,
2511
+ "learning_rate": 1.1592467896746122e-05,
2512
+ "loss": 0.2173,
2513
+ "step": 352
2514
+ },
2515
+ {
2516
+ "epoch": 1.4124124124124124,
2517
+ "grad_norm": 0.12605208158493042,
2518
+ "learning_rate": 1.1549196093656223e-05,
2519
+ "loss": 0.2299,
2520
+ "step": 353
2521
+ },
2522
+ {
2523
+ "epoch": 1.4164164164164164,
2524
+ "grad_norm": 0.13899150490760803,
2525
+ "learning_rate": 1.1505894548774294e-05,
2526
+ "loss": 0.2214,
2527
+ "step": 354
2528
+ },
2529
+ {
2530
+ "epoch": 1.4204204204204205,
2531
+ "grad_norm": 0.13161474466323853,
2532
+ "learning_rate": 1.1462564093412493e-05,
2533
+ "loss": 0.2322,
2534
+ "step": 355
2535
+ },
2536
+ {
2537
+ "epoch": 1.4244244244244244,
2538
+ "grad_norm": 0.13784383237361908,
2539
+ "learning_rate": 1.1419205559437998e-05,
2540
+ "loss": 0.2399,
2541
+ "step": 356
2542
+ },
2543
+ {
2544
+ "epoch": 1.4284284284284285,
2545
+ "grad_norm": 0.13900108635425568,
2546
+ "learning_rate": 1.1375819779257058e-05,
2547
+ "loss": 0.2332,
2548
+ "step": 357
2549
+ },
2550
+ {
2551
+ "epoch": 1.4324324324324325,
2552
+ "grad_norm": 0.13527807593345642,
2553
+ "learning_rate": 1.1332407585798992e-05,
2554
+ "loss": 0.2294,
2555
+ "step": 358
2556
+ },
2557
+ {
2558
+ "epoch": 1.4364364364364364,
2559
+ "grad_norm": 0.11528453975915909,
2560
+ "learning_rate": 1.1288969812500209e-05,
2561
+ "loss": 0.2131,
2562
+ "step": 359
2563
+ },
2564
+ {
2565
+ "epoch": 1.4404404404404405,
2566
+ "grad_norm": 0.15680839121341705,
2567
+ "learning_rate": 1.1245507293288204e-05,
2568
+ "loss": 0.2296,
2569
+ "step": 360
2570
+ },
2571
+ {
2572
+ "epoch": 1.4444444444444444,
2573
+ "grad_norm": 0.13539738953113556,
2574
+ "learning_rate": 1.1202020862565555e-05,
2575
+ "loss": 0.2326,
2576
+ "step": 361
2577
+ },
2578
+ {
2579
+ "epoch": 1.4484484484484486,
2580
+ "grad_norm": 0.14512887597084045,
2581
+ "learning_rate": 1.1158511355193888e-05,
2582
+ "loss": 0.2254,
2583
+ "step": 362
2584
+ },
2585
+ {
2586
+ "epoch": 1.4524524524524525,
2587
+ "grad_norm": 0.15710808336734772,
2588
+ "learning_rate": 1.1114979606477867e-05,
2589
+ "loss": 0.2395,
2590
+ "step": 363
2591
+ },
2592
+ {
2593
+ "epoch": 1.4564564564564564,
2594
+ "grad_norm": 0.1274499148130417,
2595
+ "learning_rate": 1.1071426452149152e-05,
2596
+ "loss": 0.2203,
2597
+ "step": 364
2598
+ },
2599
+ {
2600
+ "epoch": 1.4604604604604605,
2601
+ "grad_norm": 0.1460108906030655,
2602
+ "learning_rate": 1.1027852728350343e-05,
2603
+ "loss": 0.2477,
2604
+ "step": 365
2605
+ },
2606
+ {
2607
+ "epoch": 1.4644644644644644,
2608
+ "grad_norm": 0.1274898201227188,
2609
+ "learning_rate": 1.0984259271618947e-05,
2610
+ "loss": 0.218,
2611
+ "step": 366
2612
+ },
2613
+ {
2614
+ "epoch": 1.4684684684684686,
2615
+ "grad_norm": 0.14969086647033691,
2616
+ "learning_rate": 1.09406469188713e-05,
2617
+ "loss": 0.2307,
2618
+ "step": 367
2619
+ },
2620
+ {
2621
+ "epoch": 1.4724724724724725,
2622
+ "grad_norm": 0.1416291445493698,
2623
+ "learning_rate": 1.0897016507386513e-05,
2624
+ "loss": 0.2208,
2625
+ "step": 368
2626
+ },
2627
+ {
2628
+ "epoch": 1.4764764764764764,
2629
+ "grad_norm": 0.11650918424129486,
2630
+ "learning_rate": 1.0853368874790392e-05,
2631
+ "loss": 0.228,
2632
+ "step": 369
2633
+ },
2634
+ {
2635
+ "epoch": 1.4804804804804805,
2636
+ "grad_norm": 0.14399082958698273,
2637
+ "learning_rate": 1.0809704859039357e-05,
2638
+ "loss": 0.2297,
2639
+ "step": 370
2640
+ },
2641
+ {
2642
+ "epoch": 1.4844844844844844,
2643
+ "grad_norm": 0.1333630383014679,
2644
+ "learning_rate": 1.0766025298404346e-05,
2645
+ "loss": 0.2391,
2646
+ "step": 371
2647
+ },
2648
+ {
2649
+ "epoch": 1.4884884884884886,
2650
+ "grad_norm": 0.1538272351026535,
2651
+ "learning_rate": 1.0722331031454749e-05,
2652
+ "loss": 0.228,
2653
+ "step": 372
2654
+ },
2655
+ {
2656
+ "epoch": 1.4924924924924925,
2657
+ "grad_norm": 0.14864470064640045,
2658
+ "learning_rate": 1.0678622897042279e-05,
2659
+ "loss": 0.2307,
2660
+ "step": 373
2661
+ },
2662
+ {
2663
+ "epoch": 1.4964964964964964,
2664
+ "grad_norm": 0.14386948943138123,
2665
+ "learning_rate": 1.063490173428488e-05,
2666
+ "loss": 0.2491,
2667
+ "step": 374
2668
+ },
2669
+ {
2670
+ "epoch": 1.5005005005005005,
2671
+ "grad_norm": 0.13960744440555573,
2672
+ "learning_rate": 1.0591168382550617e-05,
2673
+ "loss": 0.2443,
2674
+ "step": 375
2675
+ },
2676
+ {
2677
+ "epoch": 1.5045045045045045,
2678
+ "grad_norm": 0.12918636202812195,
2679
+ "learning_rate": 1.0547423681441567e-05,
2680
+ "loss": 0.237,
2681
+ "step": 376
2682
+ },
2683
+ {
2684
+ "epoch": 1.5085085085085086,
2685
+ "grad_norm": 0.13551214337348938,
2686
+ "learning_rate": 1.050366847077769e-05,
2687
+ "loss": 0.2185,
2688
+ "step": 377
2689
+ },
2690
+ {
2691
+ "epoch": 1.5125125125125125,
2692
+ "grad_norm": 0.14278538525104523,
2693
+ "learning_rate": 1.0459903590580706e-05,
2694
+ "loss": 0.2287,
2695
+ "step": 378
2696
+ },
2697
+ {
2698
+ "epoch": 1.5165165165165164,
2699
+ "grad_norm": 0.1472548395395279,
2700
+ "learning_rate": 1.0416129881057987e-05,
2701
+ "loss": 0.2315,
2702
+ "step": 379
2703
+ },
2704
+ {
2705
+ "epoch": 1.5205205205205206,
2706
+ "grad_norm": 0.13086426258087158,
2707
+ "learning_rate": 1.03723481825864e-05,
2708
+ "loss": 0.2176,
2709
+ "step": 380
2710
+ },
2711
+ {
2712
+ "epoch": 1.5245245245245245,
2713
+ "grad_norm": 0.1289745569229126,
2714
+ "learning_rate": 1.0328559335696188e-05,
2715
+ "loss": 0.2279,
2716
+ "step": 381
2717
+ },
2718
+ {
2719
+ "epoch": 1.5285285285285286,
2720
+ "grad_norm": 0.1345757395029068,
2721
+ "learning_rate": 1.028476418105483e-05,
2722
+ "loss": 0.2195,
2723
+ "step": 382
2724
+ },
2725
+ {
2726
+ "epoch": 1.5325325325325325,
2727
+ "grad_norm": 0.1544564962387085,
2728
+ "learning_rate": 1.0240963559450909e-05,
2729
+ "loss": 0.2431,
2730
+ "step": 383
2731
+ },
2732
+ {
2733
+ "epoch": 1.5365365365365364,
2734
+ "grad_norm": 0.13208632171154022,
2735
+ "learning_rate": 1.0197158311777957e-05,
2736
+ "loss": 0.2159,
2737
+ "step": 384
2738
+ },
2739
+ {
2740
+ "epoch": 1.5405405405405406,
2741
+ "grad_norm": 0.12936881184577942,
2742
+ "learning_rate": 1.015334927901832e-05,
2743
+ "loss": 0.2085,
2744
+ "step": 385
2745
+ },
2746
+ {
2747
+ "epoch": 1.5445445445445447,
2748
+ "grad_norm": 0.12098892778158188,
2749
+ "learning_rate": 1.0109537302227012e-05,
2750
+ "loss": 0.2299,
2751
+ "step": 386
2752
+ },
2753
+ {
2754
+ "epoch": 1.5485485485485486,
2755
+ "grad_norm": 0.1374930441379547,
2756
+ "learning_rate": 1.0065723222515566e-05,
2757
+ "loss": 0.223,
2758
+ "step": 387
2759
+ },
2760
+ {
2761
+ "epoch": 1.5525525525525525,
2762
+ "grad_norm": 0.14887316524982452,
2763
+ "learning_rate": 1.0021907881035891e-05,
2764
+ "loss": 0.2266,
2765
+ "step": 388
2766
+ },
2767
+ {
2768
+ "epoch": 1.5565565565565564,
2769
+ "grad_norm": 0.13595186173915863,
2770
+ "learning_rate": 9.97809211896411e-06,
2771
+ "loss": 0.2182,
2772
+ "step": 389
2773
+ },
2774
+ {
2775
+ "epoch": 1.5605605605605606,
2776
+ "grad_norm": 0.144562229514122,
2777
+ "learning_rate": 9.934276777484436e-06,
2778
+ "loss": 0.2271,
2779
+ "step": 390
2780
+ },
2781
+ {
2782
+ "epoch": 1.5645645645645647,
2783
+ "grad_norm": 0.13522008061408997,
2784
+ "learning_rate": 9.89046269777299e-06,
2785
+ "loss": 0.228,
2786
+ "step": 391
2787
+ },
2788
+ {
2789
+ "epoch": 1.5685685685685686,
2790
+ "grad_norm": 0.12187031656503677,
2791
+ "learning_rate": 9.846650720981682e-06,
2792
+ "loss": 0.2112,
2793
+ "step": 392
2794
+ },
2795
+ {
2796
+ "epoch": 1.5725725725725725,
2797
+ "grad_norm": 0.14943794906139374,
2798
+ "learning_rate": 9.802841688222043e-06,
2799
+ "loss": 0.2148,
2800
+ "step": 393
2801
+ },
2802
+ {
2803
+ "epoch": 1.5765765765765765,
2804
+ "grad_norm": 0.13538117706775665,
2805
+ "learning_rate": 9.759036440549093e-06,
2806
+ "loss": 0.2204,
2807
+ "step": 394
2808
+ },
2809
+ {
2810
+ "epoch": 1.5805805805805806,
2811
+ "grad_norm": 0.12736183404922485,
2812
+ "learning_rate": 9.715235818945171e-06,
2813
+ "loss": 0.2118,
2814
+ "step": 395
2815
+ },
2816
+ {
2817
+ "epoch": 1.5845845845845847,
2818
+ "grad_norm": 0.1528167724609375,
2819
+ "learning_rate": 9.671440664303813e-06,
2820
+ "loss": 0.235,
2821
+ "step": 396
2822
+ },
2823
+ {
2824
+ "epoch": 1.5885885885885886,
2825
+ "grad_norm": 0.12496887892484665,
2826
+ "learning_rate": 9.627651817413605e-06,
2827
+ "loss": 0.2222,
2828
+ "step": 397
2829
+ },
2830
+ {
2831
+ "epoch": 1.5925925925925926,
2832
+ "grad_norm": 0.11347772926092148,
2833
+ "learning_rate": 9.583870118942014e-06,
2834
+ "loss": 0.2125,
2835
+ "step": 398
2836
+ },
2837
+ {
2838
+ "epoch": 1.5965965965965965,
2839
+ "grad_norm": 0.12634208798408508,
2840
+ "learning_rate": 9.540096409419295e-06,
2841
+ "loss": 0.209,
2842
+ "step": 399
2843
+ },
2844
+ {
2845
+ "epoch": 1.6006006006006006,
2846
+ "grad_norm": 0.1373746246099472,
2847
+ "learning_rate": 9.496331529222313e-06,
2848
+ "loss": 0.2223,
2849
+ "step": 400
2850
+ },
2851
+ {
2852
+ "epoch": 1.6046046046046047,
2853
+ "grad_norm": 0.13776709139347076,
2854
+ "learning_rate": 9.452576318558437e-06,
2855
+ "loss": 0.212,
2856
+ "step": 401
2857
+ },
2858
+ {
2859
+ "epoch": 1.6086086086086087,
2860
+ "grad_norm": 0.13330040872097015,
2861
+ "learning_rate": 9.408831617449385e-06,
2862
+ "loss": 0.2319,
2863
+ "step": 402
2864
+ },
2865
+ {
2866
+ "epoch": 1.6126126126126126,
2867
+ "grad_norm": 0.1234062984585762,
2868
+ "learning_rate": 9.365098265715124e-06,
2869
+ "loss": 0.2195,
2870
+ "step": 403
2871
+ },
2872
+ {
2873
+ "epoch": 1.6166166166166165,
2874
+ "grad_norm": 0.13824118673801422,
2875
+ "learning_rate": 9.321377102957723e-06,
2876
+ "loss": 0.2119,
2877
+ "step": 404
2878
+ },
2879
+ {
2880
+ "epoch": 1.6206206206206206,
2881
+ "grad_norm": 0.13618600368499756,
2882
+ "learning_rate": 9.277668968545253e-06,
2883
+ "loss": 0.2179,
2884
+ "step": 405
2885
+ },
2886
+ {
2887
+ "epoch": 1.6246246246246248,
2888
+ "grad_norm": 0.15361671149730682,
2889
+ "learning_rate": 9.233974701595654e-06,
2890
+ "loss": 0.2162,
2891
+ "step": 406
2892
+ },
2893
+ {
2894
+ "epoch": 1.6286286286286287,
2895
+ "grad_norm": 0.15466053783893585,
2896
+ "learning_rate": 9.190295140960649e-06,
2897
+ "loss": 0.2199,
2898
+ "step": 407
2899
+ },
2900
+ {
2901
+ "epoch": 1.6326326326326326,
2902
+ "grad_norm": 0.1456158608198166,
2903
+ "learning_rate": 9.146631125209608e-06,
2904
+ "loss": 0.2192,
2905
+ "step": 408
2906
+ },
2907
+ {
2908
+ "epoch": 1.6366366366366365,
2909
+ "grad_norm": 0.1501886397600174,
2910
+ "learning_rate": 9.102983492613489e-06,
2911
+ "loss": 0.2269,
2912
+ "step": 409
2913
+ },
2914
+ {
2915
+ "epoch": 1.6406406406406406,
2916
+ "grad_norm": 0.13893765211105347,
2917
+ "learning_rate": 9.059353081128702e-06,
2918
+ "loss": 0.2322,
2919
+ "step": 410
2920
+ },
2921
+ {
2922
+ "epoch": 1.6446446446446448,
2923
+ "grad_norm": 0.15337541699409485,
2924
+ "learning_rate": 9.015740728381055e-06,
2925
+ "loss": 0.2262,
2926
+ "step": 411
2927
+ },
2928
+ {
2929
+ "epoch": 1.6486486486486487,
2930
+ "grad_norm": 0.13367938995361328,
2931
+ "learning_rate": 8.972147271649662e-06,
2932
+ "loss": 0.2095,
2933
+ "step": 412
2934
+ },
2935
+ {
2936
+ "epoch": 1.6526526526526526,
2937
+ "grad_norm": 0.1440502554178238,
2938
+ "learning_rate": 8.928573547850852e-06,
2939
+ "loss": 0.2287,
2940
+ "step": 413
2941
+ },
2942
+ {
2943
+ "epoch": 1.6566566566566565,
2944
+ "grad_norm": 0.1278400868177414,
2945
+ "learning_rate": 8.885020393522136e-06,
2946
+ "loss": 0.2233,
2947
+ "step": 414
2948
+ },
2949
+ {
2950
+ "epoch": 1.6606606606606606,
2951
+ "grad_norm": 0.15888282656669617,
2952
+ "learning_rate": 8.841488644806115e-06,
2953
+ "loss": 0.2436,
2954
+ "step": 415
2955
+ },
2956
+ {
2957
+ "epoch": 1.6606606606606606,
2958
+ "eval_loss": 0.30414843559265137,
2959
+ "eval_runtime": 6.1188,
2960
+ "eval_samples_per_second": 13.238,
2961
+ "eval_steps_per_second": 1.798,
2962
+ "step": 415
2963
+ },
2964
+ {
2965
+ "epoch": 1.6646646646646648,
2966
+ "grad_norm": 0.1494596004486084,
2967
+ "learning_rate": 8.797979137434452e-06,
2968
+ "loss": 0.2171,
2969
+ "step": 416
2970
+ },
2971
+ {
2972
+ "epoch": 1.6686686686686687,
2973
+ "grad_norm": 0.14288803935050964,
2974
+ "learning_rate": 8.754492706711798e-06,
2975
+ "loss": 0.218,
2976
+ "step": 417
2977
+ },
2978
+ {
2979
+ "epoch": 1.6726726726726726,
2980
+ "grad_norm": 0.14627306163311005,
2981
+ "learning_rate": 8.711030187499795e-06,
2982
+ "loss": 0.2196,
2983
+ "step": 418
2984
+ },
2985
+ {
2986
+ "epoch": 1.6766766766766765,
2987
+ "grad_norm": 0.15222109854221344,
2988
+ "learning_rate": 8.66759241420101e-06,
2989
+ "loss": 0.2323,
2990
+ "step": 419
2991
+ },
2992
+ {
2993
+ "epoch": 1.6806806806806807,
2994
+ "grad_norm": 0.1480226367712021,
2995
+ "learning_rate": 8.624180220742945e-06,
2996
+ "loss": 0.2168,
2997
+ "step": 420
2998
+ },
2999
+ {
3000
+ "epoch": 1.6846846846846848,
3001
+ "grad_norm": 0.14224019646644592,
3002
+ "learning_rate": 8.580794440562003e-06,
3003
+ "loss": 0.2228,
3004
+ "step": 421
3005
+ },
3006
+ {
3007
+ "epoch": 1.6886886886886887,
3008
+ "grad_norm": 0.13837142288684845,
3009
+ "learning_rate": 8.53743590658751e-06,
3010
+ "loss": 0.2175,
3011
+ "step": 422
3012
+ },
3013
+ {
3014
+ "epoch": 1.6926926926926926,
3015
+ "grad_norm": 0.1258038580417633,
3016
+ "learning_rate": 8.494105451225706e-06,
3017
+ "loss": 0.2078,
3018
+ "step": 423
3019
+ },
3020
+ {
3021
+ "epoch": 1.6966966966966965,
3022
+ "grad_norm": 0.1426319181919098,
3023
+ "learning_rate": 8.45080390634378e-06,
3024
+ "loss": 0.2228,
3025
+ "step": 424
3026
+ },
3027
+ {
3028
+ "epoch": 1.7007007007007007,
3029
+ "grad_norm": 0.14483590424060822,
3030
+ "learning_rate": 8.407532103253878e-06,
3031
+ "loss": 0.2249,
3032
+ "step": 425
3033
+ },
3034
+ {
3035
+ "epoch": 1.7047047047047048,
3036
+ "grad_norm": 0.1365538090467453,
3037
+ "learning_rate": 8.364290872697175e-06,
3038
+ "loss": 0.2241,
3039
+ "step": 426
3040
+ },
3041
+ {
3042
+ "epoch": 1.7087087087087087,
3043
+ "grad_norm": 0.15289802849292755,
3044
+ "learning_rate": 8.321081044827894e-06,
3045
+ "loss": 0.2182,
3046
+ "step": 427
3047
+ },
3048
+ {
3049
+ "epoch": 1.7127127127127126,
3050
+ "grad_norm": 0.13033711910247803,
3051
+ "learning_rate": 8.277903449197383e-06,
3052
+ "loss": 0.216,
3053
+ "step": 428
3054
+ },
3055
+ {
3056
+ "epoch": 1.7167167167167166,
3057
+ "grad_norm": 0.13258293271064758,
3058
+ "learning_rate": 8.2347589147382e-06,
3059
+ "loss": 0.1956,
3060
+ "step": 429
3061
+ },
3062
+ {
3063
+ "epoch": 1.7207207207207207,
3064
+ "grad_norm": 0.13521750271320343,
3065
+ "learning_rate": 8.191648269748173e-06,
3066
+ "loss": 0.2258,
3067
+ "step": 430
3068
+ },
3069
+ {
3070
+ "epoch": 1.7247247247247248,
3071
+ "grad_norm": 0.15456490218639374,
3072
+ "learning_rate": 8.14857234187453e-06,
3073
+ "loss": 0.2256,
3074
+ "step": 431
3075
+ },
3076
+ {
3077
+ "epoch": 1.7287287287287287,
3078
+ "grad_norm": 0.13333886861801147,
3079
+ "learning_rate": 8.105531958097973e-06,
3080
+ "loss": 0.2209,
3081
+ "step": 432
3082
+ },
3083
+ {
3084
+ "epoch": 1.7327327327327327,
3085
+ "grad_norm": 0.1298181712627411,
3086
+ "learning_rate": 8.062527944716837e-06,
3087
+ "loss": 0.2106,
3088
+ "step": 433
3089
+ },
3090
+ {
3091
+ "epoch": 1.7367367367367368,
3092
+ "grad_norm": 0.13067086040973663,
3093
+ "learning_rate": 8.019561127331202e-06,
3094
+ "loss": 0.224,
3095
+ "step": 434
3096
+ },
3097
+ {
3098
+ "epoch": 1.7407407407407407,
3099
+ "grad_norm": 0.13905219733715057,
3100
+ "learning_rate": 7.976632330827056e-06,
3101
+ "loss": 0.2206,
3102
+ "step": 435
3103
+ },
3104
+ {
3105
+ "epoch": 1.7447447447447448,
3106
+ "grad_norm": 0.13740921020507812,
3107
+ "learning_rate": 7.933742379360446e-06,
3108
+ "loss": 0.217,
3109
+ "step": 436
3110
+ },
3111
+ {
3112
+ "epoch": 1.7487487487487487,
3113
+ "grad_norm": 0.12991660833358765,
3114
+ "learning_rate": 7.890892096341677e-06,
3115
+ "loss": 0.2173,
3116
+ "step": 437
3117
+ },
3118
+ {
3119
+ "epoch": 1.7527527527527527,
3120
+ "grad_norm": 0.13946564495563507,
3121
+ "learning_rate": 7.848082304419478e-06,
3122
+ "loss": 0.2293,
3123
+ "step": 438
3124
+ },
3125
+ {
3126
+ "epoch": 1.7567567567567568,
3127
+ "grad_norm": 0.12789933383464813,
3128
+ "learning_rate": 7.805313825465232e-06,
3129
+ "loss": 0.2116,
3130
+ "step": 439
3131
+ },
3132
+ {
3133
+ "epoch": 1.7607607607607607,
3134
+ "grad_norm": 0.14676792919635773,
3135
+ "learning_rate": 7.762587480557175e-06,
3136
+ "loss": 0.2293,
3137
+ "step": 440
3138
+ },
3139
+ {
3140
+ "epoch": 1.7647647647647648,
3141
+ "grad_norm": 0.14003834128379822,
3142
+ "learning_rate": 7.719904089964658e-06,
3143
+ "loss": 0.2137,
3144
+ "step": 441
3145
+ },
3146
+ {
3147
+ "epoch": 1.7687687687687688,
3148
+ "grad_norm": 0.14215737581253052,
3149
+ "learning_rate": 7.67726447313238e-06,
3150
+ "loss": 0.2221,
3151
+ "step": 442
3152
+ },
3153
+ {
3154
+ "epoch": 1.7727727727727727,
3155
+ "grad_norm": 0.12992604076862335,
3156
+ "learning_rate": 7.634669448664655e-06,
3157
+ "loss": 0.2006,
3158
+ "step": 443
3159
+ },
3160
+ {
3161
+ "epoch": 1.7767767767767768,
3162
+ "grad_norm": 0.13772279024124146,
3163
+ "learning_rate": 7.5921198343097145e-06,
3164
+ "loss": 0.2266,
3165
+ "step": 444
3166
+ },
3167
+ {
3168
+ "epoch": 1.7807807807807807,
3169
+ "grad_norm": 0.14676547050476074,
3170
+ "learning_rate": 7.549616446943992e-06,
3171
+ "loss": 0.2248,
3172
+ "step": 445
3173
+ },
3174
+ {
3175
+ "epoch": 1.7847847847847849,
3176
+ "grad_norm": 0.13406066596508026,
3177
+ "learning_rate": 7.507160102556451e-06,
3178
+ "loss": 0.2028,
3179
+ "step": 446
3180
+ },
3181
+ {
3182
+ "epoch": 1.7887887887887888,
3183
+ "grad_norm": 0.14275118708610535,
3184
+ "learning_rate": 7.464751616232902e-06,
3185
+ "loss": 0.2129,
3186
+ "step": 447
3187
+ },
3188
+ {
3189
+ "epoch": 1.7927927927927927,
3190
+ "grad_norm": 0.1265939474105835,
3191
+ "learning_rate": 7.422391802140376e-06,
3192
+ "loss": 0.2102,
3193
+ "step": 448
3194
+ },
3195
+ {
3196
+ "epoch": 1.7967967967967968,
3197
+ "grad_norm": 0.13890117406845093,
3198
+ "learning_rate": 7.380081473511484e-06,
3199
+ "loss": 0.2094,
3200
+ "step": 449
3201
+ },
3202
+ {
3203
+ "epoch": 1.800800800800801,
3204
+ "grad_norm": 0.14124225080013275,
3205
+ "learning_rate": 7.337821442628805e-06,
3206
+ "loss": 0.2323,
3207
+ "step": 450
3208
+ },
3209
+ {
3210
+ "epoch": 1.8048048048048049,
3211
+ "grad_norm": 0.15107014775276184,
3212
+ "learning_rate": 7.295612520809281e-06,
3213
+ "loss": 0.224,
3214
+ "step": 451
3215
+ },
3216
+ {
3217
+ "epoch": 1.8088088088088088,
3218
+ "grad_norm": 0.1297285109758377,
3219
+ "learning_rate": 7.253455518388668e-06,
3220
+ "loss": 0.2053,
3221
+ "step": 452
3222
+ },
3223
+ {
3224
+ "epoch": 1.8128128128128127,
3225
+ "grad_norm": 0.12204065918922424,
3226
+ "learning_rate": 7.211351244705947e-06,
3227
+ "loss": 0.2189,
3228
+ "step": 453
3229
+ },
3230
+ {
3231
+ "epoch": 1.8168168168168168,
3232
+ "grad_norm": 0.15427479147911072,
3233
+ "learning_rate": 7.169300508087815e-06,
3234
+ "loss": 0.2337,
3235
+ "step": 454
3236
+ },
3237
+ {
3238
+ "epoch": 1.820820820820821,
3239
+ "grad_norm": 0.13939781486988068,
3240
+ "learning_rate": 7.127304115833141e-06,
3241
+ "loss": 0.2175,
3242
+ "step": 455
3243
+ },
3244
+ {
3245
+ "epoch": 1.8248248248248249,
3246
+ "grad_norm": 0.1337432563304901,
3247
+ "learning_rate": 7.08536287419749e-06,
3248
+ "loss": 0.2198,
3249
+ "step": 456
3250
+ },
3251
+ {
3252
+ "epoch": 1.8288288288288288,
3253
+ "grad_norm": 0.19405747950077057,
3254
+ "learning_rate": 7.043477588377623e-06,
3255
+ "loss": 0.2263,
3256
+ "step": 457
3257
+ },
3258
+ {
3259
+ "epoch": 1.8328328328328327,
3260
+ "grad_norm": 0.13952726125717163,
3261
+ "learning_rate": 7.001649062496065e-06,
3262
+ "loss": 0.2408,
3263
+ "step": 458
3264
+ },
3265
+ {
3266
+ "epoch": 1.8368368368368369,
3267
+ "grad_norm": 0.14409776031970978,
3268
+ "learning_rate": 6.959878099585634e-06,
3269
+ "loss": 0.2216,
3270
+ "step": 459
3271
+ },
3272
+ {
3273
+ "epoch": 1.840840840840841,
3274
+ "grad_norm": 0.13670873641967773,
3275
+ "learning_rate": 6.918165501574051e-06,
3276
+ "loss": 0.2225,
3277
+ "step": 460
3278
+ },
3279
+ {
3280
+ "epoch": 1.844844844844845,
3281
+ "grad_norm": 0.11937157064676285,
3282
+ "learning_rate": 6.876512069268541e-06,
3283
+ "loss": 0.2097,
3284
+ "step": 461
3285
+ },
3286
+ {
3287
+ "epoch": 1.8488488488488488,
3288
+ "grad_norm": 0.12589742243289948,
3289
+ "learning_rate": 6.834918602340439e-06,
3290
+ "loss": 0.2189,
3291
+ "step": 462
3292
+ },
3293
+ {
3294
+ "epoch": 1.8528528528528527,
3295
+ "grad_norm": 0.12316793203353882,
3296
+ "learning_rate": 6.793385899309866e-06,
3297
+ "loss": 0.2098,
3298
+ "step": 463
3299
+ },
3300
+ {
3301
+ "epoch": 1.8568568568568569,
3302
+ "grad_norm": 0.13508102297782898,
3303
+ "learning_rate": 6.751914757530375e-06,
3304
+ "loss": 0.2311,
3305
+ "step": 464
3306
+ },
3307
+ {
3308
+ "epoch": 1.860860860860861,
3309
+ "grad_norm": 0.13518530130386353,
3310
+ "learning_rate": 6.7105059731736645e-06,
3311
+ "loss": 0.2244,
3312
+ "step": 465
3313
+ },
3314
+ {
3315
+ "epoch": 1.864864864864865,
3316
+ "grad_norm": 0.1370282769203186,
3317
+ "learning_rate": 6.669160341214265e-06,
3318
+ "loss": 0.2175,
3319
+ "step": 466
3320
+ },
3321
+ {
3322
+ "epoch": 1.8688688688688688,
3323
+ "grad_norm": 0.13752111792564392,
3324
+ "learning_rate": 6.627878655414311e-06,
3325
+ "loss": 0.2211,
3326
+ "step": 467
3327
+ },
3328
+ {
3329
+ "epoch": 1.8728728728728727,
3330
+ "grad_norm": 0.1328887790441513,
3331
+ "learning_rate": 6.586661708308273e-06,
3332
+ "loss": 0.2147,
3333
+ "step": 468
3334
+ },
3335
+ {
3336
+ "epoch": 1.8768768768768769,
3337
+ "grad_norm": 0.13455736637115479,
3338
+ "learning_rate": 6.5455102911877665e-06,
3339
+ "loss": 0.2226,
3340
+ "step": 469
3341
+ },
3342
+ {
3343
+ "epoch": 1.880880880880881,
3344
+ "grad_norm": 0.1263863891363144,
3345
+ "learning_rate": 6.504425194086334e-06,
3346
+ "loss": 0.2085,
3347
+ "step": 470
3348
+ },
3349
+ {
3350
+ "epoch": 1.884884884884885,
3351
+ "grad_norm": 0.14515650272369385,
3352
+ "learning_rate": 6.4634072057643045e-06,
3353
+ "loss": 0.2175,
3354
+ "step": 471
3355
+ },
3356
+ {
3357
+ "epoch": 1.8888888888888888,
3358
+ "grad_norm": 0.12257494777441025,
3359
+ "learning_rate": 6.422457113693633e-06,
3360
+ "loss": 0.2098,
3361
+ "step": 472
3362
+ },
3363
+ {
3364
+ "epoch": 1.8928928928928928,
3365
+ "grad_norm": 0.1487148255109787,
3366
+ "learning_rate": 6.381575704042792e-06,
3367
+ "loss": 0.2098,
3368
+ "step": 473
3369
+ },
3370
+ {
3371
+ "epoch": 1.896896896896897,
3372
+ "grad_norm": 0.13246439397335052,
3373
+ "learning_rate": 6.340763761661665e-06,
3374
+ "loss": 0.2169,
3375
+ "step": 474
3376
+ },
3377
+ {
3378
+ "epoch": 1.900900900900901,
3379
+ "grad_norm": 0.13017022609710693,
3380
+ "learning_rate": 6.3000220700664985e-06,
3381
+ "loss": 0.2119,
3382
+ "step": 475
3383
+ },
3384
+ {
3385
+ "epoch": 1.904904904904905,
3386
+ "grad_norm": 0.13715329766273499,
3387
+ "learning_rate": 6.259351411424849e-06,
3388
+ "loss": 0.2291,
3389
+ "step": 476
3390
+ },
3391
+ {
3392
+ "epoch": 1.9089089089089089,
3393
+ "grad_norm": 0.12503132224082947,
3394
+ "learning_rate": 6.218752566540555e-06,
3395
+ "loss": 0.2172,
3396
+ "step": 477
3397
+ },
3398
+ {
3399
+ "epoch": 1.9129129129129128,
3400
+ "grad_norm": 0.13519714772701263,
3401
+ "learning_rate": 6.17822631483878e-06,
3402
+ "loss": 0.2085,
3403
+ "step": 478
3404
+ },
3405
+ {
3406
+ "epoch": 1.916916916916917,
3407
+ "grad_norm": 0.12226010113954544,
3408
+ "learning_rate": 6.137773434351009e-06,
3409
+ "loss": 0.1983,
3410
+ "step": 479
3411
+ },
3412
+ {
3413
+ "epoch": 1.920920920920921,
3414
+ "grad_norm": 0.14085441827774048,
3415
+ "learning_rate": 6.097394701700146e-06,
3416
+ "loss": 0.2175,
3417
+ "step": 480
3418
+ },
3419
+ {
3420
+ "epoch": 1.924924924924925,
3421
+ "grad_norm": 0.1396440863609314,
3422
+ "learning_rate": 6.057090892085571e-06,
3423
+ "loss": 0.2281,
3424
+ "step": 481
3425
+ },
3426
+ {
3427
+ "epoch": 1.9289289289289289,
3428
+ "grad_norm": 0.13764607906341553,
3429
+ "learning_rate": 6.016862779268301e-06,
3430
+ "loss": 0.2241,
3431
+ "step": 482
3432
+ },
3433
+ {
3434
+ "epoch": 1.9329329329329328,
3435
+ "grad_norm": 0.1312662959098816,
3436
+ "learning_rate": 5.976711135556086e-06,
3437
+ "loss": 0.2237,
3438
+ "step": 483
3439
+ },
3440
+ {
3441
+ "epoch": 1.936936936936937,
3442
+ "grad_norm": 0.15344005823135376,
3443
+ "learning_rate": 5.936636731788621e-06,
3444
+ "loss": 0.215,
3445
+ "step": 484
3446
+ },
3447
+ {
3448
+ "epoch": 1.940940940940941,
3449
+ "grad_norm": 0.1357364058494568,
3450
+ "learning_rate": 5.896640337322725e-06,
3451
+ "loss": 0.2284,
3452
+ "step": 485
3453
+ },
3454
+ {
3455
+ "epoch": 1.944944944944945,
3456
+ "grad_norm": 0.14679481089115143,
3457
+ "learning_rate": 5.8567227200175865e-06,
3458
+ "loss": 0.2471,
3459
+ "step": 486
3460
+ },
3461
+ {
3462
+ "epoch": 1.9489489489489489,
3463
+ "grad_norm": 0.13242673873901367,
3464
+ "learning_rate": 5.816884646219997e-06,
3465
+ "loss": 0.2207,
3466
+ "step": 487
3467
+ },
3468
+ {
3469
+ "epoch": 1.9529529529529528,
3470
+ "grad_norm": 0.13282544910907745,
3471
+ "learning_rate": 5.7771268807496794e-06,
3472
+ "loss": 0.2133,
3473
+ "step": 488
3474
+ },
3475
+ {
3476
+ "epoch": 1.956956956956957,
3477
+ "grad_norm": 0.12988749146461487,
3478
+ "learning_rate": 5.737450186884555e-06,
3479
+ "loss": 0.2119,
3480
+ "step": 489
3481
+ },
3482
+ {
3483
+ "epoch": 1.960960960960961,
3484
+ "grad_norm": 0.1413298100233078,
3485
+ "learning_rate": 5.6978553263461265e-06,
3486
+ "loss": 0.2197,
3487
+ "step": 490
3488
+ },
3489
+ {
3490
+ "epoch": 1.964964964964965,
3491
+ "grad_norm": 0.1392560601234436,
3492
+ "learning_rate": 5.6583430592848565e-06,
3493
+ "loss": 0.2118,
3494
+ "step": 491
3495
+ },
3496
+ {
3497
+ "epoch": 1.968968968968969,
3498
+ "grad_norm": 0.1412695348262787,
3499
+ "learning_rate": 5.618914144265532e-06,
3500
+ "loss": 0.2146,
3501
+ "step": 492
3502
+ },
3503
+ {
3504
+ "epoch": 1.972972972972973,
3505
+ "grad_norm": 0.14450322091579437,
3506
+ "learning_rate": 5.579569338252758e-06,
3507
+ "loss": 0.214,
3508
+ "step": 493
3509
+ },
3510
+ {
3511
+ "epoch": 1.976976976976977,
3512
+ "grad_norm": 0.1321956366300583,
3513
+ "learning_rate": 5.5403093965963806e-06,
3514
+ "loss": 0.2171,
3515
+ "step": 494
3516
+ },
3517
+ {
3518
+ "epoch": 1.980980980980981,
3519
+ "grad_norm": 0.15199291706085205,
3520
+ "learning_rate": 5.501135073017008e-06,
3521
+ "loss": 0.2186,
3522
+ "step": 495
3523
+ },
3524
+ {
3525
+ "epoch": 1.984984984984985,
3526
+ "grad_norm": 0.13251198828220367,
3527
+ "learning_rate": 5.4620471195915304e-06,
3528
+ "loss": 0.2041,
3529
+ "step": 496
3530
+ },
3531
+ {
3532
+ "epoch": 1.988988988988989,
3533
+ "grad_norm": 0.16512924432754517,
3534
+ "learning_rate": 5.42304628673869e-06,
3535
+ "loss": 0.2219,
3536
+ "step": 497
3537
+ },
3538
+ {
3539
+ "epoch": 1.992992992992993,
3540
+ "grad_norm": 0.13640455901622772,
3541
+ "learning_rate": 5.384133323204666e-06,
3542
+ "loss": 0.2159,
3543
+ "step": 498
3544
+ },
3545
+ {
3546
+ "epoch": 1.992992992992993,
3547
+ "eval_loss": 0.2962433695793152,
3548
+ "eval_runtime": 6.2218,
3549
+ "eval_samples_per_second": 13.019,
3550
+ "eval_steps_per_second": 1.768,
3551
+ "step": 498
3552
+ }
3553
+ ],
3554
+ "logging_steps": 1,
3555
+ "max_steps": 747,
3556
+ "num_input_tokens_seen": 0,
3557
+ "num_train_epochs": 3,
3558
+ "save_steps": 249,
3559
+ "stateful_callbacks": {
3560
+ "TrainerControl": {
3561
+ "args": {
3562
+ "should_epoch_stop": false,
3563
+ "should_evaluate": false,
3564
+ "should_log": false,
3565
+ "should_save": true,
3566
+ "should_training_stop": false
3567
+ },
3568
+ "attributes": {}
3569
+ }
3570
+ },
3571
+ "total_flos": 8.308189414870221e+17,
3572
+ "train_batch_size": 8,
3573
+ "trial_name": null,
3574
+ "trial_params": null
3575
+ }
3b-w-cot/checkpoint-498/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ae10bafaded3f1f05741f3f17290afb1efc74a263062c027a77525fa9902f1e
3
+ size 10744
3b-w-cot/checkpoint-498/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
3b-w-cot/checkpoint-498/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
3b-w-cot/checkpoint-747/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
3b-w-cot/checkpoint-747/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.48.3",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
3b-w-cot/checkpoint-747/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
3b-w-cot/checkpoint-747/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step746
3b-w-cot/checkpoint-747/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
3b-w-cot/checkpoint-747/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d864a3ede4291dbf8954edc730f490c139147b7997a05c84493a7ae77553fe0d
3
+ size 4957560304
3b-w-cot/checkpoint-747/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7732a9d9c741b7b288991f75baa7da5bd2ef0ace964fe0a2a63a19f001ff6734
3
+ size 1836696752
3b-w-cot/checkpoint-747/model.safetensors.index.json ADDED
@@ -0,0 +1,442 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6794207232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors"
441
+ }
442
+ }
3b-w-cot/checkpoint-747/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71792d9986abf333291d25825245eca92628cefa5f54c3852cce3ae98163a606
3
+ size 14512
3b-w-cot/checkpoint-747/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8746eb25faee6c63bdad38e5ccce008abfe09b6a67f278aadc8f5b3e48f5a137
3
+ size 14512
3b-w-cot/checkpoint-747/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b3a54b902ddde79dee7411c1b56d36e553d20b71c14e027984774fd8aa1d553
3
+ size 1064
3b-w-cot/checkpoint-747/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }