Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 3b-w-cot/README.md +165 -0
- 3b-w-cot/added_tokens.json +24 -0
- 3b-w-cot/checkpoint-249/added_tokens.json +24 -0
- 3b-w-cot/checkpoint-249/config.json +28 -0
- 3b-w-cot/checkpoint-249/generation_config.json +14 -0
- 3b-w-cot/checkpoint-249/latest +1 -0
- 3b-w-cot/checkpoint-249/merges.txt +0 -0
- 3b-w-cot/checkpoint-249/model-00001-of-00002.safetensors +3 -0
- 3b-w-cot/checkpoint-249/model-00002-of-00002.safetensors +3 -0
- 3b-w-cot/checkpoint-249/model.safetensors.index.json +442 -0
- 3b-w-cot/checkpoint-249/rng_state_0.pth +3 -0
- 3b-w-cot/checkpoint-249/rng_state_1.pth +3 -0
- 3b-w-cot/checkpoint-249/scheduler.pt +3 -0
- 3b-w-cot/checkpoint-249/special_tokens_map.json +31 -0
- 3b-w-cot/checkpoint-249/tokenizer.json +3 -0
- 3b-w-cot/checkpoint-249/tokenizer_config.json +208 -0
- 3b-w-cot/checkpoint-249/trainer_state.json +1808 -0
- 3b-w-cot/checkpoint-249/training_args.bin +3 -0
- 3b-w-cot/checkpoint-249/vocab.json +0 -0
- 3b-w-cot/checkpoint-249/zero_to_fp32.py +760 -0
- 3b-w-cot/checkpoint-498/added_tokens.json +24 -0
- 3b-w-cot/checkpoint-498/config.json +28 -0
- 3b-w-cot/checkpoint-498/generation_config.json +14 -0
- 3b-w-cot/checkpoint-498/latest +1 -0
- 3b-w-cot/checkpoint-498/merges.txt +0 -0
- 3b-w-cot/checkpoint-498/model-00001-of-00002.safetensors +3 -0
- 3b-w-cot/checkpoint-498/model-00002-of-00002.safetensors +3 -0
- 3b-w-cot/checkpoint-498/model.safetensors.index.json +442 -0
- 3b-w-cot/checkpoint-498/rng_state_0.pth +3 -0
- 3b-w-cot/checkpoint-498/rng_state_1.pth +3 -0
- 3b-w-cot/checkpoint-498/scheduler.pt +3 -0
- 3b-w-cot/checkpoint-498/special_tokens_map.json +31 -0
- 3b-w-cot/checkpoint-498/tokenizer.json +3 -0
- 3b-w-cot/checkpoint-498/tokenizer_config.json +208 -0
- 3b-w-cot/checkpoint-498/trainer_state.json +3575 -0
- 3b-w-cot/checkpoint-498/training_args.bin +3 -0
- 3b-w-cot/checkpoint-498/vocab.json +0 -0
- 3b-w-cot/checkpoint-498/zero_to_fp32.py +760 -0
- 3b-w-cot/checkpoint-747/added_tokens.json +24 -0
- 3b-w-cot/checkpoint-747/config.json +28 -0
- 3b-w-cot/checkpoint-747/generation_config.json +14 -0
- 3b-w-cot/checkpoint-747/latest +1 -0
- 3b-w-cot/checkpoint-747/merges.txt +0 -0
- 3b-w-cot/checkpoint-747/model-00001-of-00002.safetensors +3 -0
- 3b-w-cot/checkpoint-747/model-00002-of-00002.safetensors +3 -0
- 3b-w-cot/checkpoint-747/model.safetensors.index.json +442 -0
- 3b-w-cot/checkpoint-747/rng_state_0.pth +3 -0
- 3b-w-cot/checkpoint-747/rng_state_1.pth +3 -0
- 3b-w-cot/checkpoint-747/scheduler.pt +3 -0
- 3b-w-cot/checkpoint-747/special_tokens_map.json +31 -0
3b-w-cot/README.md
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- train.jsonl
|
9 |
+
model-index:
|
10 |
+
- name: outputs/out
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
18 |
+
<details><summary>See axolotl config</summary>
|
19 |
+
|
20 |
+
axolotl version: `0.7.0`
|
21 |
+
```yaml
|
22 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
23 |
+
model_type: AutoModelForCausalLM
|
24 |
+
tokenizer_type: AutoTokenizer
|
25 |
+
trust_remote_code: false
|
26 |
+
|
27 |
+
load_in_8bit: false
|
28 |
+
load_in_4bit: false
|
29 |
+
strict: false
|
30 |
+
|
31 |
+
output_dir: ./outputs/out
|
32 |
+
chat_template: qwen_25
|
33 |
+
datasets:
|
34 |
+
- path: train.jsonl
|
35 |
+
type: chat_template
|
36 |
+
field_messages: messages
|
37 |
+
message_field_role: role
|
38 |
+
message_field_content: content
|
39 |
+
roles:
|
40 |
+
system:
|
41 |
+
- system
|
42 |
+
user:
|
43 |
+
- user
|
44 |
+
assistant:
|
45 |
+
- assistant
|
46 |
+
|
47 |
+
dataset_prepared_path: last_run_prepared
|
48 |
+
val_set_size: 0.005
|
49 |
+
output_dir: ./outputs/out
|
50 |
+
eval_sample_packing: False
|
51 |
+
|
52 |
+
sequence_len: 8192
|
53 |
+
sample_packing: False
|
54 |
+
pad_to_sequence_len: False
|
55 |
+
|
56 |
+
wandb_project: mergedbench
|
57 |
+
wandb_entity:
|
58 |
+
wandb_watch:
|
59 |
+
wandb_name:
|
60 |
+
wandb_log_model:
|
61 |
+
|
62 |
+
plugins:
|
63 |
+
- axolotl.integrations.liger.LigerPlugin
|
64 |
+
liger_rope: true
|
65 |
+
liger_rms_norm: true
|
66 |
+
liger_swiglu: true
|
67 |
+
liger_fused_linear_cross_entropy: true
|
68 |
+
|
69 |
+
gradient_accumulation_steps: 4
|
70 |
+
micro_batch_size: 8
|
71 |
+
eval_batch_size: 4
|
72 |
+
num_epochs: 3
|
73 |
+
optimizer: paged_adamw_8bit
|
74 |
+
lr_scheduler: cosine
|
75 |
+
learning_rate: 2e-5
|
76 |
+
|
77 |
+
train_on_inputs: false
|
78 |
+
group_by_length: false
|
79 |
+
bf16: auto
|
80 |
+
fp16:
|
81 |
+
tf32: false
|
82 |
+
|
83 |
+
gradient_checkpointing: true
|
84 |
+
gradient_checkpointing_kwargs:
|
85 |
+
use_reentrant: false
|
86 |
+
early_stopping_patience:
|
87 |
+
resume_from_checkpoint:
|
88 |
+
logging_steps: 1
|
89 |
+
xformers_attention:
|
90 |
+
flash_attention: true
|
91 |
+
|
92 |
+
warmup_steps: 30
|
93 |
+
evals_per_epoch: 3
|
94 |
+
eval_max_new_tokens: 128
|
95 |
+
eval_table_size:
|
96 |
+
saves_per_epoch: 1
|
97 |
+
debug:
|
98 |
+
deepspeed: deepspeed_configs/zero1.json
|
99 |
+
weight_decay: 0.01
|
100 |
+
fsdp:
|
101 |
+
fsdp_config:
|
102 |
+
special_tokens:
|
103 |
+
```
|
104 |
+
|
105 |
+
</details><br>
|
106 |
+
|
107 |
+
# outputs/out
|
108 |
+
|
109 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the train.jsonl dataset.
|
110 |
+
It achieves the following results on the evaluation set:
|
111 |
+
- Loss: 0.2847
|
112 |
+
|
113 |
+
## Model description
|
114 |
+
|
115 |
+
More information needed
|
116 |
+
|
117 |
+
## Intended uses & limitations
|
118 |
+
|
119 |
+
More information needed
|
120 |
+
|
121 |
+
## Training and evaluation data
|
122 |
+
|
123 |
+
More information needed
|
124 |
+
|
125 |
+
## Training procedure
|
126 |
+
|
127 |
+
### Training hyperparameters
|
128 |
+
|
129 |
+
The following hyperparameters were used during training:
|
130 |
+
- learning_rate: 2e-05
|
131 |
+
- train_batch_size: 8
|
132 |
+
- eval_batch_size: 4
|
133 |
+
- seed: 42
|
134 |
+
- distributed_type: multi-GPU
|
135 |
+
- num_devices: 2
|
136 |
+
- gradient_accumulation_steps: 4
|
137 |
+
- total_train_batch_size: 64
|
138 |
+
- total_eval_batch_size: 8
|
139 |
+
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
140 |
+
- lr_scheduler_type: cosine
|
141 |
+
- lr_scheduler_warmup_steps: 30
|
142 |
+
- num_epochs: 3.0
|
143 |
+
|
144 |
+
### Training results
|
145 |
+
|
146 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
147 |
+
|:-------------:|:------:|:----:|:---------------:|
|
148 |
+
| 1.4163 | 0.0040 | 1 | 1.4218 |
|
149 |
+
| 0.3799 | 0.3323 | 83 | 0.3376 |
|
150 |
+
| 0.3263 | 0.6647 | 166 | 0.3207 |
|
151 |
+
| 0.3213 | 0.9970 | 249 | 0.3041 |
|
152 |
+
| 0.2369 | 1.3283 | 332 | 0.3128 |
|
153 |
+
| 0.2436 | 1.6607 | 415 | 0.3041 |
|
154 |
+
| 0.2159 | 1.9930 | 498 | 0.2962 |
|
155 |
+
| 0.1832 | 2.3243 | 581 | 0.2914 |
|
156 |
+
| 0.1941 | 2.6567 | 664 | 0.2865 |
|
157 |
+
| 0.185 | 2.9890 | 747 | 0.2847 |
|
158 |
+
|
159 |
+
|
160 |
+
### Framework versions
|
161 |
+
|
162 |
+
- Transformers 4.48.3
|
163 |
+
- Pytorch 2.5.1+cu121
|
164 |
+
- Datasets 3.2.0
|
165 |
+
- Tokenizers 0.21.0
|
3b-w-cot/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
3b-w-cot/checkpoint-249/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
3b-w-cot/checkpoint-249/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.3",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
3b-w-cot/checkpoint-249/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.3"
|
14 |
+
}
|
3b-w-cot/checkpoint-249/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step249
|
3b-w-cot/checkpoint-249/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-w-cot/checkpoint-249/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d98d3d655ac51584b495c5652e2bb2cb14f1632265a8d91ec83deece94fc4242
|
3 |
+
size 4957560304
|
3b-w-cot/checkpoint-249/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9e5b0033ab9498c19469e02588eda7896057da2526c4590819382584ce0c317
|
3 |
+
size 1836696752
|
3b-w-cot/checkpoint-249/model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6794207232
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
3b-w-cot/checkpoint-249/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7e52325e9d729519836af640f8f754a93ee06730fb2953b5309434b53b17562
|
3 |
+
size 14512
|
3b-w-cot/checkpoint-249/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a93593cf0342eb47876986e1063102e1546354426a2324c46ddcf1cbecae803
|
3 |
+
size 14512
|
3b-w-cot/checkpoint-249/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe57fe36c47ba8cc85686021517d2af1000494c57709a51ad19a90ac2cb505a7
|
3 |
+
size 1064
|
3b-w-cot/checkpoint-249/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
3b-w-cot/checkpoint-249/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
3b-w-cot/checkpoint-249/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
3b-w-cot/checkpoint-249/trainer_state.json
ADDED
@@ -0,0 +1,1808 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.996996996996997,
|
5 |
+
"eval_steps": 83,
|
6 |
+
"global_step": 249,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.004004004004004004,
|
13 |
+
"grad_norm": 6.739165782928467,
|
14 |
+
"learning_rate": 6.666666666666667e-07,
|
15 |
+
"loss": 1.4163,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.004004004004004004,
|
20 |
+
"eval_loss": 1.4217944145202637,
|
21 |
+
"eval_runtime": 5.678,
|
22 |
+
"eval_samples_per_second": 14.266,
|
23 |
+
"eval_steps_per_second": 1.937,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.008008008008008008,
|
28 |
+
"grad_norm": 6.897192001342773,
|
29 |
+
"learning_rate": 1.3333333333333334e-06,
|
30 |
+
"loss": 1.3767,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.012012012012012012,
|
35 |
+
"grad_norm": 6.74431037902832,
|
36 |
+
"learning_rate": 2.0000000000000003e-06,
|
37 |
+
"loss": 1.3848,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.016016016016016016,
|
42 |
+
"grad_norm": 6.999237537384033,
|
43 |
+
"learning_rate": 2.666666666666667e-06,
|
44 |
+
"loss": 1.4294,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.02002002002002002,
|
49 |
+
"grad_norm": 4.510103702545166,
|
50 |
+
"learning_rate": 3.3333333333333333e-06,
|
51 |
+
"loss": 1.2646,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.024024024024024024,
|
56 |
+
"grad_norm": 4.533900737762451,
|
57 |
+
"learning_rate": 4.000000000000001e-06,
|
58 |
+
"loss": 1.2563,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.028028028028028028,
|
63 |
+
"grad_norm": 3.565216541290283,
|
64 |
+
"learning_rate": 4.666666666666667e-06,
|
65 |
+
"loss": 1.1061,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.03203203203203203,
|
70 |
+
"grad_norm": 3.1937592029571533,
|
71 |
+
"learning_rate": 5.333333333333334e-06,
|
72 |
+
"loss": 1.0445,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.036036036036036036,
|
77 |
+
"grad_norm": 3.0942018032073975,
|
78 |
+
"learning_rate": 6e-06,
|
79 |
+
"loss": 0.8555,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.04004004004004004,
|
84 |
+
"grad_norm": 4.628591060638428,
|
85 |
+
"learning_rate": 6.666666666666667e-06,
|
86 |
+
"loss": 0.8539,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.044044044044044044,
|
91 |
+
"grad_norm": 5.402413845062256,
|
92 |
+
"learning_rate": 7.333333333333333e-06,
|
93 |
+
"loss": 0.7684,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.04804804804804805,
|
98 |
+
"grad_norm": 1.96303391456604,
|
99 |
+
"learning_rate": 8.000000000000001e-06,
|
100 |
+
"loss": 0.6347,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.05205205205205205,
|
105 |
+
"grad_norm": 1.33661687374115,
|
106 |
+
"learning_rate": 8.666666666666668e-06,
|
107 |
+
"loss": 0.6692,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.056056056056056056,
|
112 |
+
"grad_norm": 0.9704915285110474,
|
113 |
+
"learning_rate": 9.333333333333334e-06,
|
114 |
+
"loss": 0.6385,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.06006006006006006,
|
119 |
+
"grad_norm": 0.7543495893478394,
|
120 |
+
"learning_rate": 1e-05,
|
121 |
+
"loss": 0.5901,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.06406406406406406,
|
126 |
+
"grad_norm": 1.3593250513076782,
|
127 |
+
"learning_rate": 1.0666666666666667e-05,
|
128 |
+
"loss": 0.5645,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.06806806806806807,
|
133 |
+
"grad_norm": 1.147750735282898,
|
134 |
+
"learning_rate": 1.1333333333333334e-05,
|
135 |
+
"loss": 0.5508,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.07207207207207207,
|
140 |
+
"grad_norm": 0.8024477958679199,
|
141 |
+
"learning_rate": 1.2e-05,
|
142 |
+
"loss": 0.5282,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.07607607607607608,
|
147 |
+
"grad_norm": 0.7931386232376099,
|
148 |
+
"learning_rate": 1.2666666666666667e-05,
|
149 |
+
"loss": 0.4929,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.08008008008008008,
|
154 |
+
"grad_norm": 0.6702373623847961,
|
155 |
+
"learning_rate": 1.3333333333333333e-05,
|
156 |
+
"loss": 0.4868,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.08408408408408409,
|
161 |
+
"grad_norm": 0.747148871421814,
|
162 |
+
"learning_rate": 1.4e-05,
|
163 |
+
"loss": 0.4857,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.08808808808808809,
|
168 |
+
"grad_norm": 0.5935061573982239,
|
169 |
+
"learning_rate": 1.4666666666666666e-05,
|
170 |
+
"loss": 0.4908,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.0920920920920921,
|
175 |
+
"grad_norm": 0.5696635842323303,
|
176 |
+
"learning_rate": 1.5333333333333334e-05,
|
177 |
+
"loss": 0.4437,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.0960960960960961,
|
182 |
+
"grad_norm": 0.5861401557922363,
|
183 |
+
"learning_rate": 1.6000000000000003e-05,
|
184 |
+
"loss": 0.4442,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.1001001001001001,
|
189 |
+
"grad_norm": 0.5833226442337036,
|
190 |
+
"learning_rate": 1.6666666666666667e-05,
|
191 |
+
"loss": 0.4585,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1041041041041041,
|
196 |
+
"grad_norm": 0.48214447498321533,
|
197 |
+
"learning_rate": 1.7333333333333336e-05,
|
198 |
+
"loss": 0.3994,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.10810810810810811,
|
203 |
+
"grad_norm": 0.49264758825302124,
|
204 |
+
"learning_rate": 1.8e-05,
|
205 |
+
"loss": 0.4609,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.11211211211211211,
|
210 |
+
"grad_norm": 0.5025641322135925,
|
211 |
+
"learning_rate": 1.866666666666667e-05,
|
212 |
+
"loss": 0.4816,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.11611611611611612,
|
217 |
+
"grad_norm": 0.46342933177948,
|
218 |
+
"learning_rate": 1.9333333333333333e-05,
|
219 |
+
"loss": 0.4435,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.12012012012012012,
|
224 |
+
"grad_norm": 0.46523571014404297,
|
225 |
+
"learning_rate": 2e-05,
|
226 |
+
"loss": 0.4208,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.12412412412412413,
|
231 |
+
"grad_norm": 0.4298263192176819,
|
232 |
+
"learning_rate": 1.9999904008949705e-05,
|
233 |
+
"loss": 0.4137,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.12812812812812813,
|
238 |
+
"grad_norm": 0.43352752923965454,
|
239 |
+
"learning_rate": 1.999961603764167e-05,
|
240 |
+
"loss": 0.4096,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.13213213213213212,
|
245 |
+
"grad_norm": 0.4369907081127167,
|
246 |
+
"learning_rate": 1.9999136091604433e-05,
|
247 |
+
"loss": 0.4128,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.13613613613613615,
|
252 |
+
"grad_norm": 0.4188078045845032,
|
253 |
+
"learning_rate": 1.99984641800521e-05,
|
254 |
+
"loss": 0.4171,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.14014014014014015,
|
259 |
+
"grad_norm": 0.4548235237598419,
|
260 |
+
"learning_rate": 1.9997600315884166e-05,
|
261 |
+
"loss": 0.4236,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.14414414414414414,
|
266 |
+
"grad_norm": 0.4751495122909546,
|
267 |
+
"learning_rate": 1.999654451568528e-05,
|
268 |
+
"loss": 0.438,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.14814814814814814,
|
273 |
+
"grad_norm": 0.4333605170249939,
|
274 |
+
"learning_rate": 1.9995296799724914e-05,
|
275 |
+
"loss": 0.4208,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.15215215215215216,
|
280 |
+
"grad_norm": 0.48084449768066406,
|
281 |
+
"learning_rate": 1.999385719195698e-05,
|
282 |
+
"loss": 0.3969,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.15615615615615616,
|
287 |
+
"grad_norm": 0.42627257108688354,
|
288 |
+
"learning_rate": 1.9992225720019377e-05,
|
289 |
+
"loss": 0.4503,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.16016016016016016,
|
294 |
+
"grad_norm": 0.41883718967437744,
|
295 |
+
"learning_rate": 1.9990402415233436e-05,
|
296 |
+
"loss": 0.4322,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.16416416416416416,
|
301 |
+
"grad_norm": 0.39587706327438354,
|
302 |
+
"learning_rate": 1.998838731260335e-05,
|
303 |
+
"loss": 0.3841,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.16816816816816818,
|
308 |
+
"grad_norm": 0.40334609150886536,
|
309 |
+
"learning_rate": 1.9986180450815485e-05,
|
310 |
+
"loss": 0.3737,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.17217217217217218,
|
315 |
+
"grad_norm": 0.3715899884700775,
|
316 |
+
"learning_rate": 1.9983781872237634e-05,
|
317 |
+
"loss": 0.387,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.17617617617617617,
|
322 |
+
"grad_norm": 0.38875311613082886,
|
323 |
+
"learning_rate": 1.9981191622918217e-05,
|
324 |
+
"loss": 0.3695,
|
325 |
+
"step": 44
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.18018018018018017,
|
329 |
+
"grad_norm": 0.39087679982185364,
|
330 |
+
"learning_rate": 1.997840975258538e-05,
|
331 |
+
"loss": 0.3934,
|
332 |
+
"step": 45
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.1841841841841842,
|
336 |
+
"grad_norm": 0.41504260897636414,
|
337 |
+
"learning_rate": 1.9975436314646052e-05,
|
338 |
+
"loss": 0.3769,
|
339 |
+
"step": 46
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1881881881881882,
|
343 |
+
"grad_norm": 0.36994805932044983,
|
344 |
+
"learning_rate": 1.9972271366184922e-05,
|
345 |
+
"loss": 0.3807,
|
346 |
+
"step": 47
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.1921921921921922,
|
350 |
+
"grad_norm": 0.39996904134750366,
|
351 |
+
"learning_rate": 1.996891496796334e-05,
|
352 |
+
"loss": 0.3903,
|
353 |
+
"step": 48
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.1961961961961962,
|
357 |
+
"grad_norm": 0.3904661536216736,
|
358 |
+
"learning_rate": 1.9965367184418138e-05,
|
359 |
+
"loss": 0.3785,
|
360 |
+
"step": 49
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.2002002002002002,
|
364 |
+
"grad_norm": 0.39596742391586304,
|
365 |
+
"learning_rate": 1.9961628083660406e-05,
|
366 |
+
"loss": 0.3806,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.2042042042042042,
|
371 |
+
"grad_norm": 0.39424648880958557,
|
372 |
+
"learning_rate": 1.9957697737474198e-05,
|
373 |
+
"loss": 0.3736,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.2082082082082082,
|
378 |
+
"grad_norm": 0.41719183325767517,
|
379 |
+
"learning_rate": 1.9953576221315116e-05,
|
380 |
+
"loss": 0.4023,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.2122122122122122,
|
385 |
+
"grad_norm": 0.3773253262042999,
|
386 |
+
"learning_rate": 1.9949263614308894e-05,
|
387 |
+
"loss": 0.396,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.21621621621621623,
|
392 |
+
"grad_norm": 0.4236510992050171,
|
393 |
+
"learning_rate": 1.994475999924987e-05,
|
394 |
+
"loss": 0.4032,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.22022022022022023,
|
399 |
+
"grad_norm": 0.3507007360458374,
|
400 |
+
"learning_rate": 1.9940065462599394e-05,
|
401 |
+
"loss": 0.3615,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.22422422422422422,
|
406 |
+
"grad_norm": 0.45851731300354004,
|
407 |
+
"learning_rate": 1.9935180094484164e-05,
|
408 |
+
"loss": 0.3402,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.22822822822822822,
|
413 |
+
"grad_norm": 0.36239954829216003,
|
414 |
+
"learning_rate": 1.99301039886945e-05,
|
415 |
+
"loss": 0.3668,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.23223223223223224,
|
420 |
+
"grad_norm": 0.3855980634689331,
|
421 |
+
"learning_rate": 1.992483724268255e-05,
|
422 |
+
"loss": 0.3575,
|
423 |
+
"step": 58
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.23623623623623624,
|
427 |
+
"grad_norm": 0.4716965854167938,
|
428 |
+
"learning_rate": 1.9919379957560413e-05,
|
429 |
+
"loss": 0.3532,
|
430 |
+
"step": 59
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.24024024024024024,
|
434 |
+
"grad_norm": 0.45167747139930725,
|
435 |
+
"learning_rate": 1.991373223809819e-05,
|
436 |
+
"loss": 0.3537,
|
437 |
+
"step": 60
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.24424424424424424,
|
441 |
+
"grad_norm": 0.420512855052948,
|
442 |
+
"learning_rate": 1.990789419272199e-05,
|
443 |
+
"loss": 0.3471,
|
444 |
+
"step": 61
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.24824824824824826,
|
448 |
+
"grad_norm": 0.4863167107105255,
|
449 |
+
"learning_rate": 1.9901865933511834e-05,
|
450 |
+
"loss": 0.3741,
|
451 |
+
"step": 62
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.25225225225225223,
|
455 |
+
"grad_norm": 0.39653480052948,
|
456 |
+
"learning_rate": 1.9895647576199507e-05,
|
457 |
+
"loss": 0.3799,
|
458 |
+
"step": 63
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.25625625625625625,
|
462 |
+
"grad_norm": 0.38418489694595337,
|
463 |
+
"learning_rate": 1.988923924016634e-05,
|
464 |
+
"loss": 0.3577,
|
465 |
+
"step": 64
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.2602602602602603,
|
469 |
+
"grad_norm": 0.39798790216445923,
|
470 |
+
"learning_rate": 1.988264104844091e-05,
|
471 |
+
"loss": 0.3581,
|
472 |
+
"step": 65
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.26426426426426425,
|
476 |
+
"grad_norm": 0.41135266423225403,
|
477 |
+
"learning_rate": 1.987585312769669e-05,
|
478 |
+
"loss": 0.3306,
|
479 |
+
"step": 66
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.2682682682682683,
|
483 |
+
"grad_norm": 0.36515921354293823,
|
484 |
+
"learning_rate": 1.9868875608249613e-05,
|
485 |
+
"loss": 0.3628,
|
486 |
+
"step": 67
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.2722722722722723,
|
490 |
+
"grad_norm": 0.4733300507068634,
|
491 |
+
"learning_rate": 1.986170862405556e-05,
|
492 |
+
"loss": 0.3733,
|
493 |
+
"step": 68
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.27627627627627627,
|
497 |
+
"grad_norm": 0.4218703806400299,
|
498 |
+
"learning_rate": 1.98543523127078e-05,
|
499 |
+
"loss": 0.371,
|
500 |
+
"step": 69
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.2802802802802803,
|
504 |
+
"grad_norm": 0.35307836532592773,
|
505 |
+
"learning_rate": 1.984680681543434e-05,
|
506 |
+
"loss": 0.3568,
|
507 |
+
"step": 70
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.28428428428428426,
|
511 |
+
"grad_norm": 0.4475674629211426,
|
512 |
+
"learning_rate": 1.9839072277095222e-05,
|
513 |
+
"loss": 0.3828,
|
514 |
+
"step": 71
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.2882882882882883,
|
518 |
+
"grad_norm": 0.37015393376350403,
|
519 |
+
"learning_rate": 1.9831148846179743e-05,
|
520 |
+
"loss": 0.3426,
|
521 |
+
"step": 72
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.2922922922922923,
|
525 |
+
"grad_norm": 0.39532360434532166,
|
526 |
+
"learning_rate": 1.9823036674803585e-05,
|
527 |
+
"loss": 0.3545,
|
528 |
+
"step": 73
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.2962962962962963,
|
532 |
+
"grad_norm": 0.349669486284256,
|
533 |
+
"learning_rate": 1.981473591870593e-05,
|
534 |
+
"loss": 0.332,
|
535 |
+
"step": 74
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.3003003003003003,
|
539 |
+
"grad_norm": 0.356000155210495,
|
540 |
+
"learning_rate": 1.980624673724643e-05,
|
541 |
+
"loss": 0.3684,
|
542 |
+
"step": 75
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.30430430430430433,
|
546 |
+
"grad_norm": 0.4027644693851471,
|
547 |
+
"learning_rate": 1.9797569293402174e-05,
|
548 |
+
"loss": 0.3592,
|
549 |
+
"step": 76
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.3083083083083083,
|
553 |
+
"grad_norm": 0.36116528511047363,
|
554 |
+
"learning_rate": 1.9788703753764554e-05,
|
555 |
+
"loss": 0.3433,
|
556 |
+
"step": 77
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.3123123123123123,
|
560 |
+
"grad_norm": 0.35624876618385315,
|
561 |
+
"learning_rate": 1.9779650288536057e-05,
|
562 |
+
"loss": 0.3541,
|
563 |
+
"step": 78
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.3163163163163163,
|
567 |
+
"grad_norm": 0.360287606716156,
|
568 |
+
"learning_rate": 1.977040907152702e-05,
|
569 |
+
"loss": 0.3413,
|
570 |
+
"step": 79
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.3203203203203203,
|
574 |
+
"grad_norm": 0.412913978099823,
|
575 |
+
"learning_rate": 1.976098028015226e-05,
|
576 |
+
"loss": 0.4142,
|
577 |
+
"step": 80
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.32432432432432434,
|
581 |
+
"grad_norm": 0.38022932410240173,
|
582 |
+
"learning_rate": 1.9751364095427694e-05,
|
583 |
+
"loss": 0.3481,
|
584 |
+
"step": 81
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.3283283283283283,
|
588 |
+
"grad_norm": 0.37813299894332886,
|
589 |
+
"learning_rate": 1.974156070196686e-05,
|
590 |
+
"loss": 0.3552,
|
591 |
+
"step": 82
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.33233233233233234,
|
595 |
+
"grad_norm": 0.3782276511192322,
|
596 |
+
"learning_rate": 1.973157028797737e-05,
|
597 |
+
"loss": 0.3799,
|
598 |
+
"step": 83
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.33233233233233234,
|
602 |
+
"eval_loss": 0.33762940764427185,
|
603 |
+
"eval_runtime": 6.2209,
|
604 |
+
"eval_samples_per_second": 13.021,
|
605 |
+
"eval_steps_per_second": 1.768,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.33633633633633636,
|
610 |
+
"grad_norm": 0.3933849036693573,
|
611 |
+
"learning_rate": 1.9721393045257277e-05,
|
612 |
+
"loss": 0.3654,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.34034034034034033,
|
617 |
+
"grad_norm": 0.35808295011520386,
|
618 |
+
"learning_rate": 1.9711029169191437e-05,
|
619 |
+
"loss": 0.3716,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.34434434434434436,
|
624 |
+
"grad_norm": 0.3547224700450897,
|
625 |
+
"learning_rate": 1.970047885874771e-05,
|
626 |
+
"loss": 0.3397,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.3483483483483483,
|
631 |
+
"grad_norm": 0.39883747696876526,
|
632 |
+
"learning_rate": 1.968974231647318e-05,
|
633 |
+
"loss": 0.3645,
|
634 |
+
"step": 87
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.35235235235235235,
|
638 |
+
"grad_norm": 0.3208443224430084,
|
639 |
+
"learning_rate": 1.9678819748490236e-05,
|
640 |
+
"loss": 0.3431,
|
641 |
+
"step": 88
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.3563563563563564,
|
645 |
+
"grad_norm": 0.34669625759124756,
|
646 |
+
"learning_rate": 1.9667711364492638e-05,
|
647 |
+
"loss": 0.3613,
|
648 |
+
"step": 89
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.36036036036036034,
|
652 |
+
"grad_norm": 0.35220351815223694,
|
653 |
+
"learning_rate": 1.965641737774147e-05,
|
654 |
+
"loss": 0.3499,
|
655 |
+
"step": 90
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.36436436436436437,
|
659 |
+
"grad_norm": 0.3566596806049347,
|
660 |
+
"learning_rate": 1.9644938005061062e-05,
|
661 |
+
"loss": 0.3204,
|
662 |
+
"step": 91
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.3683683683683684,
|
666 |
+
"grad_norm": 0.3813494145870209,
|
667 |
+
"learning_rate": 1.9633273466834826e-05,
|
668 |
+
"loss": 0.3526,
|
669 |
+
"step": 92
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.37237237237237236,
|
673 |
+
"grad_norm": 0.3885157108306885,
|
674 |
+
"learning_rate": 1.9621423987001013e-05,
|
675 |
+
"loss": 0.3562,
|
676 |
+
"step": 93
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.3763763763763764,
|
680 |
+
"grad_norm": 0.4746558666229248,
|
681 |
+
"learning_rate": 1.960938979304843e-05,
|
682 |
+
"loss": 0.3509,
|
683 |
+
"step": 94
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.38038038038038036,
|
687 |
+
"grad_norm": 0.3623756766319275,
|
688 |
+
"learning_rate": 1.959717111601206e-05,
|
689 |
+
"loss": 0.371,
|
690 |
+
"step": 95
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.3843843843843844,
|
694 |
+
"grad_norm": 0.3858593702316284,
|
695 |
+
"learning_rate": 1.9584768190468624e-05,
|
696 |
+
"loss": 0.3551,
|
697 |
+
"step": 96
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.3883883883883884,
|
701 |
+
"grad_norm": 0.3788565993309021,
|
702 |
+
"learning_rate": 1.95721812545321e-05,
|
703 |
+
"loss": 0.3669,
|
704 |
+
"step": 97
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.3923923923923924,
|
708 |
+
"grad_norm": 0.3729216754436493,
|
709 |
+
"learning_rate": 1.9559410549849125e-05,
|
710 |
+
"loss": 0.34,
|
711 |
+
"step": 98
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.3963963963963964,
|
715 |
+
"grad_norm": 0.44008028507232666,
|
716 |
+
"learning_rate": 1.9546456321594374e-05,
|
717 |
+
"loss": 0.3898,
|
718 |
+
"step": 99
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.4004004004004004,
|
722 |
+
"grad_norm": 0.36622726917266846,
|
723 |
+
"learning_rate": 1.9533318818465837e-05,
|
724 |
+
"loss": 0.3624,
|
725 |
+
"step": 100
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.4044044044044044,
|
729 |
+
"grad_norm": 0.39071497321128845,
|
730 |
+
"learning_rate": 1.9519998292680062e-05,
|
731 |
+
"loss": 0.3518,
|
732 |
+
"step": 101
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.4084084084084084,
|
736 |
+
"grad_norm": 0.40084153413772583,
|
737 |
+
"learning_rate": 1.9506494999967298e-05,
|
738 |
+
"loss": 0.3483,
|
739 |
+
"step": 102
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.4124124124124124,
|
743 |
+
"grad_norm": 0.3901435434818268,
|
744 |
+
"learning_rate": 1.94928091995666e-05,
|
745 |
+
"loss": 0.3577,
|
746 |
+
"step": 103
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.4164164164164164,
|
750 |
+
"grad_norm": 0.34764233231544495,
|
751 |
+
"learning_rate": 1.9478941154220833e-05,
|
752 |
+
"loss": 0.3487,
|
753 |
+
"step": 104
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.42042042042042044,
|
757 |
+
"grad_norm": 0.4044027030467987,
|
758 |
+
"learning_rate": 1.9464891130171647e-05,
|
759 |
+
"loss": 0.3602,
|
760 |
+
"step": 105
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.4244244244244244,
|
764 |
+
"grad_norm": 0.3537923991680145,
|
765 |
+
"learning_rate": 1.9450659397154353e-05,
|
766 |
+
"loss": 0.3282,
|
767 |
+
"step": 106
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.42842842842842843,
|
771 |
+
"grad_norm": 0.35585689544677734,
|
772 |
+
"learning_rate": 1.9436246228392762e-05,
|
773 |
+
"loss": 0.361,
|
774 |
+
"step": 107
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.43243243243243246,
|
778 |
+
"grad_norm": 0.380585253238678,
|
779 |
+
"learning_rate": 1.94216519005939e-05,
|
780 |
+
"loss": 0.3218,
|
781 |
+
"step": 108
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.4364364364364364,
|
785 |
+
"grad_norm": 0.3388879597187042,
|
786 |
+
"learning_rate": 1.9406876693942747e-05,
|
787 |
+
"loss": 0.3563,
|
788 |
+
"step": 109
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.44044044044044045,
|
792 |
+
"grad_norm": 0.359130859375,
|
793 |
+
"learning_rate": 1.939192089209682e-05,
|
794 |
+
"loss": 0.3386,
|
795 |
+
"step": 110
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.4444444444444444,
|
799 |
+
"grad_norm": 0.35704970359802246,
|
800 |
+
"learning_rate": 1.9376784782180747e-05,
|
801 |
+
"loss": 0.3336,
|
802 |
+
"step": 111
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.44844844844844844,
|
806 |
+
"grad_norm": 0.3638094961643219,
|
807 |
+
"learning_rate": 1.9361468654780748e-05,
|
808 |
+
"loss": 0.3582,
|
809 |
+
"step": 112
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.45245245245245247,
|
813 |
+
"grad_norm": 0.3996574878692627,
|
814 |
+
"learning_rate": 1.9345972803939046e-05,
|
815 |
+
"loss": 0.3496,
|
816 |
+
"step": 113
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.45645645645645644,
|
820 |
+
"grad_norm": 0.3565851151943207,
|
821 |
+
"learning_rate": 1.9330297527148246e-05,
|
822 |
+
"loss": 0.3273,
|
823 |
+
"step": 114
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.46046046046046046,
|
827 |
+
"grad_norm": 0.3502778112888336,
|
828 |
+
"learning_rate": 1.9314443125345606e-05,
|
829 |
+
"loss": 0.3331,
|
830 |
+
"step": 115
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.4644644644644645,
|
834 |
+
"grad_norm": 0.4017852544784546,
|
835 |
+
"learning_rate": 1.929840990290726e-05,
|
836 |
+
"loss": 0.3522,
|
837 |
+
"step": 116
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.46846846846846846,
|
841 |
+
"grad_norm": 0.354686975479126,
|
842 |
+
"learning_rate": 1.928219816764238e-05,
|
843 |
+
"loss": 0.3456,
|
844 |
+
"step": 117
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.4724724724724725,
|
848 |
+
"grad_norm": 0.34257611632347107,
|
849 |
+
"learning_rate": 1.9265808230787265e-05,
|
850 |
+
"loss": 0.3325,
|
851 |
+
"step": 118
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.47647647647647645,
|
855 |
+
"grad_norm": 0.3504616320133209,
|
856 |
+
"learning_rate": 1.9249240406999366e-05,
|
857 |
+
"loss": 0.3516,
|
858 |
+
"step": 119
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.4804804804804805,
|
862 |
+
"grad_norm": 0.36517202854156494,
|
863 |
+
"learning_rate": 1.9232495014351248e-05,
|
864 |
+
"loss": 0.3233,
|
865 |
+
"step": 120
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.4844844844844845,
|
869 |
+
"grad_norm": 0.33805495500564575,
|
870 |
+
"learning_rate": 1.921557237432447e-05,
|
871 |
+
"loss": 0.3261,
|
872 |
+
"step": 121
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.48848848848848847,
|
876 |
+
"grad_norm": 0.35013893246650696,
|
877 |
+
"learning_rate": 1.919847281180343e-05,
|
878 |
+
"loss": 0.3361,
|
879 |
+
"step": 122
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.4924924924924925,
|
883 |
+
"grad_norm": 0.3569040298461914,
|
884 |
+
"learning_rate": 1.9181196655069126e-05,
|
885 |
+
"loss": 0.33,
|
886 |
+
"step": 123
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.4964964964964965,
|
890 |
+
"grad_norm": 0.3355570137500763,
|
891 |
+
"learning_rate": 1.9163744235792845e-05,
|
892 |
+
"loss": 0.3263,
|
893 |
+
"step": 124
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.5005005005005005,
|
897 |
+
"grad_norm": 0.39212533831596375,
|
898 |
+
"learning_rate": 1.9146115889029793e-05,
|
899 |
+
"loss": 0.3671,
|
900 |
+
"step": 125
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.5045045045045045,
|
904 |
+
"grad_norm": 0.3458411395549774,
|
905 |
+
"learning_rate": 1.912831195321268e-05,
|
906 |
+
"loss": 0.3575,
|
907 |
+
"step": 126
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.5085085085085085,
|
911 |
+
"grad_norm": 0.3606933057308197,
|
912 |
+
"learning_rate": 1.9110332770145198e-05,
|
913 |
+
"loss": 0.342,
|
914 |
+
"step": 127
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.5125125125125125,
|
918 |
+
"grad_norm": 0.3897223472595215,
|
919 |
+
"learning_rate": 1.9092178684995487e-05,
|
920 |
+
"loss": 0.37,
|
921 |
+
"step": 128
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.5165165165165165,
|
925 |
+
"grad_norm": 0.30565860867500305,
|
926 |
+
"learning_rate": 1.9073850046289484e-05,
|
927 |
+
"loss": 0.3331,
|
928 |
+
"step": 129
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.5205205205205206,
|
932 |
+
"grad_norm": 0.3087623119354248,
|
933 |
+
"learning_rate": 1.9055347205904245e-05,
|
934 |
+
"loss": 0.322,
|
935 |
+
"step": 130
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.5245245245245245,
|
939 |
+
"grad_norm": 0.34453681111335754,
|
940 |
+
"learning_rate": 1.903667051906119e-05,
|
941 |
+
"loss": 0.3405,
|
942 |
+
"step": 131
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.5285285285285285,
|
946 |
+
"grad_norm": 0.32023486495018005,
|
947 |
+
"learning_rate": 1.901782034431927e-05,
|
948 |
+
"loss": 0.338,
|
949 |
+
"step": 132
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.5325325325325325,
|
953 |
+
"grad_norm": 0.37953877449035645,
|
954 |
+
"learning_rate": 1.8998797043568102e-05,
|
955 |
+
"loss": 0.3406,
|
956 |
+
"step": 133
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.5365365365365365,
|
960 |
+
"grad_norm": 0.3680444061756134,
|
961 |
+
"learning_rate": 1.8979600982021014e-05,
|
962 |
+
"loss": 0.324,
|
963 |
+
"step": 134
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.5405405405405406,
|
967 |
+
"grad_norm": 0.3368768095970154,
|
968 |
+
"learning_rate": 1.896023252820802e-05,
|
969 |
+
"loss": 0.3194,
|
970 |
+
"step": 135
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.5445445445445446,
|
974 |
+
"grad_norm": 0.37519025802612305,
|
975 |
+
"learning_rate": 1.8940692053968773e-05,
|
976 |
+
"loss": 0.3358,
|
977 |
+
"step": 136
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.5485485485485485,
|
981 |
+
"grad_norm": 0.33083492517471313,
|
982 |
+
"learning_rate": 1.89209799344454e-05,
|
983 |
+
"loss": 0.3202,
|
984 |
+
"step": 137
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.5525525525525525,
|
988 |
+
"grad_norm": 0.3258178234100342,
|
989 |
+
"learning_rate": 1.8901096548075305e-05,
|
990 |
+
"loss": 0.3186,
|
991 |
+
"step": 138
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.5565565565565566,
|
995 |
+
"grad_norm": 0.37846943736076355,
|
996 |
+
"learning_rate": 1.8881042276583924e-05,
|
997 |
+
"loss": 0.3563,
|
998 |
+
"step": 139
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.5605605605605606,
|
1002 |
+
"grad_norm": 0.35151371359825134,
|
1003 |
+
"learning_rate": 1.8860817504977374e-05,
|
1004 |
+
"loss": 0.337,
|
1005 |
+
"step": 140
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.5645645645645646,
|
1009 |
+
"grad_norm": 0.33033043146133423,
|
1010 |
+
"learning_rate": 1.8840422621535067e-05,
|
1011 |
+
"loss": 0.3042,
|
1012 |
+
"step": 141
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.5685685685685685,
|
1016 |
+
"grad_norm": 0.3724791705608368,
|
1017 |
+
"learning_rate": 1.881985801780225e-05,
|
1018 |
+
"loss": 0.3165,
|
1019 |
+
"step": 142
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.5725725725725725,
|
1023 |
+
"grad_norm": 0.355752170085907,
|
1024 |
+
"learning_rate": 1.8799124088582523e-05,
|
1025 |
+
"loss": 0.3693,
|
1026 |
+
"step": 143
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.5765765765765766,
|
1030 |
+
"grad_norm": 0.3422398567199707,
|
1031 |
+
"learning_rate": 1.8778221231930204e-05,
|
1032 |
+
"loss": 0.3121,
|
1033 |
+
"step": 144
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.5805805805805806,
|
1037 |
+
"grad_norm": 0.3716834783554077,
|
1038 |
+
"learning_rate": 1.8757149849142724e-05,
|
1039 |
+
"loss": 0.3338,
|
1040 |
+
"step": 145
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.5845845845845846,
|
1044 |
+
"grad_norm": 0.313723087310791,
|
1045 |
+
"learning_rate": 1.8735910344752925e-05,
|
1046 |
+
"loss": 0.3294,
|
1047 |
+
"step": 146
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.5885885885885885,
|
1051 |
+
"grad_norm": 0.33704790472984314,
|
1052 |
+
"learning_rate": 1.871450312652126e-05,
|
1053 |
+
"loss": 0.3425,
|
1054 |
+
"step": 147
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.5925925925925926,
|
1058 |
+
"grad_norm": 0.3442137837409973,
|
1059 |
+
"learning_rate": 1.8692928605428016e-05,
|
1060 |
+
"loss": 0.3243,
|
1061 |
+
"step": 148
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.5965965965965966,
|
1065 |
+
"grad_norm": 0.3326564133167267,
|
1066 |
+
"learning_rate": 1.8671187195665373e-05,
|
1067 |
+
"loss": 0.3548,
|
1068 |
+
"step": 149
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.6006006006006006,
|
1072 |
+
"grad_norm": 0.37658053636550903,
|
1073 |
+
"learning_rate": 1.8649279314629484e-05,
|
1074 |
+
"loss": 0.3545,
|
1075 |
+
"step": 150
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.6046046046046046,
|
1079 |
+
"grad_norm": 0.34806281328201294,
|
1080 |
+
"learning_rate": 1.862720538291245e-05,
|
1081 |
+
"loss": 0.3365,
|
1082 |
+
"step": 151
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.6086086086086087,
|
1086 |
+
"grad_norm": 0.3958812355995178,
|
1087 |
+
"learning_rate": 1.8604965824294253e-05,
|
1088 |
+
"loss": 0.3682,
|
1089 |
+
"step": 152
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.6126126126126126,
|
1093 |
+
"grad_norm": 0.34817248582839966,
|
1094 |
+
"learning_rate": 1.8582561065734602e-05,
|
1095 |
+
"loss": 0.3454,
|
1096 |
+
"step": 153
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.6166166166166166,
|
1100 |
+
"grad_norm": 0.3551209270954132,
|
1101 |
+
"learning_rate": 1.8559991537364767e-05,
|
1102 |
+
"loss": 0.3466,
|
1103 |
+
"step": 154
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 0.6206206206206206,
|
1107 |
+
"grad_norm": 0.34840643405914307,
|
1108 |
+
"learning_rate": 1.8537257672479293e-05,
|
1109 |
+
"loss": 0.3186,
|
1110 |
+
"step": 155
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 0.6246246246246246,
|
1114 |
+
"grad_norm": 0.3974769413471222,
|
1115 |
+
"learning_rate": 1.8514359907527693e-05,
|
1116 |
+
"loss": 0.32,
|
1117 |
+
"step": 156
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 0.6286286286286287,
|
1121 |
+
"grad_norm": 0.36330661177635193,
|
1122 |
+
"learning_rate": 1.8491298682106066e-05,
|
1123 |
+
"loss": 0.3261,
|
1124 |
+
"step": 157
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.6326326326326326,
|
1128 |
+
"grad_norm": 0.3402544856071472,
|
1129 |
+
"learning_rate": 1.8468074438948664e-05,
|
1130 |
+
"loss": 0.335,
|
1131 |
+
"step": 158
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.6366366366366366,
|
1135 |
+
"grad_norm": 0.3627852201461792,
|
1136 |
+
"learning_rate": 1.8444687623919388e-05,
|
1137 |
+
"loss": 0.318,
|
1138 |
+
"step": 159
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.6406406406406406,
|
1142 |
+
"grad_norm": 0.3495313823223114,
|
1143 |
+
"learning_rate": 1.842113868600322e-05,
|
1144 |
+
"loss": 0.3235,
|
1145 |
+
"step": 160
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 0.6446446446446447,
|
1149 |
+
"grad_norm": 0.34827110171318054,
|
1150 |
+
"learning_rate": 1.8397428077297622e-05,
|
1151 |
+
"loss": 0.335,
|
1152 |
+
"step": 161
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 0.6486486486486487,
|
1156 |
+
"grad_norm": 0.35586410760879517,
|
1157 |
+
"learning_rate": 1.837355625300383e-05,
|
1158 |
+
"loss": 0.3163,
|
1159 |
+
"step": 162
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 0.6526526526526526,
|
1163 |
+
"grad_norm": 0.3451946973800659,
|
1164 |
+
"learning_rate": 1.834952367141816e-05,
|
1165 |
+
"loss": 0.3317,
|
1166 |
+
"step": 163
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.6566566566566566,
|
1170 |
+
"grad_norm": 0.36004722118377686,
|
1171 |
+
"learning_rate": 1.8325330793923146e-05,
|
1172 |
+
"loss": 0.3313,
|
1173 |
+
"step": 164
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.6606606606606606,
|
1177 |
+
"grad_norm": 0.32603421807289124,
|
1178 |
+
"learning_rate": 1.8300978084978736e-05,
|
1179 |
+
"loss": 0.3266,
|
1180 |
+
"step": 165
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 0.6646646646646647,
|
1184 |
+
"grad_norm": 0.33803558349609375,
|
1185 |
+
"learning_rate": 1.8276466012113358e-05,
|
1186 |
+
"loss": 0.3263,
|
1187 |
+
"step": 166
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"epoch": 0.6646646646646647,
|
1191 |
+
"eval_loss": 0.3206555247306824,
|
1192 |
+
"eval_runtime": 5.9746,
|
1193 |
+
"eval_samples_per_second": 13.557,
|
1194 |
+
"eval_steps_per_second": 1.841,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.6686686686686687,
|
1199 |
+
"grad_norm": 0.34881776571273804,
|
1200 |
+
"learning_rate": 1.8251795045914922e-05,
|
1201 |
+
"loss": 0.3575,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.6726726726726727,
|
1206 |
+
"grad_norm": 0.3603871464729309,
|
1207 |
+
"learning_rate": 1.8226965660021836e-05,
|
1208 |
+
"loss": 0.3215,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.6766766766766766,
|
1213 |
+
"grad_norm": 0.3549259901046753,
|
1214 |
+
"learning_rate": 1.8201978331113855e-05,
|
1215 |
+
"loss": 0.3302,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.6806806806806807,
|
1220 |
+
"grad_norm": 0.3330039381980896,
|
1221 |
+
"learning_rate": 1.817683353890297e-05,
|
1222 |
+
"loss": 0.339,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 0.6846846846846847,
|
1227 |
+
"grad_norm": 0.4140745997428894,
|
1228 |
+
"learning_rate": 1.8151531766124186e-05,
|
1229 |
+
"loss": 0.4009,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.6886886886886887,
|
1234 |
+
"grad_norm": 0.3429993987083435,
|
1235 |
+
"learning_rate": 1.8126073498526254e-05,
|
1236 |
+
"loss": 0.3203,
|
1237 |
+
"step": 172
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.6926926926926927,
|
1241 |
+
"grad_norm": 0.3445993661880493,
|
1242 |
+
"learning_rate": 1.8100459224862336e-05,
|
1243 |
+
"loss": 0.3352,
|
1244 |
+
"step": 173
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.6966966966966966,
|
1248 |
+
"grad_norm": 0.3043835461139679,
|
1249 |
+
"learning_rate": 1.8074689436880643e-05,
|
1250 |
+
"loss": 0.3294,
|
1251 |
+
"step": 174
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.7007007007007007,
|
1255 |
+
"grad_norm": 0.3373521566390991,
|
1256 |
+
"learning_rate": 1.804876462931498e-05,
|
1257 |
+
"loss": 0.3204,
|
1258 |
+
"step": 175
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.7047047047047047,
|
1262 |
+
"grad_norm": 0.33019447326660156,
|
1263 |
+
"learning_rate": 1.8022685299875245e-05,
|
1264 |
+
"loss": 0.3339,
|
1265 |
+
"step": 176
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.7087087087087087,
|
1269 |
+
"grad_norm": 0.32447516918182373,
|
1270 |
+
"learning_rate": 1.799645194923788e-05,
|
1271 |
+
"loss": 0.3216,
|
1272 |
+
"step": 177
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.7127127127127127,
|
1276 |
+
"grad_norm": 0.3202582597732544,
|
1277 |
+
"learning_rate": 1.7970065081036266e-05,
|
1278 |
+
"loss": 0.3104,
|
1279 |
+
"step": 178
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.7167167167167167,
|
1283 |
+
"grad_norm": 0.3486015200614929,
|
1284 |
+
"learning_rate": 1.7943525201851038e-05,
|
1285 |
+
"loss": 0.3307,
|
1286 |
+
"step": 179
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.7207207207207207,
|
1290 |
+
"grad_norm": 0.36710435152053833,
|
1291 |
+
"learning_rate": 1.7916832821200375e-05,
|
1292 |
+
"loss": 0.3472,
|
1293 |
+
"step": 180
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.7247247247247247,
|
1297 |
+
"grad_norm": 0.347162127494812,
|
1298 |
+
"learning_rate": 1.7889988451530208e-05,
|
1299 |
+
"loss": 0.3358,
|
1300 |
+
"step": 181
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.7287287287287287,
|
1304 |
+
"grad_norm": 0.3109472692012787,
|
1305 |
+
"learning_rate": 1.7862992608204384e-05,
|
1306 |
+
"loss": 0.2959,
|
1307 |
+
"step": 182
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.7327327327327328,
|
1311 |
+
"grad_norm": 0.34007692337036133,
|
1312 |
+
"learning_rate": 1.783584580949477e-05,
|
1313 |
+
"loss": 0.3199,
|
1314 |
+
"step": 183
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.7367367367367368,
|
1318 |
+
"grad_norm": 0.31094032526016235,
|
1319 |
+
"learning_rate": 1.7808548576571314e-05,
|
1320 |
+
"loss": 0.315,
|
1321 |
+
"step": 184
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.7407407407407407,
|
1325 |
+
"grad_norm": 0.367898553609848,
|
1326 |
+
"learning_rate": 1.7781101433492026e-05,
|
1327 |
+
"loss": 0.346,
|
1328 |
+
"step": 185
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.7447447447447447,
|
1332 |
+
"grad_norm": 0.3379008173942566,
|
1333 |
+
"learning_rate": 1.7753504907192923e-05,
|
1334 |
+
"loss": 0.3299,
|
1335 |
+
"step": 186
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.7487487487487487,
|
1339 |
+
"grad_norm": 0.3236868977546692,
|
1340 |
+
"learning_rate": 1.7725759527477923e-05,
|
1341 |
+
"loss": 0.3081,
|
1342 |
+
"step": 187
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 0.7527527527527528,
|
1346 |
+
"grad_norm": 0.34538552165031433,
|
1347 |
+
"learning_rate": 1.769786582700864e-05,
|
1348 |
+
"loss": 0.3259,
|
1349 |
+
"step": 188
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.7567567567567568,
|
1353 |
+
"grad_norm": 0.3106057941913605,
|
1354 |
+
"learning_rate": 1.7669824341294203e-05,
|
1355 |
+
"loss": 0.3123,
|
1356 |
+
"step": 189
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.7607607607607607,
|
1360 |
+
"grad_norm": 0.3219281733036041,
|
1361 |
+
"learning_rate": 1.7641635608680942e-05,
|
1362 |
+
"loss": 0.3165,
|
1363 |
+
"step": 190
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 0.7647647647647647,
|
1367 |
+
"grad_norm": 0.3259471356868744,
|
1368 |
+
"learning_rate": 1.7613300170342073e-05,
|
1369 |
+
"loss": 0.3453,
|
1370 |
+
"step": 191
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.7687687687687688,
|
1374 |
+
"grad_norm": 0.33405622839927673,
|
1375 |
+
"learning_rate": 1.7584818570267287e-05,
|
1376 |
+
"loss": 0.3233,
|
1377 |
+
"step": 192
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.7727727727727728,
|
1381 |
+
"grad_norm": 0.3420588970184326,
|
1382 |
+
"learning_rate": 1.755619135525233e-05,
|
1383 |
+
"loss": 0.3229,
|
1384 |
+
"step": 193
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 0.7767767767767768,
|
1388 |
+
"grad_norm": 0.35447970032691956,
|
1389 |
+
"learning_rate": 1.7527419074888483e-05,
|
1390 |
+
"loss": 0.3356,
|
1391 |
+
"step": 194
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 0.7807807807807807,
|
1395 |
+
"grad_norm": 0.34441742300987244,
|
1396 |
+
"learning_rate": 1.749850228155203e-05,
|
1397 |
+
"loss": 0.3128,
|
1398 |
+
"step": 195
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 0.7847847847847848,
|
1402 |
+
"grad_norm": 0.33647745847702026,
|
1403 |
+
"learning_rate": 1.7469441530393652e-05,
|
1404 |
+
"loss": 0.334,
|
1405 |
+
"step": 196
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 0.7887887887887888,
|
1409 |
+
"grad_norm": 0.3477891981601715,
|
1410 |
+
"learning_rate": 1.7440237379327745e-05,
|
1411 |
+
"loss": 0.3535,
|
1412 |
+
"step": 197
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.7927927927927928,
|
1416 |
+
"grad_norm": 0.35994237661361694,
|
1417 |
+
"learning_rate": 1.7410890389021737e-05,
|
1418 |
+
"loss": 0.3133,
|
1419 |
+
"step": 198
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.7967967967967968,
|
1423 |
+
"grad_norm": 0.33523160219192505,
|
1424 |
+
"learning_rate": 1.7381401122885316e-05,
|
1425 |
+
"loss": 0.3403,
|
1426 |
+
"step": 199
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 0.8008008008008008,
|
1430 |
+
"grad_norm": 0.3123041093349457,
|
1431 |
+
"learning_rate": 1.7351770147059604e-05,
|
1432 |
+
"loss": 0.3148,
|
1433 |
+
"step": 200
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 0.8048048048048048,
|
1437 |
+
"grad_norm": 0.30986520648002625,
|
1438 |
+
"learning_rate": 1.7321998030406303e-05,
|
1439 |
+
"loss": 0.3327,
|
1440 |
+
"step": 201
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 0.8088088088088088,
|
1444 |
+
"grad_norm": 0.3334694504737854,
|
1445 |
+
"learning_rate": 1.729208534449676e-05,
|
1446 |
+
"loss": 0.3346,
|
1447 |
+
"step": 202
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"epoch": 0.8128128128128128,
|
1451 |
+
"grad_norm": 0.32513362169265747,
|
1452 |
+
"learning_rate": 1.7262032663601003e-05,
|
1453 |
+
"loss": 0.3137,
|
1454 |
+
"step": 203
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.8168168168168168,
|
1458 |
+
"grad_norm": 0.34156233072280884,
|
1459 |
+
"learning_rate": 1.723184056467671e-05,
|
1460 |
+
"loss": 0.3218,
|
1461 |
+
"step": 204
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.8208208208208209,
|
1465 |
+
"grad_norm": 0.32721707224845886,
|
1466 |
+
"learning_rate": 1.7201509627358143e-05,
|
1467 |
+
"loss": 0.3182,
|
1468 |
+
"step": 205
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"epoch": 0.8248248248248248,
|
1472 |
+
"grad_norm": 0.35413238406181335,
|
1473 |
+
"learning_rate": 1.7171040433945006e-05,
|
1474 |
+
"loss": 0.2949,
|
1475 |
+
"step": 206
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 0.8288288288288288,
|
1479 |
+
"grad_norm": 0.30575960874557495,
|
1480 |
+
"learning_rate": 1.7140433569391275e-05,
|
1481 |
+
"loss": 0.3267,
|
1482 |
+
"step": 207
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 0.8328328328328328,
|
1486 |
+
"grad_norm": 0.3090551793575287,
|
1487 |
+
"learning_rate": 1.710968962129396e-05,
|
1488 |
+
"loss": 0.3072,
|
1489 |
+
"step": 208
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 0.8368368368368369,
|
1493 |
+
"grad_norm": 0.30769091844558716,
|
1494 |
+
"learning_rate": 1.7078809179881847e-05,
|
1495 |
+
"loss": 0.3115,
|
1496 |
+
"step": 209
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.8408408408408409,
|
1500 |
+
"grad_norm": 0.2806401550769806,
|
1501 |
+
"learning_rate": 1.704779283800412e-05,
|
1502 |
+
"loss": 0.3172,
|
1503 |
+
"step": 210
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.8448448448448449,
|
1507 |
+
"grad_norm": 0.322110652923584,
|
1508 |
+
"learning_rate": 1.701664119111904e-05,
|
1509 |
+
"loss": 0.319,
|
1510 |
+
"step": 211
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 0.8488488488488488,
|
1514 |
+
"grad_norm": 0.3080562353134155,
|
1515 |
+
"learning_rate": 1.6985354837282462e-05,
|
1516 |
+
"loss": 0.3247,
|
1517 |
+
"step": 212
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 0.8528528528528528,
|
1521 |
+
"grad_norm": 0.3051875829696655,
|
1522 |
+
"learning_rate": 1.6953934377136375e-05,
|
1523 |
+
"loss": 0.3195,
|
1524 |
+
"step": 213
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 0.8568568568568569,
|
1528 |
+
"grad_norm": 0.31982743740081787,
|
1529 |
+
"learning_rate": 1.6922380413897382e-05,
|
1530 |
+
"loss": 0.3202,
|
1531 |
+
"step": 214
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 0.8608608608608609,
|
1535 |
+
"grad_norm": 0.3235834538936615,
|
1536 |
+
"learning_rate": 1.689069355334509e-05,
|
1537 |
+
"loss": 0.3532,
|
1538 |
+
"step": 215
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.8648648648648649,
|
1542 |
+
"grad_norm": 0.32920244336128235,
|
1543 |
+
"learning_rate": 1.6858874403810507e-05,
|
1544 |
+
"loss": 0.3412,
|
1545 |
+
"step": 216
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.8688688688688688,
|
1549 |
+
"grad_norm": 0.3245142102241516,
|
1550 |
+
"learning_rate": 1.682692357616435e-05,
|
1551 |
+
"loss": 0.3074,
|
1552 |
+
"step": 217
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 0.8728728728728729,
|
1556 |
+
"grad_norm": 0.30122387409210205,
|
1557 |
+
"learning_rate": 1.679484168380532e-05,
|
1558 |
+
"loss": 0.3166,
|
1559 |
+
"step": 218
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 0.8768768768768769,
|
1563 |
+
"grad_norm": 0.30446872115135193,
|
1564 |
+
"learning_rate": 1.676262934264832e-05,
|
1565 |
+
"loss": 0.3177,
|
1566 |
+
"step": 219
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 0.8808808808808809,
|
1570 |
+
"grad_norm": 0.3006502091884613,
|
1571 |
+
"learning_rate": 1.6730287171112652e-05,
|
1572 |
+
"loss": 0.3225,
|
1573 |
+
"step": 220
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 0.8848848848848849,
|
1577 |
+
"grad_norm": 0.33892446756362915,
|
1578 |
+
"learning_rate": 1.669781579011011e-05,
|
1579 |
+
"loss": 0.335,
|
1580 |
+
"step": 221
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.8888888888888888,
|
1584 |
+
"grad_norm": 0.34253889322280884,
|
1585 |
+
"learning_rate": 1.666521582303309e-05,
|
1586 |
+
"loss": 0.3329,
|
1587 |
+
"step": 222
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.8928928928928929,
|
1591 |
+
"grad_norm": 0.291759729385376,
|
1592 |
+
"learning_rate": 1.6632487895742612e-05,
|
1593 |
+
"loss": 0.3173,
|
1594 |
+
"step": 223
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 0.8968968968968969,
|
1598 |
+
"grad_norm": 0.3063089847564697,
|
1599 |
+
"learning_rate": 1.6599632636556292e-05,
|
1600 |
+
"loss": 0.3345,
|
1601 |
+
"step": 224
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 0.9009009009009009,
|
1605 |
+
"grad_norm": 0.30597245693206787,
|
1606 |
+
"learning_rate": 1.6566650676236307e-05,
|
1607 |
+
"loss": 0.3435,
|
1608 |
+
"step": 225
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 0.9049049049049049,
|
1612 |
+
"grad_norm": 0.3654542863368988,
|
1613 |
+
"learning_rate": 1.653354264797725e-05,
|
1614 |
+
"loss": 0.32,
|
1615 |
+
"step": 226
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 0.908908908908909,
|
1619 |
+
"grad_norm": 0.30520570278167725,
|
1620 |
+
"learning_rate": 1.6500309187394005e-05,
|
1621 |
+
"loss": 0.3099,
|
1622 |
+
"step": 227
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.9129129129129129,
|
1626 |
+
"grad_norm": 0.3210243582725525,
|
1627 |
+
"learning_rate": 1.6466950932509532e-05,
|
1628 |
+
"loss": 0.316,
|
1629 |
+
"step": 228
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.9169169169169169,
|
1633 |
+
"grad_norm": 0.316346138715744,
|
1634 |
+
"learning_rate": 1.643346852374261e-05,
|
1635 |
+
"loss": 0.2977,
|
1636 |
+
"step": 229
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 0.9209209209209209,
|
1640 |
+
"grad_norm": 0.3127054274082184,
|
1641 |
+
"learning_rate": 1.6399862603895563e-05,
|
1642 |
+
"loss": 0.2942,
|
1643 |
+
"step": 230
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 0.924924924924925,
|
1647 |
+
"grad_norm": 0.3078126013278961,
|
1648 |
+
"learning_rate": 1.6366133818141893e-05,
|
1649 |
+
"loss": 0.3008,
|
1650 |
+
"step": 231
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 0.928928928928929,
|
1654 |
+
"grad_norm": 0.3247736096382141,
|
1655 |
+
"learning_rate": 1.633228281401392e-05,
|
1656 |
+
"loss": 0.3142,
|
1657 |
+
"step": 232
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 0.9329329329329329,
|
1661 |
+
"grad_norm": 0.3431578576564789,
|
1662 |
+
"learning_rate": 1.6298310241390326e-05,
|
1663 |
+
"loss": 0.3093,
|
1664 |
+
"step": 233
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.9369369369369369,
|
1668 |
+
"grad_norm": 0.31279513239860535,
|
1669 |
+
"learning_rate": 1.6264216752483697e-05,
|
1670 |
+
"loss": 0.3175,
|
1671 |
+
"step": 234
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.9409409409409409,
|
1675 |
+
"grad_norm": 0.33988532423973083,
|
1676 |
+
"learning_rate": 1.6230003001828e-05,
|
1677 |
+
"loss": 0.324,
|
1678 |
+
"step": 235
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 0.944944944944945,
|
1682 |
+
"grad_norm": 0.3213682472705841,
|
1683 |
+
"learning_rate": 1.6195669646266003e-05,
|
1684 |
+
"loss": 0.3321,
|
1685 |
+
"step": 236
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 0.948948948948949,
|
1689 |
+
"grad_norm": 0.357149213552475,
|
1690 |
+
"learning_rate": 1.616121734493668e-05,
|
1691 |
+
"loss": 0.3342,
|
1692 |
+
"step": 237
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 0.9529529529529529,
|
1696 |
+
"grad_norm": 0.31976473331451416,
|
1697 |
+
"learning_rate": 1.6126646759262548e-05,
|
1698 |
+
"loss": 0.3181,
|
1699 |
+
"step": 238
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 0.9569569569569569,
|
1703 |
+
"grad_norm": 0.328274130821228,
|
1704 |
+
"learning_rate": 1.609195855293697e-05,
|
1705 |
+
"loss": 0.3161,
|
1706 |
+
"step": 239
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.960960960960961,
|
1710 |
+
"grad_norm": 0.3303963840007782,
|
1711 |
+
"learning_rate": 1.6057153391911422e-05,
|
1712 |
+
"loss": 0.3076,
|
1713 |
+
"step": 240
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.964964964964965,
|
1717 |
+
"grad_norm": 0.34692683815956116,
|
1718 |
+
"learning_rate": 1.6022231944382693e-05,
|
1719 |
+
"loss": 0.3351,
|
1720 |
+
"step": 241
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 0.968968968968969,
|
1724 |
+
"grad_norm": 0.3468174636363983,
|
1725 |
+
"learning_rate": 1.598719488078007e-05,
|
1726 |
+
"loss": 0.3224,
|
1727 |
+
"step": 242
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 0.972972972972973,
|
1731 |
+
"grad_norm": 0.3575330972671509,
|
1732 |
+
"learning_rate": 1.5952042873752463e-05,
|
1733 |
+
"loss": 0.3189,
|
1734 |
+
"step": 243
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 0.9769769769769769,
|
1738 |
+
"grad_norm": 0.35199496150016785,
|
1739 |
+
"learning_rate": 1.5916776598155478e-05,
|
1740 |
+
"loss": 0.3515,
|
1741 |
+
"step": 244
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 0.980980980980981,
|
1745 |
+
"grad_norm": 0.34917882084846497,
|
1746 |
+
"learning_rate": 1.5881396731038493e-05,
|
1747 |
+
"loss": 0.3354,
|
1748 |
+
"step": 245
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 0.984984984984985,
|
1752 |
+
"grad_norm": 0.32909733057022095,
|
1753 |
+
"learning_rate": 1.584590395163162e-05,
|
1754 |
+
"loss": 0.3009,
|
1755 |
+
"step": 246
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.988988988988989,
|
1759 |
+
"grad_norm": 0.3109247088432312,
|
1760 |
+
"learning_rate": 1.5810298941332696e-05,
|
1761 |
+
"loss": 0.3164,
|
1762 |
+
"step": 247
|
1763 |
+
},
|
1764 |
+
{
|
1765 |
+
"epoch": 0.992992992992993,
|
1766 |
+
"grad_norm": 0.30618447065353394,
|
1767 |
+
"learning_rate": 1.5774582383694196e-05,
|
1768 |
+
"loss": 0.2923,
|
1769 |
+
"step": 248
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 0.996996996996997,
|
1773 |
+
"grad_norm": 0.32330596446990967,
|
1774 |
+
"learning_rate": 1.5738754964410084e-05,
|
1775 |
+
"loss": 0.3213,
|
1776 |
+
"step": 249
|
1777 |
+
},
|
1778 |
+
{
|
1779 |
+
"epoch": 0.996996996996997,
|
1780 |
+
"eval_loss": 0.304058700799942,
|
1781 |
+
"eval_runtime": 6.1571,
|
1782 |
+
"eval_samples_per_second": 13.156,
|
1783 |
+
"eval_steps_per_second": 1.787,
|
1784 |
+
"step": 249
|
1785 |
+
}
|
1786 |
+
],
|
1787 |
+
"logging_steps": 1,
|
1788 |
+
"max_steps": 747,
|
1789 |
+
"num_input_tokens_seen": 0,
|
1790 |
+
"num_train_epochs": 3,
|
1791 |
+
"save_steps": 249,
|
1792 |
+
"stateful_callbacks": {
|
1793 |
+
"TrainerControl": {
|
1794 |
+
"args": {
|
1795 |
+
"should_epoch_stop": false,
|
1796 |
+
"should_evaluate": false,
|
1797 |
+
"should_log": false,
|
1798 |
+
"should_save": true,
|
1799 |
+
"should_training_stop": false
|
1800 |
+
},
|
1801 |
+
"attributes": {}
|
1802 |
+
}
|
1803 |
+
},
|
1804 |
+
"total_flos": 4.146380399234253e+17,
|
1805 |
+
"train_batch_size": 8,
|
1806 |
+
"trial_name": null,
|
1807 |
+
"trial_params": null
|
1808 |
+
}
|
3b-w-cot/checkpoint-249/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ae10bafaded3f1f05741f3f17290afb1efc74a263062c027a77525fa9902f1e
|
3 |
+
size 10744
|
3b-w-cot/checkpoint-249/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-w-cot/checkpoint-249/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
3b-w-cot/checkpoint-498/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
3b-w-cot/checkpoint-498/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.3",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
3b-w-cot/checkpoint-498/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.3"
|
14 |
+
}
|
3b-w-cot/checkpoint-498/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step497
|
3b-w-cot/checkpoint-498/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-w-cot/checkpoint-498/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a482673aeb9035cfc2e8a145055294d02953cff436fcd5b63164f9b40fc9adf
|
3 |
+
size 4957560304
|
3b-w-cot/checkpoint-498/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e832a210ed1cb3d1081c2621ce9afe15bc8f73253d8d03114ccdfd08679c29cd
|
3 |
+
size 1836696752
|
3b-w-cot/checkpoint-498/model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6794207232
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
3b-w-cot/checkpoint-498/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91bd7f619e4cd37883f469c08e90105c4d218fd82ffc43ae58fa9fdbcc37fce5
|
3 |
+
size 14512
|
3b-w-cot/checkpoint-498/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b0a7593f9ab52bf47328c6d50954dce1fcd69866aa6f5f35851aef7f7af3899
|
3 |
+
size 14512
|
3b-w-cot/checkpoint-498/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4826800cd376d53466d2abcda597b68ee000b75ad68cf3b3811bc19eb99665f
|
3 |
+
size 1064
|
3b-w-cot/checkpoint-498/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
3b-w-cot/checkpoint-498/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
3b-w-cot/checkpoint-498/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
3b-w-cot/checkpoint-498/trainer_state.json
ADDED
@@ -0,0 +1,3575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.992992992992993,
|
5 |
+
"eval_steps": 83,
|
6 |
+
"global_step": 498,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.004004004004004004,
|
13 |
+
"grad_norm": 6.739165782928467,
|
14 |
+
"learning_rate": 6.666666666666667e-07,
|
15 |
+
"loss": 1.4163,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.004004004004004004,
|
20 |
+
"eval_loss": 1.4217944145202637,
|
21 |
+
"eval_runtime": 5.678,
|
22 |
+
"eval_samples_per_second": 14.266,
|
23 |
+
"eval_steps_per_second": 1.937,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.008008008008008008,
|
28 |
+
"grad_norm": 6.897192001342773,
|
29 |
+
"learning_rate": 1.3333333333333334e-06,
|
30 |
+
"loss": 1.3767,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.012012012012012012,
|
35 |
+
"grad_norm": 6.74431037902832,
|
36 |
+
"learning_rate": 2.0000000000000003e-06,
|
37 |
+
"loss": 1.3848,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.016016016016016016,
|
42 |
+
"grad_norm": 6.999237537384033,
|
43 |
+
"learning_rate": 2.666666666666667e-06,
|
44 |
+
"loss": 1.4294,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.02002002002002002,
|
49 |
+
"grad_norm": 4.510103702545166,
|
50 |
+
"learning_rate": 3.3333333333333333e-06,
|
51 |
+
"loss": 1.2646,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.024024024024024024,
|
56 |
+
"grad_norm": 4.533900737762451,
|
57 |
+
"learning_rate": 4.000000000000001e-06,
|
58 |
+
"loss": 1.2563,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.028028028028028028,
|
63 |
+
"grad_norm": 3.565216541290283,
|
64 |
+
"learning_rate": 4.666666666666667e-06,
|
65 |
+
"loss": 1.1061,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.03203203203203203,
|
70 |
+
"grad_norm": 3.1937592029571533,
|
71 |
+
"learning_rate": 5.333333333333334e-06,
|
72 |
+
"loss": 1.0445,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.036036036036036036,
|
77 |
+
"grad_norm": 3.0942018032073975,
|
78 |
+
"learning_rate": 6e-06,
|
79 |
+
"loss": 0.8555,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.04004004004004004,
|
84 |
+
"grad_norm": 4.628591060638428,
|
85 |
+
"learning_rate": 6.666666666666667e-06,
|
86 |
+
"loss": 0.8539,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.044044044044044044,
|
91 |
+
"grad_norm": 5.402413845062256,
|
92 |
+
"learning_rate": 7.333333333333333e-06,
|
93 |
+
"loss": 0.7684,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.04804804804804805,
|
98 |
+
"grad_norm": 1.96303391456604,
|
99 |
+
"learning_rate": 8.000000000000001e-06,
|
100 |
+
"loss": 0.6347,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.05205205205205205,
|
105 |
+
"grad_norm": 1.33661687374115,
|
106 |
+
"learning_rate": 8.666666666666668e-06,
|
107 |
+
"loss": 0.6692,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.056056056056056056,
|
112 |
+
"grad_norm": 0.9704915285110474,
|
113 |
+
"learning_rate": 9.333333333333334e-06,
|
114 |
+
"loss": 0.6385,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.06006006006006006,
|
119 |
+
"grad_norm": 0.7543495893478394,
|
120 |
+
"learning_rate": 1e-05,
|
121 |
+
"loss": 0.5901,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.06406406406406406,
|
126 |
+
"grad_norm": 1.3593250513076782,
|
127 |
+
"learning_rate": 1.0666666666666667e-05,
|
128 |
+
"loss": 0.5645,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.06806806806806807,
|
133 |
+
"grad_norm": 1.147750735282898,
|
134 |
+
"learning_rate": 1.1333333333333334e-05,
|
135 |
+
"loss": 0.5508,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.07207207207207207,
|
140 |
+
"grad_norm": 0.8024477958679199,
|
141 |
+
"learning_rate": 1.2e-05,
|
142 |
+
"loss": 0.5282,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.07607607607607608,
|
147 |
+
"grad_norm": 0.7931386232376099,
|
148 |
+
"learning_rate": 1.2666666666666667e-05,
|
149 |
+
"loss": 0.4929,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.08008008008008008,
|
154 |
+
"grad_norm": 0.6702373623847961,
|
155 |
+
"learning_rate": 1.3333333333333333e-05,
|
156 |
+
"loss": 0.4868,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.08408408408408409,
|
161 |
+
"grad_norm": 0.747148871421814,
|
162 |
+
"learning_rate": 1.4e-05,
|
163 |
+
"loss": 0.4857,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.08808808808808809,
|
168 |
+
"grad_norm": 0.5935061573982239,
|
169 |
+
"learning_rate": 1.4666666666666666e-05,
|
170 |
+
"loss": 0.4908,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.0920920920920921,
|
175 |
+
"grad_norm": 0.5696635842323303,
|
176 |
+
"learning_rate": 1.5333333333333334e-05,
|
177 |
+
"loss": 0.4437,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.0960960960960961,
|
182 |
+
"grad_norm": 0.5861401557922363,
|
183 |
+
"learning_rate": 1.6000000000000003e-05,
|
184 |
+
"loss": 0.4442,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.1001001001001001,
|
189 |
+
"grad_norm": 0.5833226442337036,
|
190 |
+
"learning_rate": 1.6666666666666667e-05,
|
191 |
+
"loss": 0.4585,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1041041041041041,
|
196 |
+
"grad_norm": 0.48214447498321533,
|
197 |
+
"learning_rate": 1.7333333333333336e-05,
|
198 |
+
"loss": 0.3994,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.10810810810810811,
|
203 |
+
"grad_norm": 0.49264758825302124,
|
204 |
+
"learning_rate": 1.8e-05,
|
205 |
+
"loss": 0.4609,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.11211211211211211,
|
210 |
+
"grad_norm": 0.5025641322135925,
|
211 |
+
"learning_rate": 1.866666666666667e-05,
|
212 |
+
"loss": 0.4816,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.11611611611611612,
|
217 |
+
"grad_norm": 0.46342933177948,
|
218 |
+
"learning_rate": 1.9333333333333333e-05,
|
219 |
+
"loss": 0.4435,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.12012012012012012,
|
224 |
+
"grad_norm": 0.46523571014404297,
|
225 |
+
"learning_rate": 2e-05,
|
226 |
+
"loss": 0.4208,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.12412412412412413,
|
231 |
+
"grad_norm": 0.4298263192176819,
|
232 |
+
"learning_rate": 1.9999904008949705e-05,
|
233 |
+
"loss": 0.4137,
|
234 |
+
"step": 31
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.12812812812812813,
|
238 |
+
"grad_norm": 0.43352752923965454,
|
239 |
+
"learning_rate": 1.999961603764167e-05,
|
240 |
+
"loss": 0.4096,
|
241 |
+
"step": 32
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.13213213213213212,
|
245 |
+
"grad_norm": 0.4369907081127167,
|
246 |
+
"learning_rate": 1.9999136091604433e-05,
|
247 |
+
"loss": 0.4128,
|
248 |
+
"step": 33
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.13613613613613615,
|
252 |
+
"grad_norm": 0.4188078045845032,
|
253 |
+
"learning_rate": 1.99984641800521e-05,
|
254 |
+
"loss": 0.4171,
|
255 |
+
"step": 34
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.14014014014014015,
|
259 |
+
"grad_norm": 0.4548235237598419,
|
260 |
+
"learning_rate": 1.9997600315884166e-05,
|
261 |
+
"loss": 0.4236,
|
262 |
+
"step": 35
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.14414414414414414,
|
266 |
+
"grad_norm": 0.4751495122909546,
|
267 |
+
"learning_rate": 1.999654451568528e-05,
|
268 |
+
"loss": 0.438,
|
269 |
+
"step": 36
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.14814814814814814,
|
273 |
+
"grad_norm": 0.4333605170249939,
|
274 |
+
"learning_rate": 1.9995296799724914e-05,
|
275 |
+
"loss": 0.4208,
|
276 |
+
"step": 37
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.15215215215215216,
|
280 |
+
"grad_norm": 0.48084449768066406,
|
281 |
+
"learning_rate": 1.999385719195698e-05,
|
282 |
+
"loss": 0.3969,
|
283 |
+
"step": 38
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.15615615615615616,
|
287 |
+
"grad_norm": 0.42627257108688354,
|
288 |
+
"learning_rate": 1.9992225720019377e-05,
|
289 |
+
"loss": 0.4503,
|
290 |
+
"step": 39
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.16016016016016016,
|
294 |
+
"grad_norm": 0.41883718967437744,
|
295 |
+
"learning_rate": 1.9990402415233436e-05,
|
296 |
+
"loss": 0.4322,
|
297 |
+
"step": 40
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.16416416416416416,
|
301 |
+
"grad_norm": 0.39587706327438354,
|
302 |
+
"learning_rate": 1.998838731260335e-05,
|
303 |
+
"loss": 0.3841,
|
304 |
+
"step": 41
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.16816816816816818,
|
308 |
+
"grad_norm": 0.40334609150886536,
|
309 |
+
"learning_rate": 1.9986180450815485e-05,
|
310 |
+
"loss": 0.3737,
|
311 |
+
"step": 42
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.17217217217217218,
|
315 |
+
"grad_norm": 0.3715899884700775,
|
316 |
+
"learning_rate": 1.9983781872237634e-05,
|
317 |
+
"loss": 0.387,
|
318 |
+
"step": 43
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.17617617617617617,
|
322 |
+
"grad_norm": 0.38875311613082886,
|
323 |
+
"learning_rate": 1.9981191622918217e-05,
|
324 |
+
"loss": 0.3695,
|
325 |
+
"step": 44
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.18018018018018017,
|
329 |
+
"grad_norm": 0.39087679982185364,
|
330 |
+
"learning_rate": 1.997840975258538e-05,
|
331 |
+
"loss": 0.3934,
|
332 |
+
"step": 45
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.1841841841841842,
|
336 |
+
"grad_norm": 0.41504260897636414,
|
337 |
+
"learning_rate": 1.9975436314646052e-05,
|
338 |
+
"loss": 0.3769,
|
339 |
+
"step": 46
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1881881881881882,
|
343 |
+
"grad_norm": 0.36994805932044983,
|
344 |
+
"learning_rate": 1.9972271366184922e-05,
|
345 |
+
"loss": 0.3807,
|
346 |
+
"step": 47
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.1921921921921922,
|
350 |
+
"grad_norm": 0.39996904134750366,
|
351 |
+
"learning_rate": 1.996891496796334e-05,
|
352 |
+
"loss": 0.3903,
|
353 |
+
"step": 48
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.1961961961961962,
|
357 |
+
"grad_norm": 0.3904661536216736,
|
358 |
+
"learning_rate": 1.9965367184418138e-05,
|
359 |
+
"loss": 0.3785,
|
360 |
+
"step": 49
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.2002002002002002,
|
364 |
+
"grad_norm": 0.39596742391586304,
|
365 |
+
"learning_rate": 1.9961628083660406e-05,
|
366 |
+
"loss": 0.3806,
|
367 |
+
"step": 50
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.2042042042042042,
|
371 |
+
"grad_norm": 0.39424648880958557,
|
372 |
+
"learning_rate": 1.9957697737474198e-05,
|
373 |
+
"loss": 0.3736,
|
374 |
+
"step": 51
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.2082082082082082,
|
378 |
+
"grad_norm": 0.41719183325767517,
|
379 |
+
"learning_rate": 1.9953576221315116e-05,
|
380 |
+
"loss": 0.4023,
|
381 |
+
"step": 52
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.2122122122122122,
|
385 |
+
"grad_norm": 0.3773253262042999,
|
386 |
+
"learning_rate": 1.9949263614308894e-05,
|
387 |
+
"loss": 0.396,
|
388 |
+
"step": 53
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.21621621621621623,
|
392 |
+
"grad_norm": 0.4236510992050171,
|
393 |
+
"learning_rate": 1.994475999924987e-05,
|
394 |
+
"loss": 0.4032,
|
395 |
+
"step": 54
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.22022022022022023,
|
399 |
+
"grad_norm": 0.3507007360458374,
|
400 |
+
"learning_rate": 1.9940065462599394e-05,
|
401 |
+
"loss": 0.3615,
|
402 |
+
"step": 55
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.22422422422422422,
|
406 |
+
"grad_norm": 0.45851731300354004,
|
407 |
+
"learning_rate": 1.9935180094484164e-05,
|
408 |
+
"loss": 0.3402,
|
409 |
+
"step": 56
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.22822822822822822,
|
413 |
+
"grad_norm": 0.36239954829216003,
|
414 |
+
"learning_rate": 1.99301039886945e-05,
|
415 |
+
"loss": 0.3668,
|
416 |
+
"step": 57
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.23223223223223224,
|
420 |
+
"grad_norm": 0.3855980634689331,
|
421 |
+
"learning_rate": 1.992483724268255e-05,
|
422 |
+
"loss": 0.3575,
|
423 |
+
"step": 58
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.23623623623623624,
|
427 |
+
"grad_norm": 0.4716965854167938,
|
428 |
+
"learning_rate": 1.9919379957560413e-05,
|
429 |
+
"loss": 0.3532,
|
430 |
+
"step": 59
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.24024024024024024,
|
434 |
+
"grad_norm": 0.45167747139930725,
|
435 |
+
"learning_rate": 1.991373223809819e-05,
|
436 |
+
"loss": 0.3537,
|
437 |
+
"step": 60
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.24424424424424424,
|
441 |
+
"grad_norm": 0.420512855052948,
|
442 |
+
"learning_rate": 1.990789419272199e-05,
|
443 |
+
"loss": 0.3471,
|
444 |
+
"step": 61
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.24824824824824826,
|
448 |
+
"grad_norm": 0.4863167107105255,
|
449 |
+
"learning_rate": 1.9901865933511834e-05,
|
450 |
+
"loss": 0.3741,
|
451 |
+
"step": 62
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.25225225225225223,
|
455 |
+
"grad_norm": 0.39653480052948,
|
456 |
+
"learning_rate": 1.9895647576199507e-05,
|
457 |
+
"loss": 0.3799,
|
458 |
+
"step": 63
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.25625625625625625,
|
462 |
+
"grad_norm": 0.38418489694595337,
|
463 |
+
"learning_rate": 1.988923924016634e-05,
|
464 |
+
"loss": 0.3577,
|
465 |
+
"step": 64
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.2602602602602603,
|
469 |
+
"grad_norm": 0.39798790216445923,
|
470 |
+
"learning_rate": 1.988264104844091e-05,
|
471 |
+
"loss": 0.3581,
|
472 |
+
"step": 65
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.26426426426426425,
|
476 |
+
"grad_norm": 0.41135266423225403,
|
477 |
+
"learning_rate": 1.987585312769669e-05,
|
478 |
+
"loss": 0.3306,
|
479 |
+
"step": 66
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.2682682682682683,
|
483 |
+
"grad_norm": 0.36515921354293823,
|
484 |
+
"learning_rate": 1.9868875608249613e-05,
|
485 |
+
"loss": 0.3628,
|
486 |
+
"step": 67
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.2722722722722723,
|
490 |
+
"grad_norm": 0.4733300507068634,
|
491 |
+
"learning_rate": 1.986170862405556e-05,
|
492 |
+
"loss": 0.3733,
|
493 |
+
"step": 68
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.27627627627627627,
|
497 |
+
"grad_norm": 0.4218703806400299,
|
498 |
+
"learning_rate": 1.98543523127078e-05,
|
499 |
+
"loss": 0.371,
|
500 |
+
"step": 69
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.2802802802802803,
|
504 |
+
"grad_norm": 0.35307836532592773,
|
505 |
+
"learning_rate": 1.984680681543434e-05,
|
506 |
+
"loss": 0.3568,
|
507 |
+
"step": 70
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.28428428428428426,
|
511 |
+
"grad_norm": 0.4475674629211426,
|
512 |
+
"learning_rate": 1.9839072277095222e-05,
|
513 |
+
"loss": 0.3828,
|
514 |
+
"step": 71
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.2882882882882883,
|
518 |
+
"grad_norm": 0.37015393376350403,
|
519 |
+
"learning_rate": 1.9831148846179743e-05,
|
520 |
+
"loss": 0.3426,
|
521 |
+
"step": 72
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.2922922922922923,
|
525 |
+
"grad_norm": 0.39532360434532166,
|
526 |
+
"learning_rate": 1.9823036674803585e-05,
|
527 |
+
"loss": 0.3545,
|
528 |
+
"step": 73
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.2962962962962963,
|
532 |
+
"grad_norm": 0.349669486284256,
|
533 |
+
"learning_rate": 1.981473591870593e-05,
|
534 |
+
"loss": 0.332,
|
535 |
+
"step": 74
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.3003003003003003,
|
539 |
+
"grad_norm": 0.356000155210495,
|
540 |
+
"learning_rate": 1.980624673724643e-05,
|
541 |
+
"loss": 0.3684,
|
542 |
+
"step": 75
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.30430430430430433,
|
546 |
+
"grad_norm": 0.4027644693851471,
|
547 |
+
"learning_rate": 1.9797569293402174e-05,
|
548 |
+
"loss": 0.3592,
|
549 |
+
"step": 76
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.3083083083083083,
|
553 |
+
"grad_norm": 0.36116528511047363,
|
554 |
+
"learning_rate": 1.9788703753764554e-05,
|
555 |
+
"loss": 0.3433,
|
556 |
+
"step": 77
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.3123123123123123,
|
560 |
+
"grad_norm": 0.35624876618385315,
|
561 |
+
"learning_rate": 1.9779650288536057e-05,
|
562 |
+
"loss": 0.3541,
|
563 |
+
"step": 78
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.3163163163163163,
|
567 |
+
"grad_norm": 0.360287606716156,
|
568 |
+
"learning_rate": 1.977040907152702e-05,
|
569 |
+
"loss": 0.3413,
|
570 |
+
"step": 79
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.3203203203203203,
|
574 |
+
"grad_norm": 0.412913978099823,
|
575 |
+
"learning_rate": 1.976098028015226e-05,
|
576 |
+
"loss": 0.4142,
|
577 |
+
"step": 80
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.32432432432432434,
|
581 |
+
"grad_norm": 0.38022932410240173,
|
582 |
+
"learning_rate": 1.9751364095427694e-05,
|
583 |
+
"loss": 0.3481,
|
584 |
+
"step": 81
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.3283283283283283,
|
588 |
+
"grad_norm": 0.37813299894332886,
|
589 |
+
"learning_rate": 1.974156070196686e-05,
|
590 |
+
"loss": 0.3552,
|
591 |
+
"step": 82
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.33233233233233234,
|
595 |
+
"grad_norm": 0.3782276511192322,
|
596 |
+
"learning_rate": 1.973157028797737e-05,
|
597 |
+
"loss": 0.3799,
|
598 |
+
"step": 83
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.33233233233233234,
|
602 |
+
"eval_loss": 0.33762940764427185,
|
603 |
+
"eval_runtime": 6.2209,
|
604 |
+
"eval_samples_per_second": 13.021,
|
605 |
+
"eval_steps_per_second": 1.768,
|
606 |
+
"step": 83
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 0.33633633633633636,
|
610 |
+
"grad_norm": 0.3933849036693573,
|
611 |
+
"learning_rate": 1.9721393045257277e-05,
|
612 |
+
"loss": 0.3654,
|
613 |
+
"step": 84
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.34034034034034033,
|
617 |
+
"grad_norm": 0.35808295011520386,
|
618 |
+
"learning_rate": 1.9711029169191437e-05,
|
619 |
+
"loss": 0.3716,
|
620 |
+
"step": 85
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.34434434434434436,
|
624 |
+
"grad_norm": 0.3547224700450897,
|
625 |
+
"learning_rate": 1.970047885874771e-05,
|
626 |
+
"loss": 0.3397,
|
627 |
+
"step": 86
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.3483483483483483,
|
631 |
+
"grad_norm": 0.39883747696876526,
|
632 |
+
"learning_rate": 1.968974231647318e-05,
|
633 |
+
"loss": 0.3645,
|
634 |
+
"step": 87
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.35235235235235235,
|
638 |
+
"grad_norm": 0.3208443224430084,
|
639 |
+
"learning_rate": 1.9678819748490236e-05,
|
640 |
+
"loss": 0.3431,
|
641 |
+
"step": 88
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.3563563563563564,
|
645 |
+
"grad_norm": 0.34669625759124756,
|
646 |
+
"learning_rate": 1.9667711364492638e-05,
|
647 |
+
"loss": 0.3613,
|
648 |
+
"step": 89
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.36036036036036034,
|
652 |
+
"grad_norm": 0.35220351815223694,
|
653 |
+
"learning_rate": 1.965641737774147e-05,
|
654 |
+
"loss": 0.3499,
|
655 |
+
"step": 90
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.36436436436436437,
|
659 |
+
"grad_norm": 0.3566596806049347,
|
660 |
+
"learning_rate": 1.9644938005061062e-05,
|
661 |
+
"loss": 0.3204,
|
662 |
+
"step": 91
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.3683683683683684,
|
666 |
+
"grad_norm": 0.3813494145870209,
|
667 |
+
"learning_rate": 1.9633273466834826e-05,
|
668 |
+
"loss": 0.3526,
|
669 |
+
"step": 92
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.37237237237237236,
|
673 |
+
"grad_norm": 0.3885157108306885,
|
674 |
+
"learning_rate": 1.9621423987001013e-05,
|
675 |
+
"loss": 0.3562,
|
676 |
+
"step": 93
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.3763763763763764,
|
680 |
+
"grad_norm": 0.4746558666229248,
|
681 |
+
"learning_rate": 1.960938979304843e-05,
|
682 |
+
"loss": 0.3509,
|
683 |
+
"step": 94
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.38038038038038036,
|
687 |
+
"grad_norm": 0.3623756766319275,
|
688 |
+
"learning_rate": 1.959717111601206e-05,
|
689 |
+
"loss": 0.371,
|
690 |
+
"step": 95
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.3843843843843844,
|
694 |
+
"grad_norm": 0.3858593702316284,
|
695 |
+
"learning_rate": 1.9584768190468624e-05,
|
696 |
+
"loss": 0.3551,
|
697 |
+
"step": 96
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.3883883883883884,
|
701 |
+
"grad_norm": 0.3788565993309021,
|
702 |
+
"learning_rate": 1.95721812545321e-05,
|
703 |
+
"loss": 0.3669,
|
704 |
+
"step": 97
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.3923923923923924,
|
708 |
+
"grad_norm": 0.3729216754436493,
|
709 |
+
"learning_rate": 1.9559410549849125e-05,
|
710 |
+
"loss": 0.34,
|
711 |
+
"step": 98
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.3963963963963964,
|
715 |
+
"grad_norm": 0.44008028507232666,
|
716 |
+
"learning_rate": 1.9546456321594374e-05,
|
717 |
+
"loss": 0.3898,
|
718 |
+
"step": 99
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.4004004004004004,
|
722 |
+
"grad_norm": 0.36622726917266846,
|
723 |
+
"learning_rate": 1.9533318818465837e-05,
|
724 |
+
"loss": 0.3624,
|
725 |
+
"step": 100
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.4044044044044044,
|
729 |
+
"grad_norm": 0.39071497321128845,
|
730 |
+
"learning_rate": 1.9519998292680062e-05,
|
731 |
+
"loss": 0.3518,
|
732 |
+
"step": 101
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 0.4084084084084084,
|
736 |
+
"grad_norm": 0.40084153413772583,
|
737 |
+
"learning_rate": 1.9506494999967298e-05,
|
738 |
+
"loss": 0.3483,
|
739 |
+
"step": 102
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.4124124124124124,
|
743 |
+
"grad_norm": 0.3901435434818268,
|
744 |
+
"learning_rate": 1.94928091995666e-05,
|
745 |
+
"loss": 0.3577,
|
746 |
+
"step": 103
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.4164164164164164,
|
750 |
+
"grad_norm": 0.34764233231544495,
|
751 |
+
"learning_rate": 1.9478941154220833e-05,
|
752 |
+
"loss": 0.3487,
|
753 |
+
"step": 104
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.42042042042042044,
|
757 |
+
"grad_norm": 0.4044027030467987,
|
758 |
+
"learning_rate": 1.9464891130171647e-05,
|
759 |
+
"loss": 0.3602,
|
760 |
+
"step": 105
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 0.4244244244244244,
|
764 |
+
"grad_norm": 0.3537923991680145,
|
765 |
+
"learning_rate": 1.9450659397154353e-05,
|
766 |
+
"loss": 0.3282,
|
767 |
+
"step": 106
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 0.42842842842842843,
|
771 |
+
"grad_norm": 0.35585689544677734,
|
772 |
+
"learning_rate": 1.9436246228392762e-05,
|
773 |
+
"loss": 0.361,
|
774 |
+
"step": 107
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.43243243243243246,
|
778 |
+
"grad_norm": 0.380585253238678,
|
779 |
+
"learning_rate": 1.94216519005939e-05,
|
780 |
+
"loss": 0.3218,
|
781 |
+
"step": 108
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.4364364364364364,
|
785 |
+
"grad_norm": 0.3388879597187042,
|
786 |
+
"learning_rate": 1.9406876693942747e-05,
|
787 |
+
"loss": 0.3563,
|
788 |
+
"step": 109
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.44044044044044045,
|
792 |
+
"grad_norm": 0.359130859375,
|
793 |
+
"learning_rate": 1.939192089209682e-05,
|
794 |
+
"loss": 0.3386,
|
795 |
+
"step": 110
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.4444444444444444,
|
799 |
+
"grad_norm": 0.35704970359802246,
|
800 |
+
"learning_rate": 1.9376784782180747e-05,
|
801 |
+
"loss": 0.3336,
|
802 |
+
"step": 111
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 0.44844844844844844,
|
806 |
+
"grad_norm": 0.3638094961643219,
|
807 |
+
"learning_rate": 1.9361468654780748e-05,
|
808 |
+
"loss": 0.3582,
|
809 |
+
"step": 112
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.45245245245245247,
|
813 |
+
"grad_norm": 0.3996574878692627,
|
814 |
+
"learning_rate": 1.9345972803939046e-05,
|
815 |
+
"loss": 0.3496,
|
816 |
+
"step": 113
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.45645645645645644,
|
820 |
+
"grad_norm": 0.3565851151943207,
|
821 |
+
"learning_rate": 1.9330297527148246e-05,
|
822 |
+
"loss": 0.3273,
|
823 |
+
"step": 114
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 0.46046046046046046,
|
827 |
+
"grad_norm": 0.3502778112888336,
|
828 |
+
"learning_rate": 1.9314443125345606e-05,
|
829 |
+
"loss": 0.3331,
|
830 |
+
"step": 115
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.4644644644644645,
|
834 |
+
"grad_norm": 0.4017852544784546,
|
835 |
+
"learning_rate": 1.929840990290726e-05,
|
836 |
+
"loss": 0.3522,
|
837 |
+
"step": 116
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.46846846846846846,
|
841 |
+
"grad_norm": 0.354686975479126,
|
842 |
+
"learning_rate": 1.928219816764238e-05,
|
843 |
+
"loss": 0.3456,
|
844 |
+
"step": 117
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 0.4724724724724725,
|
848 |
+
"grad_norm": 0.34257611632347107,
|
849 |
+
"learning_rate": 1.9265808230787265e-05,
|
850 |
+
"loss": 0.3325,
|
851 |
+
"step": 118
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.47647647647647645,
|
855 |
+
"grad_norm": 0.3504616320133209,
|
856 |
+
"learning_rate": 1.9249240406999366e-05,
|
857 |
+
"loss": 0.3516,
|
858 |
+
"step": 119
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 0.4804804804804805,
|
862 |
+
"grad_norm": 0.36517202854156494,
|
863 |
+
"learning_rate": 1.9232495014351248e-05,
|
864 |
+
"loss": 0.3233,
|
865 |
+
"step": 120
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.4844844844844845,
|
869 |
+
"grad_norm": 0.33805495500564575,
|
870 |
+
"learning_rate": 1.921557237432447e-05,
|
871 |
+
"loss": 0.3261,
|
872 |
+
"step": 121
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.48848848848848847,
|
876 |
+
"grad_norm": 0.35013893246650696,
|
877 |
+
"learning_rate": 1.919847281180343e-05,
|
878 |
+
"loss": 0.3361,
|
879 |
+
"step": 122
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.4924924924924925,
|
883 |
+
"grad_norm": 0.3569040298461914,
|
884 |
+
"learning_rate": 1.9181196655069126e-05,
|
885 |
+
"loss": 0.33,
|
886 |
+
"step": 123
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.4964964964964965,
|
890 |
+
"grad_norm": 0.3355570137500763,
|
891 |
+
"learning_rate": 1.9163744235792845e-05,
|
892 |
+
"loss": 0.3263,
|
893 |
+
"step": 124
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.5005005005005005,
|
897 |
+
"grad_norm": 0.39212533831596375,
|
898 |
+
"learning_rate": 1.9146115889029793e-05,
|
899 |
+
"loss": 0.3671,
|
900 |
+
"step": 125
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.5045045045045045,
|
904 |
+
"grad_norm": 0.3458411395549774,
|
905 |
+
"learning_rate": 1.912831195321268e-05,
|
906 |
+
"loss": 0.3575,
|
907 |
+
"step": 126
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.5085085085085085,
|
911 |
+
"grad_norm": 0.3606933057308197,
|
912 |
+
"learning_rate": 1.9110332770145198e-05,
|
913 |
+
"loss": 0.342,
|
914 |
+
"step": 127
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.5125125125125125,
|
918 |
+
"grad_norm": 0.3897223472595215,
|
919 |
+
"learning_rate": 1.9092178684995487e-05,
|
920 |
+
"loss": 0.37,
|
921 |
+
"step": 128
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.5165165165165165,
|
925 |
+
"grad_norm": 0.30565860867500305,
|
926 |
+
"learning_rate": 1.9073850046289484e-05,
|
927 |
+
"loss": 0.3331,
|
928 |
+
"step": 129
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.5205205205205206,
|
932 |
+
"grad_norm": 0.3087623119354248,
|
933 |
+
"learning_rate": 1.9055347205904245e-05,
|
934 |
+
"loss": 0.322,
|
935 |
+
"step": 130
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.5245245245245245,
|
939 |
+
"grad_norm": 0.34453681111335754,
|
940 |
+
"learning_rate": 1.903667051906119e-05,
|
941 |
+
"loss": 0.3405,
|
942 |
+
"step": 131
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.5285285285285285,
|
946 |
+
"grad_norm": 0.32023486495018005,
|
947 |
+
"learning_rate": 1.901782034431927e-05,
|
948 |
+
"loss": 0.338,
|
949 |
+
"step": 132
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"epoch": 0.5325325325325325,
|
953 |
+
"grad_norm": 0.37953877449035645,
|
954 |
+
"learning_rate": 1.8998797043568102e-05,
|
955 |
+
"loss": 0.3406,
|
956 |
+
"step": 133
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.5365365365365365,
|
960 |
+
"grad_norm": 0.3680444061756134,
|
961 |
+
"learning_rate": 1.8979600982021014e-05,
|
962 |
+
"loss": 0.324,
|
963 |
+
"step": 134
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.5405405405405406,
|
967 |
+
"grad_norm": 0.3368768095970154,
|
968 |
+
"learning_rate": 1.896023252820802e-05,
|
969 |
+
"loss": 0.3194,
|
970 |
+
"step": 135
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"epoch": 0.5445445445445446,
|
974 |
+
"grad_norm": 0.37519025802612305,
|
975 |
+
"learning_rate": 1.8940692053968773e-05,
|
976 |
+
"loss": 0.3358,
|
977 |
+
"step": 136
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.5485485485485485,
|
981 |
+
"grad_norm": 0.33083492517471313,
|
982 |
+
"learning_rate": 1.89209799344454e-05,
|
983 |
+
"loss": 0.3202,
|
984 |
+
"step": 137
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.5525525525525525,
|
988 |
+
"grad_norm": 0.3258178234100342,
|
989 |
+
"learning_rate": 1.8901096548075305e-05,
|
990 |
+
"loss": 0.3186,
|
991 |
+
"step": 138
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.5565565565565566,
|
995 |
+
"grad_norm": 0.37846943736076355,
|
996 |
+
"learning_rate": 1.8881042276583924e-05,
|
997 |
+
"loss": 0.3563,
|
998 |
+
"step": 139
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.5605605605605606,
|
1002 |
+
"grad_norm": 0.35151371359825134,
|
1003 |
+
"learning_rate": 1.8860817504977374e-05,
|
1004 |
+
"loss": 0.337,
|
1005 |
+
"step": 140
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.5645645645645646,
|
1009 |
+
"grad_norm": 0.33033043146133423,
|
1010 |
+
"learning_rate": 1.8840422621535067e-05,
|
1011 |
+
"loss": 0.3042,
|
1012 |
+
"step": 141
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 0.5685685685685685,
|
1016 |
+
"grad_norm": 0.3724791705608368,
|
1017 |
+
"learning_rate": 1.881985801780225e-05,
|
1018 |
+
"loss": 0.3165,
|
1019 |
+
"step": 142
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.5725725725725725,
|
1023 |
+
"grad_norm": 0.355752170085907,
|
1024 |
+
"learning_rate": 1.8799124088582523e-05,
|
1025 |
+
"loss": 0.3693,
|
1026 |
+
"step": 143
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.5765765765765766,
|
1030 |
+
"grad_norm": 0.3422398567199707,
|
1031 |
+
"learning_rate": 1.8778221231930204e-05,
|
1032 |
+
"loss": 0.3121,
|
1033 |
+
"step": 144
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.5805805805805806,
|
1037 |
+
"grad_norm": 0.3716834783554077,
|
1038 |
+
"learning_rate": 1.8757149849142724e-05,
|
1039 |
+
"loss": 0.3338,
|
1040 |
+
"step": 145
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.5845845845845846,
|
1044 |
+
"grad_norm": 0.313723087310791,
|
1045 |
+
"learning_rate": 1.8735910344752925e-05,
|
1046 |
+
"loss": 0.3294,
|
1047 |
+
"step": 146
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.5885885885885885,
|
1051 |
+
"grad_norm": 0.33704790472984314,
|
1052 |
+
"learning_rate": 1.871450312652126e-05,
|
1053 |
+
"loss": 0.3425,
|
1054 |
+
"step": 147
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 0.5925925925925926,
|
1058 |
+
"grad_norm": 0.3442137837409973,
|
1059 |
+
"learning_rate": 1.8692928605428016e-05,
|
1060 |
+
"loss": 0.3243,
|
1061 |
+
"step": 148
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 0.5965965965965966,
|
1065 |
+
"grad_norm": 0.3326564133167267,
|
1066 |
+
"learning_rate": 1.8671187195665373e-05,
|
1067 |
+
"loss": 0.3548,
|
1068 |
+
"step": 149
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"epoch": 0.6006006006006006,
|
1072 |
+
"grad_norm": 0.37658053636550903,
|
1073 |
+
"learning_rate": 1.8649279314629484e-05,
|
1074 |
+
"loss": 0.3545,
|
1075 |
+
"step": 150
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.6046046046046046,
|
1079 |
+
"grad_norm": 0.34806281328201294,
|
1080 |
+
"learning_rate": 1.862720538291245e-05,
|
1081 |
+
"loss": 0.3365,
|
1082 |
+
"step": 151
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.6086086086086087,
|
1086 |
+
"grad_norm": 0.3958812355995178,
|
1087 |
+
"learning_rate": 1.8604965824294253e-05,
|
1088 |
+
"loss": 0.3682,
|
1089 |
+
"step": 152
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.6126126126126126,
|
1093 |
+
"grad_norm": 0.34817248582839966,
|
1094 |
+
"learning_rate": 1.8582561065734602e-05,
|
1095 |
+
"loss": 0.3454,
|
1096 |
+
"step": 153
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"epoch": 0.6166166166166166,
|
1100 |
+
"grad_norm": 0.3551209270954132,
|
1101 |
+
"learning_rate": 1.8559991537364767e-05,
|
1102 |
+
"loss": 0.3466,
|
1103 |
+
"step": 154
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 0.6206206206206206,
|
1107 |
+
"grad_norm": 0.34840643405914307,
|
1108 |
+
"learning_rate": 1.8537257672479293e-05,
|
1109 |
+
"loss": 0.3186,
|
1110 |
+
"step": 155
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"epoch": 0.6246246246246246,
|
1114 |
+
"grad_norm": 0.3974769413471222,
|
1115 |
+
"learning_rate": 1.8514359907527693e-05,
|
1116 |
+
"loss": 0.32,
|
1117 |
+
"step": 156
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 0.6286286286286287,
|
1121 |
+
"grad_norm": 0.36330661177635193,
|
1122 |
+
"learning_rate": 1.8491298682106066e-05,
|
1123 |
+
"loss": 0.3261,
|
1124 |
+
"step": 157
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.6326326326326326,
|
1128 |
+
"grad_norm": 0.3402544856071472,
|
1129 |
+
"learning_rate": 1.8468074438948664e-05,
|
1130 |
+
"loss": 0.335,
|
1131 |
+
"step": 158
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 0.6366366366366366,
|
1135 |
+
"grad_norm": 0.3627852201461792,
|
1136 |
+
"learning_rate": 1.8444687623919388e-05,
|
1137 |
+
"loss": 0.318,
|
1138 |
+
"step": 159
|
1139 |
+
},
|
1140 |
+
{
|
1141 |
+
"epoch": 0.6406406406406406,
|
1142 |
+
"grad_norm": 0.3495313823223114,
|
1143 |
+
"learning_rate": 1.842113868600322e-05,
|
1144 |
+
"loss": 0.3235,
|
1145 |
+
"step": 160
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 0.6446446446446447,
|
1149 |
+
"grad_norm": 0.34827110171318054,
|
1150 |
+
"learning_rate": 1.8397428077297622e-05,
|
1151 |
+
"loss": 0.335,
|
1152 |
+
"step": 161
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 0.6486486486486487,
|
1156 |
+
"grad_norm": 0.35586410760879517,
|
1157 |
+
"learning_rate": 1.837355625300383e-05,
|
1158 |
+
"loss": 0.3163,
|
1159 |
+
"step": 162
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 0.6526526526526526,
|
1163 |
+
"grad_norm": 0.3451946973800659,
|
1164 |
+
"learning_rate": 1.834952367141816e-05,
|
1165 |
+
"loss": 0.3317,
|
1166 |
+
"step": 163
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.6566566566566566,
|
1170 |
+
"grad_norm": 0.36004722118377686,
|
1171 |
+
"learning_rate": 1.8325330793923146e-05,
|
1172 |
+
"loss": 0.3313,
|
1173 |
+
"step": 164
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.6606606606606606,
|
1177 |
+
"grad_norm": 0.32603421807289124,
|
1178 |
+
"learning_rate": 1.8300978084978736e-05,
|
1179 |
+
"loss": 0.3266,
|
1180 |
+
"step": 165
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 0.6646646646646647,
|
1184 |
+
"grad_norm": 0.33803558349609375,
|
1185 |
+
"learning_rate": 1.8276466012113358e-05,
|
1186 |
+
"loss": 0.3263,
|
1187 |
+
"step": 166
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"epoch": 0.6646646646646647,
|
1191 |
+
"eval_loss": 0.3206555247306824,
|
1192 |
+
"eval_runtime": 5.9746,
|
1193 |
+
"eval_samples_per_second": 13.557,
|
1194 |
+
"eval_steps_per_second": 1.841,
|
1195 |
+
"step": 166
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.6686686686686687,
|
1199 |
+
"grad_norm": 0.34881776571273804,
|
1200 |
+
"learning_rate": 1.8251795045914922e-05,
|
1201 |
+
"loss": 0.3575,
|
1202 |
+
"step": 167
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.6726726726726727,
|
1206 |
+
"grad_norm": 0.3603871464729309,
|
1207 |
+
"learning_rate": 1.8226965660021836e-05,
|
1208 |
+
"loss": 0.3215,
|
1209 |
+
"step": 168
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.6766766766766766,
|
1213 |
+
"grad_norm": 0.3549259901046753,
|
1214 |
+
"learning_rate": 1.8201978331113855e-05,
|
1215 |
+
"loss": 0.3302,
|
1216 |
+
"step": 169
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 0.6806806806806807,
|
1220 |
+
"grad_norm": 0.3330039381980896,
|
1221 |
+
"learning_rate": 1.817683353890297e-05,
|
1222 |
+
"loss": 0.339,
|
1223 |
+
"step": 170
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 0.6846846846846847,
|
1227 |
+
"grad_norm": 0.4140745997428894,
|
1228 |
+
"learning_rate": 1.8151531766124186e-05,
|
1229 |
+
"loss": 0.4009,
|
1230 |
+
"step": 171
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 0.6886886886886887,
|
1234 |
+
"grad_norm": 0.3429993987083435,
|
1235 |
+
"learning_rate": 1.8126073498526254e-05,
|
1236 |
+
"loss": 0.3203,
|
1237 |
+
"step": 172
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 0.6926926926926927,
|
1241 |
+
"grad_norm": 0.3445993661880493,
|
1242 |
+
"learning_rate": 1.8100459224862336e-05,
|
1243 |
+
"loss": 0.3352,
|
1244 |
+
"step": 173
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.6966966966966966,
|
1248 |
+
"grad_norm": 0.3043835461139679,
|
1249 |
+
"learning_rate": 1.8074689436880643e-05,
|
1250 |
+
"loss": 0.3294,
|
1251 |
+
"step": 174
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.7007007007007007,
|
1255 |
+
"grad_norm": 0.3373521566390991,
|
1256 |
+
"learning_rate": 1.804876462931498e-05,
|
1257 |
+
"loss": 0.3204,
|
1258 |
+
"step": 175
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.7047047047047047,
|
1262 |
+
"grad_norm": 0.33019447326660156,
|
1263 |
+
"learning_rate": 1.8022685299875245e-05,
|
1264 |
+
"loss": 0.3339,
|
1265 |
+
"step": 176
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.7087087087087087,
|
1269 |
+
"grad_norm": 0.32447516918182373,
|
1270 |
+
"learning_rate": 1.799645194923788e-05,
|
1271 |
+
"loss": 0.3216,
|
1272 |
+
"step": 177
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.7127127127127127,
|
1276 |
+
"grad_norm": 0.3202582597732544,
|
1277 |
+
"learning_rate": 1.7970065081036266e-05,
|
1278 |
+
"loss": 0.3104,
|
1279 |
+
"step": 178
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.7167167167167167,
|
1283 |
+
"grad_norm": 0.3486015200614929,
|
1284 |
+
"learning_rate": 1.7943525201851038e-05,
|
1285 |
+
"loss": 0.3307,
|
1286 |
+
"step": 179
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.7207207207207207,
|
1290 |
+
"grad_norm": 0.36710435152053833,
|
1291 |
+
"learning_rate": 1.7916832821200375e-05,
|
1292 |
+
"loss": 0.3472,
|
1293 |
+
"step": 180
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.7247247247247247,
|
1297 |
+
"grad_norm": 0.347162127494812,
|
1298 |
+
"learning_rate": 1.7889988451530208e-05,
|
1299 |
+
"loss": 0.3358,
|
1300 |
+
"step": 181
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.7287287287287287,
|
1304 |
+
"grad_norm": 0.3109472692012787,
|
1305 |
+
"learning_rate": 1.7862992608204384e-05,
|
1306 |
+
"loss": 0.2959,
|
1307 |
+
"step": 182
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.7327327327327328,
|
1311 |
+
"grad_norm": 0.34007692337036133,
|
1312 |
+
"learning_rate": 1.783584580949477e-05,
|
1313 |
+
"loss": 0.3199,
|
1314 |
+
"step": 183
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.7367367367367368,
|
1318 |
+
"grad_norm": 0.31094032526016235,
|
1319 |
+
"learning_rate": 1.7808548576571314e-05,
|
1320 |
+
"loss": 0.315,
|
1321 |
+
"step": 184
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.7407407407407407,
|
1325 |
+
"grad_norm": 0.367898553609848,
|
1326 |
+
"learning_rate": 1.7781101433492026e-05,
|
1327 |
+
"loss": 0.346,
|
1328 |
+
"step": 185
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.7447447447447447,
|
1332 |
+
"grad_norm": 0.3379008173942566,
|
1333 |
+
"learning_rate": 1.7753504907192923e-05,
|
1334 |
+
"loss": 0.3299,
|
1335 |
+
"step": 186
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.7487487487487487,
|
1339 |
+
"grad_norm": 0.3236868977546692,
|
1340 |
+
"learning_rate": 1.7725759527477923e-05,
|
1341 |
+
"loss": 0.3081,
|
1342 |
+
"step": 187
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 0.7527527527527528,
|
1346 |
+
"grad_norm": 0.34538552165031433,
|
1347 |
+
"learning_rate": 1.769786582700864e-05,
|
1348 |
+
"loss": 0.3259,
|
1349 |
+
"step": 188
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.7567567567567568,
|
1353 |
+
"grad_norm": 0.3106057941913605,
|
1354 |
+
"learning_rate": 1.7669824341294203e-05,
|
1355 |
+
"loss": 0.3123,
|
1356 |
+
"step": 189
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.7607607607607607,
|
1360 |
+
"grad_norm": 0.3219281733036041,
|
1361 |
+
"learning_rate": 1.7641635608680942e-05,
|
1362 |
+
"loss": 0.3165,
|
1363 |
+
"step": 190
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 0.7647647647647647,
|
1367 |
+
"grad_norm": 0.3259471356868744,
|
1368 |
+
"learning_rate": 1.7613300170342073e-05,
|
1369 |
+
"loss": 0.3453,
|
1370 |
+
"step": 191
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.7687687687687688,
|
1374 |
+
"grad_norm": 0.33405622839927673,
|
1375 |
+
"learning_rate": 1.7584818570267287e-05,
|
1376 |
+
"loss": 0.3233,
|
1377 |
+
"step": 192
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.7727727727727728,
|
1381 |
+
"grad_norm": 0.3420588970184326,
|
1382 |
+
"learning_rate": 1.755619135525233e-05,
|
1383 |
+
"loss": 0.3229,
|
1384 |
+
"step": 193
|
1385 |
+
},
|
1386 |
+
{
|
1387 |
+
"epoch": 0.7767767767767768,
|
1388 |
+
"grad_norm": 0.35447970032691956,
|
1389 |
+
"learning_rate": 1.7527419074888483e-05,
|
1390 |
+
"loss": 0.3356,
|
1391 |
+
"step": 194
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 0.7807807807807807,
|
1395 |
+
"grad_norm": 0.34441742300987244,
|
1396 |
+
"learning_rate": 1.749850228155203e-05,
|
1397 |
+
"loss": 0.3128,
|
1398 |
+
"step": 195
|
1399 |
+
},
|
1400 |
+
{
|
1401 |
+
"epoch": 0.7847847847847848,
|
1402 |
+
"grad_norm": 0.33647745847702026,
|
1403 |
+
"learning_rate": 1.7469441530393652e-05,
|
1404 |
+
"loss": 0.334,
|
1405 |
+
"step": 196
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"epoch": 0.7887887887887888,
|
1409 |
+
"grad_norm": 0.3477891981601715,
|
1410 |
+
"learning_rate": 1.7440237379327745e-05,
|
1411 |
+
"loss": 0.3535,
|
1412 |
+
"step": 197
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.7927927927927928,
|
1416 |
+
"grad_norm": 0.35994237661361694,
|
1417 |
+
"learning_rate": 1.7410890389021737e-05,
|
1418 |
+
"loss": 0.3133,
|
1419 |
+
"step": 198
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.7967967967967968,
|
1423 |
+
"grad_norm": 0.33523160219192505,
|
1424 |
+
"learning_rate": 1.7381401122885316e-05,
|
1425 |
+
"loss": 0.3403,
|
1426 |
+
"step": 199
|
1427 |
+
},
|
1428 |
+
{
|
1429 |
+
"epoch": 0.8008008008008008,
|
1430 |
+
"grad_norm": 0.3123041093349457,
|
1431 |
+
"learning_rate": 1.7351770147059604e-05,
|
1432 |
+
"loss": 0.3148,
|
1433 |
+
"step": 200
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 0.8048048048048048,
|
1437 |
+
"grad_norm": 0.30986520648002625,
|
1438 |
+
"learning_rate": 1.7321998030406303e-05,
|
1439 |
+
"loss": 0.3327,
|
1440 |
+
"step": 201
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 0.8088088088088088,
|
1444 |
+
"grad_norm": 0.3334694504737854,
|
1445 |
+
"learning_rate": 1.729208534449676e-05,
|
1446 |
+
"loss": 0.3346,
|
1447 |
+
"step": 202
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"epoch": 0.8128128128128128,
|
1451 |
+
"grad_norm": 0.32513362169265747,
|
1452 |
+
"learning_rate": 1.7262032663601003e-05,
|
1453 |
+
"loss": 0.3137,
|
1454 |
+
"step": 203
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.8168168168168168,
|
1458 |
+
"grad_norm": 0.34156233072280884,
|
1459 |
+
"learning_rate": 1.723184056467671e-05,
|
1460 |
+
"loss": 0.3218,
|
1461 |
+
"step": 204
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 0.8208208208208209,
|
1465 |
+
"grad_norm": 0.32721707224845886,
|
1466 |
+
"learning_rate": 1.7201509627358143e-05,
|
1467 |
+
"loss": 0.3182,
|
1468 |
+
"step": 205
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"epoch": 0.8248248248248248,
|
1472 |
+
"grad_norm": 0.35413238406181335,
|
1473 |
+
"learning_rate": 1.7171040433945006e-05,
|
1474 |
+
"loss": 0.2949,
|
1475 |
+
"step": 206
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 0.8288288288288288,
|
1479 |
+
"grad_norm": 0.30575960874557495,
|
1480 |
+
"learning_rate": 1.7140433569391275e-05,
|
1481 |
+
"loss": 0.3267,
|
1482 |
+
"step": 207
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 0.8328328328328328,
|
1486 |
+
"grad_norm": 0.3090551793575287,
|
1487 |
+
"learning_rate": 1.710968962129396e-05,
|
1488 |
+
"loss": 0.3072,
|
1489 |
+
"step": 208
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 0.8368368368368369,
|
1493 |
+
"grad_norm": 0.30769091844558716,
|
1494 |
+
"learning_rate": 1.7078809179881847e-05,
|
1495 |
+
"loss": 0.3115,
|
1496 |
+
"step": 209
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.8408408408408409,
|
1500 |
+
"grad_norm": 0.2806401550769806,
|
1501 |
+
"learning_rate": 1.704779283800412e-05,
|
1502 |
+
"loss": 0.3172,
|
1503 |
+
"step": 210
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.8448448448448449,
|
1507 |
+
"grad_norm": 0.322110652923584,
|
1508 |
+
"learning_rate": 1.701664119111904e-05,
|
1509 |
+
"loss": 0.319,
|
1510 |
+
"step": 211
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 0.8488488488488488,
|
1514 |
+
"grad_norm": 0.3080562353134155,
|
1515 |
+
"learning_rate": 1.6985354837282462e-05,
|
1516 |
+
"loss": 0.3247,
|
1517 |
+
"step": 212
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 0.8528528528528528,
|
1521 |
+
"grad_norm": 0.3051875829696655,
|
1522 |
+
"learning_rate": 1.6953934377136375e-05,
|
1523 |
+
"loss": 0.3195,
|
1524 |
+
"step": 213
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 0.8568568568568569,
|
1528 |
+
"grad_norm": 0.31982743740081787,
|
1529 |
+
"learning_rate": 1.6922380413897382e-05,
|
1530 |
+
"loss": 0.3202,
|
1531 |
+
"step": 214
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 0.8608608608608609,
|
1535 |
+
"grad_norm": 0.3235834538936615,
|
1536 |
+
"learning_rate": 1.689069355334509e-05,
|
1537 |
+
"loss": 0.3532,
|
1538 |
+
"step": 215
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.8648648648648649,
|
1542 |
+
"grad_norm": 0.32920244336128235,
|
1543 |
+
"learning_rate": 1.6858874403810507e-05,
|
1544 |
+
"loss": 0.3412,
|
1545 |
+
"step": 216
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 0.8688688688688688,
|
1549 |
+
"grad_norm": 0.3245142102241516,
|
1550 |
+
"learning_rate": 1.682692357616435e-05,
|
1551 |
+
"loss": 0.3074,
|
1552 |
+
"step": 217
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 0.8728728728728729,
|
1556 |
+
"grad_norm": 0.30122387409210205,
|
1557 |
+
"learning_rate": 1.679484168380532e-05,
|
1558 |
+
"loss": 0.3166,
|
1559 |
+
"step": 218
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 0.8768768768768769,
|
1563 |
+
"grad_norm": 0.30446872115135193,
|
1564 |
+
"learning_rate": 1.676262934264832e-05,
|
1565 |
+
"loss": 0.3177,
|
1566 |
+
"step": 219
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 0.8808808808808809,
|
1570 |
+
"grad_norm": 0.3006502091884613,
|
1571 |
+
"learning_rate": 1.6730287171112652e-05,
|
1572 |
+
"loss": 0.3225,
|
1573 |
+
"step": 220
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 0.8848848848848849,
|
1577 |
+
"grad_norm": 0.33892446756362915,
|
1578 |
+
"learning_rate": 1.669781579011011e-05,
|
1579 |
+
"loss": 0.335,
|
1580 |
+
"step": 221
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.8888888888888888,
|
1584 |
+
"grad_norm": 0.34253889322280884,
|
1585 |
+
"learning_rate": 1.666521582303309e-05,
|
1586 |
+
"loss": 0.3329,
|
1587 |
+
"step": 222
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 0.8928928928928929,
|
1591 |
+
"grad_norm": 0.291759729385376,
|
1592 |
+
"learning_rate": 1.6632487895742612e-05,
|
1593 |
+
"loss": 0.3173,
|
1594 |
+
"step": 223
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 0.8968968968968969,
|
1598 |
+
"grad_norm": 0.3063089847564697,
|
1599 |
+
"learning_rate": 1.6599632636556292e-05,
|
1600 |
+
"loss": 0.3345,
|
1601 |
+
"step": 224
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 0.9009009009009009,
|
1605 |
+
"grad_norm": 0.30597245693206787,
|
1606 |
+
"learning_rate": 1.6566650676236307e-05,
|
1607 |
+
"loss": 0.3435,
|
1608 |
+
"step": 225
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 0.9049049049049049,
|
1612 |
+
"grad_norm": 0.3654542863368988,
|
1613 |
+
"learning_rate": 1.653354264797725e-05,
|
1614 |
+
"loss": 0.32,
|
1615 |
+
"step": 226
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 0.908908908908909,
|
1619 |
+
"grad_norm": 0.30520570278167725,
|
1620 |
+
"learning_rate": 1.6500309187394005e-05,
|
1621 |
+
"loss": 0.3099,
|
1622 |
+
"step": 227
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.9129129129129129,
|
1626 |
+
"grad_norm": 0.3210243582725525,
|
1627 |
+
"learning_rate": 1.6466950932509532e-05,
|
1628 |
+
"loss": 0.316,
|
1629 |
+
"step": 228
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.9169169169169169,
|
1633 |
+
"grad_norm": 0.316346138715744,
|
1634 |
+
"learning_rate": 1.643346852374261e-05,
|
1635 |
+
"loss": 0.2977,
|
1636 |
+
"step": 229
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 0.9209209209209209,
|
1640 |
+
"grad_norm": 0.3127054274082184,
|
1641 |
+
"learning_rate": 1.6399862603895563e-05,
|
1642 |
+
"loss": 0.2942,
|
1643 |
+
"step": 230
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 0.924924924924925,
|
1647 |
+
"grad_norm": 0.3078126013278961,
|
1648 |
+
"learning_rate": 1.6366133818141893e-05,
|
1649 |
+
"loss": 0.3008,
|
1650 |
+
"step": 231
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 0.928928928928929,
|
1654 |
+
"grad_norm": 0.3247736096382141,
|
1655 |
+
"learning_rate": 1.633228281401392e-05,
|
1656 |
+
"loss": 0.3142,
|
1657 |
+
"step": 232
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 0.9329329329329329,
|
1661 |
+
"grad_norm": 0.3431578576564789,
|
1662 |
+
"learning_rate": 1.6298310241390326e-05,
|
1663 |
+
"loss": 0.3093,
|
1664 |
+
"step": 233
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.9369369369369369,
|
1668 |
+
"grad_norm": 0.31279513239860535,
|
1669 |
+
"learning_rate": 1.6264216752483697e-05,
|
1670 |
+
"loss": 0.3175,
|
1671 |
+
"step": 234
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 0.9409409409409409,
|
1675 |
+
"grad_norm": 0.33988532423973083,
|
1676 |
+
"learning_rate": 1.6230003001828e-05,
|
1677 |
+
"loss": 0.324,
|
1678 |
+
"step": 235
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 0.944944944944945,
|
1682 |
+
"grad_norm": 0.3213682472705841,
|
1683 |
+
"learning_rate": 1.6195669646266003e-05,
|
1684 |
+
"loss": 0.3321,
|
1685 |
+
"step": 236
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 0.948948948948949,
|
1689 |
+
"grad_norm": 0.357149213552475,
|
1690 |
+
"learning_rate": 1.616121734493668e-05,
|
1691 |
+
"loss": 0.3342,
|
1692 |
+
"step": 237
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 0.9529529529529529,
|
1696 |
+
"grad_norm": 0.31976473331451416,
|
1697 |
+
"learning_rate": 1.6126646759262548e-05,
|
1698 |
+
"loss": 0.3181,
|
1699 |
+
"step": 238
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 0.9569569569569569,
|
1703 |
+
"grad_norm": 0.328274130821228,
|
1704 |
+
"learning_rate": 1.609195855293697e-05,
|
1705 |
+
"loss": 0.3161,
|
1706 |
+
"step": 239
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.960960960960961,
|
1710 |
+
"grad_norm": 0.3303963840007782,
|
1711 |
+
"learning_rate": 1.6057153391911422e-05,
|
1712 |
+
"loss": 0.3076,
|
1713 |
+
"step": 240
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.964964964964965,
|
1717 |
+
"grad_norm": 0.34692683815956116,
|
1718 |
+
"learning_rate": 1.6022231944382693e-05,
|
1719 |
+
"loss": 0.3351,
|
1720 |
+
"step": 241
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 0.968968968968969,
|
1724 |
+
"grad_norm": 0.3468174636363983,
|
1725 |
+
"learning_rate": 1.598719488078007e-05,
|
1726 |
+
"loss": 0.3224,
|
1727 |
+
"step": 242
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 0.972972972972973,
|
1731 |
+
"grad_norm": 0.3575330972671509,
|
1732 |
+
"learning_rate": 1.5952042873752463e-05,
|
1733 |
+
"loss": 0.3189,
|
1734 |
+
"step": 243
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 0.9769769769769769,
|
1738 |
+
"grad_norm": 0.35199496150016785,
|
1739 |
+
"learning_rate": 1.5916776598155478e-05,
|
1740 |
+
"loss": 0.3515,
|
1741 |
+
"step": 244
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 0.980980980980981,
|
1745 |
+
"grad_norm": 0.34917882084846497,
|
1746 |
+
"learning_rate": 1.5881396731038493e-05,
|
1747 |
+
"loss": 0.3354,
|
1748 |
+
"step": 245
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 0.984984984984985,
|
1752 |
+
"grad_norm": 0.32909733057022095,
|
1753 |
+
"learning_rate": 1.584590395163162e-05,
|
1754 |
+
"loss": 0.3009,
|
1755 |
+
"step": 246
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 0.988988988988989,
|
1759 |
+
"grad_norm": 0.3109247088432312,
|
1760 |
+
"learning_rate": 1.5810298941332696e-05,
|
1761 |
+
"loss": 0.3164,
|
1762 |
+
"step": 247
|
1763 |
+
},
|
1764 |
+
{
|
1765 |
+
"epoch": 0.992992992992993,
|
1766 |
+
"grad_norm": 0.30618447065353394,
|
1767 |
+
"learning_rate": 1.5774582383694196e-05,
|
1768 |
+
"loss": 0.2923,
|
1769 |
+
"step": 248
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 0.996996996996997,
|
1773 |
+
"grad_norm": 0.32330596446990967,
|
1774 |
+
"learning_rate": 1.5738754964410084e-05,
|
1775 |
+
"loss": 0.3213,
|
1776 |
+
"step": 249
|
1777 |
+
},
|
1778 |
+
{
|
1779 |
+
"epoch": 0.996996996996997,
|
1780 |
+
"eval_loss": 0.304058700799942,
|
1781 |
+
"eval_runtime": 6.1571,
|
1782 |
+
"eval_samples_per_second": 13.156,
|
1783 |
+
"eval_steps_per_second": 1.787,
|
1784 |
+
"step": 249
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 1.0,
|
1788 |
+
"grad_norm": 0.32330596446990967,
|
1789 |
+
"learning_rate": 1.5702817371302684e-05,
|
1790 |
+
"loss": 0.3252,
|
1791 |
+
"step": 250
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 1.004004004004004,
|
1795 |
+
"grad_norm": 0.1360868364572525,
|
1796 |
+
"learning_rate": 1.5666770294309467e-05,
|
1797 |
+
"loss": 0.2529,
|
1798 |
+
"step": 251
|
1799 |
+
},
|
1800 |
+
{
|
1801 |
+
"epoch": 1.008008008008008,
|
1802 |
+
"grad_norm": 0.1317552626132965,
|
1803 |
+
"learning_rate": 1.5630614425469776e-05,
|
1804 |
+
"loss": 0.238,
|
1805 |
+
"step": 252
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 1.012012012012012,
|
1809 |
+
"grad_norm": 0.12073508650064468,
|
1810 |
+
"learning_rate": 1.5594350458911586e-05,
|
1811 |
+
"loss": 0.2528,
|
1812 |
+
"step": 253
|
1813 |
+
},
|
1814 |
+
{
|
1815 |
+
"epoch": 1.016016016016016,
|
1816 |
+
"grad_norm": 0.13055667281150818,
|
1817 |
+
"learning_rate": 1.5557979090838136e-05,
|
1818 |
+
"loss": 0.2519,
|
1819 |
+
"step": 254
|
1820 |
+
},
|
1821 |
+
{
|
1822 |
+
"epoch": 1.02002002002002,
|
1823 |
+
"grad_norm": 0.1332577019929886,
|
1824 |
+
"learning_rate": 1.55215010195146e-05,
|
1825 |
+
"loss": 0.2483,
|
1826 |
+
"step": 255
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 1.024024024024024,
|
1830 |
+
"grad_norm": 0.14699849486351013,
|
1831 |
+
"learning_rate": 1.5484916945254642e-05,
|
1832 |
+
"loss": 0.2513,
|
1833 |
+
"step": 256
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 1.028028028028028,
|
1837 |
+
"grad_norm": 0.12925884127616882,
|
1838 |
+
"learning_rate": 1.5448227570407012e-05,
|
1839 |
+
"loss": 0.2426,
|
1840 |
+
"step": 257
|
1841 |
+
},
|
1842 |
+
{
|
1843 |
+
"epoch": 1.032032032032032,
|
1844 |
+
"grad_norm": 0.14779068529605865,
|
1845 |
+
"learning_rate": 1.5411433599342038e-05,
|
1846 |
+
"loss": 0.2453,
|
1847 |
+
"step": 258
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"epoch": 1.0360360360360361,
|
1851 |
+
"grad_norm": 0.11822405457496643,
|
1852 |
+
"learning_rate": 1.5374535738438105e-05,
|
1853 |
+
"loss": 0.2399,
|
1854 |
+
"step": 259
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 1.04004004004004,
|
1858 |
+
"grad_norm": 0.13844071328639984,
|
1859 |
+
"learning_rate": 1.5337534696068088e-05,
|
1860 |
+
"loss": 0.2291,
|
1861 |
+
"step": 260
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 1.044044044044044,
|
1865 |
+
"grad_norm": 0.12040767818689346,
|
1866 |
+
"learning_rate": 1.5300431182585777e-05,
|
1867 |
+
"loss": 0.2331,
|
1868 |
+
"step": 261
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 1.048048048048048,
|
1872 |
+
"grad_norm": 0.1192127987742424,
|
1873 |
+
"learning_rate": 1.5263225910312222e-05,
|
1874 |
+
"loss": 0.2424,
|
1875 |
+
"step": 262
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 1.052052052052052,
|
1879 |
+
"grad_norm": 0.14699995517730713,
|
1880 |
+
"learning_rate": 1.5225919593522049e-05,
|
1881 |
+
"loss": 0.2595,
|
1882 |
+
"step": 263
|
1883 |
+
},
|
1884 |
+
{
|
1885 |
+
"epoch": 1.0560560560560561,
|
1886 |
+
"grad_norm": 0.1524747908115387,
|
1887 |
+
"learning_rate": 1.5188512948429765e-05,
|
1888 |
+
"loss": 0.232,
|
1889 |
+
"step": 264
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 1.06006006006006,
|
1893 |
+
"grad_norm": 0.12861889600753784,
|
1894 |
+
"learning_rate": 1.5151006693176005e-05,
|
1895 |
+
"loss": 0.245,
|
1896 |
+
"step": 265
|
1897 |
+
},
|
1898 |
+
{
|
1899 |
+
"epoch": 1.064064064064064,
|
1900 |
+
"grad_norm": 0.15535978972911835,
|
1901 |
+
"learning_rate": 1.5113401547813732e-05,
|
1902 |
+
"loss": 0.2277,
|
1903 |
+
"step": 266
|
1904 |
+
},
|
1905 |
+
{
|
1906 |
+
"epoch": 1.068068068068068,
|
1907 |
+
"grad_norm": 0.1480809897184372,
|
1908 |
+
"learning_rate": 1.5075698234294424e-05,
|
1909 |
+
"loss": 0.2265,
|
1910 |
+
"step": 267
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 1.072072072072072,
|
1914 |
+
"grad_norm": 0.1344352513551712,
|
1915 |
+
"learning_rate": 1.5037897476454219e-05,
|
1916 |
+
"loss": 0.2397,
|
1917 |
+
"step": 268
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 1.0760760760760761,
|
1921 |
+
"grad_norm": 0.1348842978477478,
|
1922 |
+
"learning_rate": 1.5000000000000002e-05,
|
1923 |
+
"loss": 0.2443,
|
1924 |
+
"step": 269
|
1925 |
+
},
|
1926 |
+
{
|
1927 |
+
"epoch": 1.08008008008008,
|
1928 |
+
"grad_norm": 0.1489027589559555,
|
1929 |
+
"learning_rate": 1.496200653249549e-05,
|
1930 |
+
"loss": 0.2358,
|
1931 |
+
"step": 270
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 1.0840840840840842,
|
1935 |
+
"grad_norm": 0.1447959840297699,
|
1936 |
+
"learning_rate": 1.492391780334725e-05,
|
1937 |
+
"loss": 0.2416,
|
1938 |
+
"step": 271
|
1939 |
+
},
|
1940 |
+
{
|
1941 |
+
"epoch": 1.088088088088088,
|
1942 |
+
"grad_norm": 0.13745814561843872,
|
1943 |
+
"learning_rate": 1.4885734543790707e-05,
|
1944 |
+
"loss": 0.2494,
|
1945 |
+
"step": 272
|
1946 |
+
},
|
1947 |
+
{
|
1948 |
+
"epoch": 1.092092092092092,
|
1949 |
+
"grad_norm": 0.14297857880592346,
|
1950 |
+
"learning_rate": 1.4847457486876097e-05,
|
1951 |
+
"loss": 0.2383,
|
1952 |
+
"step": 273
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 1.0960960960960962,
|
1956 |
+
"grad_norm": 0.14657525718212128,
|
1957 |
+
"learning_rate": 1.4809087367454402e-05,
|
1958 |
+
"loss": 0.2339,
|
1959 |
+
"step": 274
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 1.1001001001001,
|
1963 |
+
"grad_norm": 0.13032834231853485,
|
1964 |
+
"learning_rate": 1.4770624922163233e-05,
|
1965 |
+
"loss": 0.2337,
|
1966 |
+
"step": 275
|
1967 |
+
},
|
1968 |
+
{
|
1969 |
+
"epoch": 1.1041041041041042,
|
1970 |
+
"grad_norm": 0.12887558341026306,
|
1971 |
+
"learning_rate": 1.4732070889412693e-05,
|
1972 |
+
"loss": 0.2461,
|
1973 |
+
"step": 276
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 1.1081081081081081,
|
1977 |
+
"grad_norm": 0.1498020589351654,
|
1978 |
+
"learning_rate": 1.4693426009371203e-05,
|
1979 |
+
"loss": 0.2622,
|
1980 |
+
"step": 277
|
1981 |
+
},
|
1982 |
+
{
|
1983 |
+
"epoch": 1.112112112112112,
|
1984 |
+
"grad_norm": 0.13239090144634247,
|
1985 |
+
"learning_rate": 1.4654691023951289e-05,
|
1986 |
+
"loss": 0.2422,
|
1987 |
+
"step": 278
|
1988 |
+
},
|
1989 |
+
{
|
1990 |
+
"epoch": 1.1161161161161162,
|
1991 |
+
"grad_norm": 0.14478150010108948,
|
1992 |
+
"learning_rate": 1.4615866676795334e-05,
|
1993 |
+
"loss": 0.233,
|
1994 |
+
"step": 279
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 1.12012012012012,
|
1998 |
+
"grad_norm": 0.12946031987667084,
|
1999 |
+
"learning_rate": 1.4576953713261313e-05,
|
2000 |
+
"loss": 0.235,
|
2001 |
+
"step": 280
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 1.1241241241241242,
|
2005 |
+
"grad_norm": 0.1348564624786377,
|
2006 |
+
"learning_rate": 1.4537952880408472e-05,
|
2007 |
+
"loss": 0.2386,
|
2008 |
+
"step": 281
|
2009 |
+
},
|
2010 |
+
{
|
2011 |
+
"epoch": 1.1281281281281281,
|
2012 |
+
"grad_norm": 0.13074958324432373,
|
2013 |
+
"learning_rate": 1.4498864926982996e-05,
|
2014 |
+
"loss": 0.234,
|
2015 |
+
"step": 282
|
2016 |
+
},
|
2017 |
+
{
|
2018 |
+
"epoch": 1.132132132132132,
|
2019 |
+
"grad_norm": 0.130098357796669,
|
2020 |
+
"learning_rate": 1.4459690603403623e-05,
|
2021 |
+
"loss": 0.2329,
|
2022 |
+
"step": 283
|
2023 |
+
},
|
2024 |
+
{
|
2025 |
+
"epoch": 1.1361361361361362,
|
2026 |
+
"grad_norm": 0.1510149985551834,
|
2027 |
+
"learning_rate": 1.4420430661747245e-05,
|
2028 |
+
"loss": 0.2507,
|
2029 |
+
"step": 284
|
2030 |
+
},
|
2031 |
+
{
|
2032 |
+
"epoch": 1.14014014014014,
|
2033 |
+
"grad_norm": 0.12636184692382812,
|
2034 |
+
"learning_rate": 1.4381085855734468e-05,
|
2035 |
+
"loss": 0.2305,
|
2036 |
+
"step": 285
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 1.1441441441441442,
|
2040 |
+
"grad_norm": 0.14648716151714325,
|
2041 |
+
"learning_rate": 1.4341656940715147e-05,
|
2042 |
+
"loss": 0.2263,
|
2043 |
+
"step": 286
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 1.1481481481481481,
|
2047 |
+
"grad_norm": 0.12833812832832336,
|
2048 |
+
"learning_rate": 1.4302144673653875e-05,
|
2049 |
+
"loss": 0.201,
|
2050 |
+
"step": 287
|
2051 |
+
},
|
2052 |
+
{
|
2053 |
+
"epoch": 1.1521521521521523,
|
2054 |
+
"grad_norm": 0.14879822731018066,
|
2055 |
+
"learning_rate": 1.426254981311545e-05,
|
2056 |
+
"loss": 0.2452,
|
2057 |
+
"step": 288
|
2058 |
+
},
|
2059 |
+
{
|
2060 |
+
"epoch": 1.1561561561561562,
|
2061 |
+
"grad_norm": 0.1363959014415741,
|
2062 |
+
"learning_rate": 1.4222873119250325e-05,
|
2063 |
+
"loss": 0.2366,
|
2064 |
+
"step": 289
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 1.16016016016016,
|
2068 |
+
"grad_norm": 0.12407127767801285,
|
2069 |
+
"learning_rate": 1.4183115353780001e-05,
|
2070 |
+
"loss": 0.2276,
|
2071 |
+
"step": 290
|
2072 |
+
},
|
2073 |
+
{
|
2074 |
+
"epoch": 1.1641641641641642,
|
2075 |
+
"grad_norm": 0.1341707408428192,
|
2076 |
+
"learning_rate": 1.4143277279982415e-05,
|
2077 |
+
"loss": 0.2202,
|
2078 |
+
"step": 291
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 1.1681681681681682,
|
2082 |
+
"grad_norm": 0.13136214017868042,
|
2083 |
+
"learning_rate": 1.4103359662677276e-05,
|
2084 |
+
"loss": 0.2365,
|
2085 |
+
"step": 292
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 1.1721721721721723,
|
2089 |
+
"grad_norm": 0.13455568253993988,
|
2090 |
+
"learning_rate": 1.406336326821138e-05,
|
2091 |
+
"loss": 0.2329,
|
2092 |
+
"step": 293
|
2093 |
+
},
|
2094 |
+
{
|
2095 |
+
"epoch": 1.1761761761761762,
|
2096 |
+
"grad_norm": 0.130329892039299,
|
2097 |
+
"learning_rate": 1.4023288864443915e-05,
|
2098 |
+
"loss": 0.2182,
|
2099 |
+
"step": 294
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"epoch": 1.1801801801801801,
|
2103 |
+
"grad_norm": 0.1454066038131714,
|
2104 |
+
"learning_rate": 1.3983137220731702e-05,
|
2105 |
+
"loss": 0.232,
|
2106 |
+
"step": 295
|
2107 |
+
},
|
2108 |
+
{
|
2109 |
+
"epoch": 1.1841841841841843,
|
2110 |
+
"grad_norm": 0.12771300971508026,
|
2111 |
+
"learning_rate": 1.3942909107914431e-05,
|
2112 |
+
"loss": 0.2459,
|
2113 |
+
"step": 296
|
2114 |
+
},
|
2115 |
+
{
|
2116 |
+
"epoch": 1.1881881881881882,
|
2117 |
+
"grad_norm": 0.1486714780330658,
|
2118 |
+
"learning_rate": 1.390260529829986e-05,
|
2119 |
+
"loss": 0.2382,
|
2120 |
+
"step": 297
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 1.1921921921921923,
|
2124 |
+
"grad_norm": 0.12321332842111588,
|
2125 |
+
"learning_rate": 1.3862226565648996e-05,
|
2126 |
+
"loss": 0.2226,
|
2127 |
+
"step": 298
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 1.1961961961961962,
|
2131 |
+
"grad_norm": 0.11899197101593018,
|
2132 |
+
"learning_rate": 1.3821773685161224e-05,
|
2133 |
+
"loss": 0.2292,
|
2134 |
+
"step": 299
|
2135 |
+
},
|
2136 |
+
{
|
2137 |
+
"epoch": 1.2002002002002001,
|
2138 |
+
"grad_norm": 0.13106873631477356,
|
2139 |
+
"learning_rate": 1.3781247433459447e-05,
|
2140 |
+
"loss": 0.2115,
|
2141 |
+
"step": 300
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"epoch": 1.2042042042042043,
|
2145 |
+
"grad_norm": 0.1518913358449936,
|
2146 |
+
"learning_rate": 1.3740648588575156e-05,
|
2147 |
+
"loss": 0.2346,
|
2148 |
+
"step": 301
|
2149 |
+
},
|
2150 |
+
{
|
2151 |
+
"epoch": 1.2082082082082082,
|
2152 |
+
"grad_norm": 0.13578097522258759,
|
2153 |
+
"learning_rate": 1.3699977929933503e-05,
|
2154 |
+
"loss": 0.2208,
|
2155 |
+
"step": 302
|
2156 |
+
},
|
2157 |
+
{
|
2158 |
+
"epoch": 1.2122122122122123,
|
2159 |
+
"grad_norm": 0.13382072746753693,
|
2160 |
+
"learning_rate": 1.3659236238338339e-05,
|
2161 |
+
"loss": 0.229,
|
2162 |
+
"step": 303
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 1.2162162162162162,
|
2166 |
+
"grad_norm": 0.14184784889221191,
|
2167 |
+
"learning_rate": 1.361842429595721e-05,
|
2168 |
+
"loss": 0.2418,
|
2169 |
+
"step": 304
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 1.2202202202202201,
|
2173 |
+
"grad_norm": 0.13084499537944794,
|
2174 |
+
"learning_rate": 1.3577542886306367e-05,
|
2175 |
+
"loss": 0.2323,
|
2176 |
+
"step": 305
|
2177 |
+
},
|
2178 |
+
{
|
2179 |
+
"epoch": 1.2242242242242243,
|
2180 |
+
"grad_norm": 0.13019020855426788,
|
2181 |
+
"learning_rate": 1.3536592794235696e-05,
|
2182 |
+
"loss": 0.2155,
|
2183 |
+
"step": 306
|
2184 |
+
},
|
2185 |
+
{
|
2186 |
+
"epoch": 1.2282282282282282,
|
2187 |
+
"grad_norm": 0.14093178510665894,
|
2188 |
+
"learning_rate": 1.3495574805913669e-05,
|
2189 |
+
"loss": 0.236,
|
2190 |
+
"step": 307
|
2191 |
+
},
|
2192 |
+
{
|
2193 |
+
"epoch": 1.2322322322322323,
|
2194 |
+
"grad_norm": 0.13968797028064728,
|
2195 |
+
"learning_rate": 1.3454489708812237e-05,
|
2196 |
+
"loss": 0.2192,
|
2197 |
+
"step": 308
|
2198 |
+
},
|
2199 |
+
{
|
2200 |
+
"epoch": 1.2362362362362362,
|
2201 |
+
"grad_norm": 0.13795237243175507,
|
2202 |
+
"learning_rate": 1.3413338291691726e-05,
|
2203 |
+
"loss": 0.2236,
|
2204 |
+
"step": 309
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 1.2402402402402402,
|
2208 |
+
"grad_norm": 0.16295593976974487,
|
2209 |
+
"learning_rate": 1.3372121344585694e-05,
|
2210 |
+
"loss": 0.2429,
|
2211 |
+
"step": 310
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 1.2442442442442443,
|
2215 |
+
"grad_norm": 0.1423620730638504,
|
2216 |
+
"learning_rate": 1.3330839658785739e-05,
|
2217 |
+
"loss": 0.2411,
|
2218 |
+
"step": 311
|
2219 |
+
},
|
2220 |
+
{
|
2221 |
+
"epoch": 1.2482482482482482,
|
2222 |
+
"grad_norm": 0.1591283529996872,
|
2223 |
+
"learning_rate": 1.3289494026826337e-05,
|
2224 |
+
"loss": 0.2446,
|
2225 |
+
"step": 312
|
2226 |
+
},
|
2227 |
+
{
|
2228 |
+
"epoch": 1.2522522522522523,
|
2229 |
+
"grad_norm": 0.136406809091568,
|
2230 |
+
"learning_rate": 1.3248085242469629e-05,
|
2231 |
+
"loss": 0.223,
|
2232 |
+
"step": 313
|
2233 |
+
},
|
2234 |
+
{
|
2235 |
+
"epoch": 1.2562562562562563,
|
2236 |
+
"grad_norm": 0.12121517956256866,
|
2237 |
+
"learning_rate": 1.3206614100690139e-05,
|
2238 |
+
"loss": 0.2238,
|
2239 |
+
"step": 314
|
2240 |
+
},
|
2241 |
+
{
|
2242 |
+
"epoch": 1.2602602602602602,
|
2243 |
+
"grad_norm": 0.12819747626781464,
|
2244 |
+
"learning_rate": 1.3165081397659563e-05,
|
2245 |
+
"loss": 0.2352,
|
2246 |
+
"step": 315
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 1.2642642642642643,
|
2250 |
+
"grad_norm": 0.12027258425951004,
|
2251 |
+
"learning_rate": 1.3123487930731464e-05,
|
2252 |
+
"loss": 0.2181,
|
2253 |
+
"step": 316
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 1.2682682682682682,
|
2257 |
+
"grad_norm": 0.1466352492570877,
|
2258 |
+
"learning_rate": 1.3081834498425952e-05,
|
2259 |
+
"loss": 0.2352,
|
2260 |
+
"step": 317
|
2261 |
+
},
|
2262 |
+
{
|
2263 |
+
"epoch": 1.2722722722722724,
|
2264 |
+
"grad_norm": 0.12040114402770996,
|
2265 |
+
"learning_rate": 1.3040121900414371e-05,
|
2266 |
+
"loss": 0.2104,
|
2267 |
+
"step": 318
|
2268 |
+
},
|
2269 |
+
{
|
2270 |
+
"epoch": 1.2762762762762763,
|
2271 |
+
"grad_norm": 0.12626713514328003,
|
2272 |
+
"learning_rate": 1.2998350937503939e-05,
|
2273 |
+
"loss": 0.231,
|
2274 |
+
"step": 319
|
2275 |
+
},
|
2276 |
+
{
|
2277 |
+
"epoch": 1.2802802802802802,
|
2278 |
+
"grad_norm": 0.13121092319488525,
|
2279 |
+
"learning_rate": 1.2956522411622377e-05,
|
2280 |
+
"loss": 0.2376,
|
2281 |
+
"step": 320
|
2282 |
+
},
|
2283 |
+
{
|
2284 |
+
"epoch": 1.2842842842842843,
|
2285 |
+
"grad_norm": 0.13681887090206146,
|
2286 |
+
"learning_rate": 1.2914637125802514e-05,
|
2287 |
+
"loss": 0.2219,
|
2288 |
+
"step": 321
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 1.2882882882882882,
|
2292 |
+
"grad_norm": 0.15647488832473755,
|
2293 |
+
"learning_rate": 1.287269588416686e-05,
|
2294 |
+
"loss": 0.2372,
|
2295 |
+
"step": 322
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 1.2922922922922924,
|
2299 |
+
"grad_norm": 0.14653246104717255,
|
2300 |
+
"learning_rate": 1.2830699491912186e-05,
|
2301 |
+
"loss": 0.2245,
|
2302 |
+
"step": 323
|
2303 |
+
},
|
2304 |
+
{
|
2305 |
+
"epoch": 1.2962962962962963,
|
2306 |
+
"grad_norm": 0.12728944420814514,
|
2307 |
+
"learning_rate": 1.2788648755294056e-05,
|
2308 |
+
"loss": 0.2186,
|
2309 |
+
"step": 324
|
2310 |
+
},
|
2311 |
+
{
|
2312 |
+
"epoch": 1.3003003003003002,
|
2313 |
+
"grad_norm": 0.13707587122917175,
|
2314 |
+
"learning_rate": 1.2746544481611336e-05,
|
2315 |
+
"loss": 0.2236,
|
2316 |
+
"step": 325
|
2317 |
+
},
|
2318 |
+
{
|
2319 |
+
"epoch": 1.3043043043043043,
|
2320 |
+
"grad_norm": 0.1246773898601532,
|
2321 |
+
"learning_rate": 1.270438747919072e-05,
|
2322 |
+
"loss": 0.2195,
|
2323 |
+
"step": 326
|
2324 |
+
},
|
2325 |
+
{
|
2326 |
+
"epoch": 1.3083083083083082,
|
2327 |
+
"grad_norm": 0.13304340839385986,
|
2328 |
+
"learning_rate": 1.2662178557371198e-05,
|
2329 |
+
"loss": 0.2395,
|
2330 |
+
"step": 327
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 1.3123123123123124,
|
2334 |
+
"grad_norm": 0.15779724717140198,
|
2335 |
+
"learning_rate": 1.261991852648852e-05,
|
2336 |
+
"loss": 0.2435,
|
2337 |
+
"step": 328
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 1.3163163163163163,
|
2341 |
+
"grad_norm": 0.13654161989688873,
|
2342 |
+
"learning_rate": 1.2577608197859627e-05,
|
2343 |
+
"loss": 0.2316,
|
2344 |
+
"step": 329
|
2345 |
+
},
|
2346 |
+
{
|
2347 |
+
"epoch": 1.3203203203203202,
|
2348 |
+
"grad_norm": 0.15000677108764648,
|
2349 |
+
"learning_rate": 1.2535248383767102e-05,
|
2350 |
+
"loss": 0.2292,
|
2351 |
+
"step": 330
|
2352 |
+
},
|
2353 |
+
{
|
2354 |
+
"epoch": 1.3243243243243243,
|
2355 |
+
"grad_norm": 0.14126931130886078,
|
2356 |
+
"learning_rate": 1.2492839897443554e-05,
|
2357 |
+
"loss": 0.2364,
|
2358 |
+
"step": 331
|
2359 |
+
},
|
2360 |
+
{
|
2361 |
+
"epoch": 1.3283283283283283,
|
2362 |
+
"grad_norm": 0.1323651373386383,
|
2363 |
+
"learning_rate": 1.2450383553056011e-05,
|
2364 |
+
"loss": 0.2369,
|
2365 |
+
"step": 332
|
2366 |
+
},
|
2367 |
+
{
|
2368 |
+
"epoch": 1.3283283283283283,
|
2369 |
+
"eval_loss": 0.31280121207237244,
|
2370 |
+
"eval_runtime": 6.244,
|
2371 |
+
"eval_samples_per_second": 12.972,
|
2372 |
+
"eval_steps_per_second": 1.762,
|
2373 |
+
"step": 332
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 1.3323323323323324,
|
2377 |
+
"grad_norm": 0.13480286300182343,
|
2378 |
+
"learning_rate": 1.2407880165690289e-05,
|
2379 |
+
"loss": 0.2203,
|
2380 |
+
"step": 333
|
2381 |
+
},
|
2382 |
+
{
|
2383 |
+
"epoch": 1.3363363363363363,
|
2384 |
+
"grad_norm": 0.13146036863327026,
|
2385 |
+
"learning_rate": 1.2365330551335348e-05,
|
2386 |
+
"loss": 0.2261,
|
2387 |
+
"step": 334
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"epoch": 1.3403403403403402,
|
2391 |
+
"grad_norm": 0.1318022459745407,
|
2392 |
+
"learning_rate": 1.2322735526867624e-05,
|
2393 |
+
"loss": 0.2328,
|
2394 |
+
"step": 335
|
2395 |
+
},
|
2396 |
+
{
|
2397 |
+
"epoch": 1.3443443443443444,
|
2398 |
+
"grad_norm": 0.11951415240764618,
|
2399 |
+
"learning_rate": 1.2280095910035343e-05,
|
2400 |
+
"loss": 0.2183,
|
2401 |
+
"step": 336
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"epoch": 1.3483483483483483,
|
2405 |
+
"grad_norm": 0.13236179947853088,
|
2406 |
+
"learning_rate": 1.2237412519442828e-05,
|
2407 |
+
"loss": 0.2292,
|
2408 |
+
"step": 337
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 1.3523523523523524,
|
2412 |
+
"grad_norm": 0.16215181350708008,
|
2413 |
+
"learning_rate": 1.2194686174534771e-05,
|
2414 |
+
"loss": 0.2459,
|
2415 |
+
"step": 338
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 1.3563563563563563,
|
2419 |
+
"grad_norm": 0.1451573669910431,
|
2420 |
+
"learning_rate": 1.2151917695580523e-05,
|
2421 |
+
"loss": 0.2276,
|
2422 |
+
"step": 339
|
2423 |
+
},
|
2424 |
+
{
|
2425 |
+
"epoch": 1.3603603603603602,
|
2426 |
+
"grad_norm": 0.14320491254329681,
|
2427 |
+
"learning_rate": 1.2109107903658326e-05,
|
2428 |
+
"loss": 0.2364,
|
2429 |
+
"step": 340
|
2430 |
+
},
|
2431 |
+
{
|
2432 |
+
"epoch": 1.3643643643643644,
|
2433 |
+
"grad_norm": 0.13618679344654083,
|
2434 |
+
"learning_rate": 1.2066257620639557e-05,
|
2435 |
+
"loss": 0.2227,
|
2436 |
+
"step": 341
|
2437 |
+
},
|
2438 |
+
{
|
2439 |
+
"epoch": 1.3683683683683685,
|
2440 |
+
"grad_norm": 0.1250023990869522,
|
2441 |
+
"learning_rate": 1.2023367669172947e-05,
|
2442 |
+
"loss": 0.2303,
|
2443 |
+
"step": 342
|
2444 |
+
},
|
2445 |
+
{
|
2446 |
+
"epoch": 1.3723723723723724,
|
2447 |
+
"grad_norm": 0.14609824120998383,
|
2448 |
+
"learning_rate": 1.1980438872668803e-05,
|
2449 |
+
"loss": 0.2223,
|
2450 |
+
"step": 343
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 1.3763763763763763,
|
2454 |
+
"grad_norm": 0.15771915018558502,
|
2455 |
+
"learning_rate": 1.1937472055283168e-05,
|
2456 |
+
"loss": 0.2295,
|
2457 |
+
"step": 344
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 1.3803803803803802,
|
2461 |
+
"grad_norm": 0.1346847116947174,
|
2462 |
+
"learning_rate": 1.189446804190203e-05,
|
2463 |
+
"loss": 0.2275,
|
2464 |
+
"step": 345
|
2465 |
+
},
|
2466 |
+
{
|
2467 |
+
"epoch": 1.3843843843843844,
|
2468 |
+
"grad_norm": 0.1324576437473297,
|
2469 |
+
"learning_rate": 1.1851427658125474e-05,
|
2470 |
+
"loss": 0.2387,
|
2471 |
+
"step": 346
|
2472 |
+
},
|
2473 |
+
{
|
2474 |
+
"epoch": 1.3883883883883885,
|
2475 |
+
"grad_norm": 0.11786400526762009,
|
2476 |
+
"learning_rate": 1.180835173025183e-05,
|
2477 |
+
"loss": 0.2151,
|
2478 |
+
"step": 347
|
2479 |
+
},
|
2480 |
+
{
|
2481 |
+
"epoch": 1.3923923923923924,
|
2482 |
+
"grad_norm": 0.12627920508384705,
|
2483 |
+
"learning_rate": 1.1765241085261802e-05,
|
2484 |
+
"loss": 0.2249,
|
2485 |
+
"step": 348
|
2486 |
+
},
|
2487 |
+
{
|
2488 |
+
"epoch": 1.3963963963963963,
|
2489 |
+
"grad_norm": 0.15186864137649536,
|
2490 |
+
"learning_rate": 1.172209655080262e-05,
|
2491 |
+
"loss": 0.2319,
|
2492 |
+
"step": 349
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 1.4004004004004005,
|
2496 |
+
"grad_norm": 0.17141692340373993,
|
2497 |
+
"learning_rate": 1.1678918955172112e-05,
|
2498 |
+
"loss": 0.2421,
|
2499 |
+
"step": 350
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 1.4044044044044044,
|
2503 |
+
"grad_norm": 0.13851796090602875,
|
2504 |
+
"learning_rate": 1.163570912730283e-05,
|
2505 |
+
"loss": 0.2168,
|
2506 |
+
"step": 351
|
2507 |
+
},
|
2508 |
+
{
|
2509 |
+
"epoch": 1.4084084084084085,
|
2510 |
+
"grad_norm": 0.12362354248762131,
|
2511 |
+
"learning_rate": 1.1592467896746122e-05,
|
2512 |
+
"loss": 0.2173,
|
2513 |
+
"step": 352
|
2514 |
+
},
|
2515 |
+
{
|
2516 |
+
"epoch": 1.4124124124124124,
|
2517 |
+
"grad_norm": 0.12605208158493042,
|
2518 |
+
"learning_rate": 1.1549196093656223e-05,
|
2519 |
+
"loss": 0.2299,
|
2520 |
+
"step": 353
|
2521 |
+
},
|
2522 |
+
{
|
2523 |
+
"epoch": 1.4164164164164164,
|
2524 |
+
"grad_norm": 0.13899150490760803,
|
2525 |
+
"learning_rate": 1.1505894548774294e-05,
|
2526 |
+
"loss": 0.2214,
|
2527 |
+
"step": 354
|
2528 |
+
},
|
2529 |
+
{
|
2530 |
+
"epoch": 1.4204204204204205,
|
2531 |
+
"grad_norm": 0.13161474466323853,
|
2532 |
+
"learning_rate": 1.1462564093412493e-05,
|
2533 |
+
"loss": 0.2322,
|
2534 |
+
"step": 355
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 1.4244244244244244,
|
2538 |
+
"grad_norm": 0.13784383237361908,
|
2539 |
+
"learning_rate": 1.1419205559437998e-05,
|
2540 |
+
"loss": 0.2399,
|
2541 |
+
"step": 356
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 1.4284284284284285,
|
2545 |
+
"grad_norm": 0.13900108635425568,
|
2546 |
+
"learning_rate": 1.1375819779257058e-05,
|
2547 |
+
"loss": 0.2332,
|
2548 |
+
"step": 357
|
2549 |
+
},
|
2550 |
+
{
|
2551 |
+
"epoch": 1.4324324324324325,
|
2552 |
+
"grad_norm": 0.13527807593345642,
|
2553 |
+
"learning_rate": 1.1332407585798992e-05,
|
2554 |
+
"loss": 0.2294,
|
2555 |
+
"step": 358
|
2556 |
+
},
|
2557 |
+
{
|
2558 |
+
"epoch": 1.4364364364364364,
|
2559 |
+
"grad_norm": 0.11528453975915909,
|
2560 |
+
"learning_rate": 1.1288969812500209e-05,
|
2561 |
+
"loss": 0.2131,
|
2562 |
+
"step": 359
|
2563 |
+
},
|
2564 |
+
{
|
2565 |
+
"epoch": 1.4404404404404405,
|
2566 |
+
"grad_norm": 0.15680839121341705,
|
2567 |
+
"learning_rate": 1.1245507293288204e-05,
|
2568 |
+
"loss": 0.2296,
|
2569 |
+
"step": 360
|
2570 |
+
},
|
2571 |
+
{
|
2572 |
+
"epoch": 1.4444444444444444,
|
2573 |
+
"grad_norm": 0.13539738953113556,
|
2574 |
+
"learning_rate": 1.1202020862565555e-05,
|
2575 |
+
"loss": 0.2326,
|
2576 |
+
"step": 361
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 1.4484484484484486,
|
2580 |
+
"grad_norm": 0.14512887597084045,
|
2581 |
+
"learning_rate": 1.1158511355193888e-05,
|
2582 |
+
"loss": 0.2254,
|
2583 |
+
"step": 362
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 1.4524524524524525,
|
2587 |
+
"grad_norm": 0.15710808336734772,
|
2588 |
+
"learning_rate": 1.1114979606477867e-05,
|
2589 |
+
"loss": 0.2395,
|
2590 |
+
"step": 363
|
2591 |
+
},
|
2592 |
+
{
|
2593 |
+
"epoch": 1.4564564564564564,
|
2594 |
+
"grad_norm": 0.1274499148130417,
|
2595 |
+
"learning_rate": 1.1071426452149152e-05,
|
2596 |
+
"loss": 0.2203,
|
2597 |
+
"step": 364
|
2598 |
+
},
|
2599 |
+
{
|
2600 |
+
"epoch": 1.4604604604604605,
|
2601 |
+
"grad_norm": 0.1460108906030655,
|
2602 |
+
"learning_rate": 1.1027852728350343e-05,
|
2603 |
+
"loss": 0.2477,
|
2604 |
+
"step": 365
|
2605 |
+
},
|
2606 |
+
{
|
2607 |
+
"epoch": 1.4644644644644644,
|
2608 |
+
"grad_norm": 0.1274898201227188,
|
2609 |
+
"learning_rate": 1.0984259271618947e-05,
|
2610 |
+
"loss": 0.218,
|
2611 |
+
"step": 366
|
2612 |
+
},
|
2613 |
+
{
|
2614 |
+
"epoch": 1.4684684684684686,
|
2615 |
+
"grad_norm": 0.14969086647033691,
|
2616 |
+
"learning_rate": 1.09406469188713e-05,
|
2617 |
+
"loss": 0.2307,
|
2618 |
+
"step": 367
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 1.4724724724724725,
|
2622 |
+
"grad_norm": 0.1416291445493698,
|
2623 |
+
"learning_rate": 1.0897016507386513e-05,
|
2624 |
+
"loss": 0.2208,
|
2625 |
+
"step": 368
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 1.4764764764764764,
|
2629 |
+
"grad_norm": 0.11650918424129486,
|
2630 |
+
"learning_rate": 1.0853368874790392e-05,
|
2631 |
+
"loss": 0.228,
|
2632 |
+
"step": 369
|
2633 |
+
},
|
2634 |
+
{
|
2635 |
+
"epoch": 1.4804804804804805,
|
2636 |
+
"grad_norm": 0.14399082958698273,
|
2637 |
+
"learning_rate": 1.0809704859039357e-05,
|
2638 |
+
"loss": 0.2297,
|
2639 |
+
"step": 370
|
2640 |
+
},
|
2641 |
+
{
|
2642 |
+
"epoch": 1.4844844844844844,
|
2643 |
+
"grad_norm": 0.1333630383014679,
|
2644 |
+
"learning_rate": 1.0766025298404346e-05,
|
2645 |
+
"loss": 0.2391,
|
2646 |
+
"step": 371
|
2647 |
+
},
|
2648 |
+
{
|
2649 |
+
"epoch": 1.4884884884884886,
|
2650 |
+
"grad_norm": 0.1538272351026535,
|
2651 |
+
"learning_rate": 1.0722331031454749e-05,
|
2652 |
+
"loss": 0.228,
|
2653 |
+
"step": 372
|
2654 |
+
},
|
2655 |
+
{
|
2656 |
+
"epoch": 1.4924924924924925,
|
2657 |
+
"grad_norm": 0.14864470064640045,
|
2658 |
+
"learning_rate": 1.0678622897042279e-05,
|
2659 |
+
"loss": 0.2307,
|
2660 |
+
"step": 373
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 1.4964964964964964,
|
2664 |
+
"grad_norm": 0.14386948943138123,
|
2665 |
+
"learning_rate": 1.063490173428488e-05,
|
2666 |
+
"loss": 0.2491,
|
2667 |
+
"step": 374
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 1.5005005005005005,
|
2671 |
+
"grad_norm": 0.13960744440555573,
|
2672 |
+
"learning_rate": 1.0591168382550617e-05,
|
2673 |
+
"loss": 0.2443,
|
2674 |
+
"step": 375
|
2675 |
+
},
|
2676 |
+
{
|
2677 |
+
"epoch": 1.5045045045045045,
|
2678 |
+
"grad_norm": 0.12918636202812195,
|
2679 |
+
"learning_rate": 1.0547423681441567e-05,
|
2680 |
+
"loss": 0.237,
|
2681 |
+
"step": 376
|
2682 |
+
},
|
2683 |
+
{
|
2684 |
+
"epoch": 1.5085085085085086,
|
2685 |
+
"grad_norm": 0.13551214337348938,
|
2686 |
+
"learning_rate": 1.050366847077769e-05,
|
2687 |
+
"loss": 0.2185,
|
2688 |
+
"step": 377
|
2689 |
+
},
|
2690 |
+
{
|
2691 |
+
"epoch": 1.5125125125125125,
|
2692 |
+
"grad_norm": 0.14278538525104523,
|
2693 |
+
"learning_rate": 1.0459903590580706e-05,
|
2694 |
+
"loss": 0.2287,
|
2695 |
+
"step": 378
|
2696 |
+
},
|
2697 |
+
{
|
2698 |
+
"epoch": 1.5165165165165164,
|
2699 |
+
"grad_norm": 0.1472548395395279,
|
2700 |
+
"learning_rate": 1.0416129881057987e-05,
|
2701 |
+
"loss": 0.2315,
|
2702 |
+
"step": 379
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 1.5205205205205206,
|
2706 |
+
"grad_norm": 0.13086426258087158,
|
2707 |
+
"learning_rate": 1.03723481825864e-05,
|
2708 |
+
"loss": 0.2176,
|
2709 |
+
"step": 380
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 1.5245245245245245,
|
2713 |
+
"grad_norm": 0.1289745569229126,
|
2714 |
+
"learning_rate": 1.0328559335696188e-05,
|
2715 |
+
"loss": 0.2279,
|
2716 |
+
"step": 381
|
2717 |
+
},
|
2718 |
+
{
|
2719 |
+
"epoch": 1.5285285285285286,
|
2720 |
+
"grad_norm": 0.1345757395029068,
|
2721 |
+
"learning_rate": 1.028476418105483e-05,
|
2722 |
+
"loss": 0.2195,
|
2723 |
+
"step": 382
|
2724 |
+
},
|
2725 |
+
{
|
2726 |
+
"epoch": 1.5325325325325325,
|
2727 |
+
"grad_norm": 0.1544564962387085,
|
2728 |
+
"learning_rate": 1.0240963559450909e-05,
|
2729 |
+
"loss": 0.2431,
|
2730 |
+
"step": 383
|
2731 |
+
},
|
2732 |
+
{
|
2733 |
+
"epoch": 1.5365365365365364,
|
2734 |
+
"grad_norm": 0.13208632171154022,
|
2735 |
+
"learning_rate": 1.0197158311777957e-05,
|
2736 |
+
"loss": 0.2159,
|
2737 |
+
"step": 384
|
2738 |
+
},
|
2739 |
+
{
|
2740 |
+
"epoch": 1.5405405405405406,
|
2741 |
+
"grad_norm": 0.12936881184577942,
|
2742 |
+
"learning_rate": 1.015334927901832e-05,
|
2743 |
+
"loss": 0.2085,
|
2744 |
+
"step": 385
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 1.5445445445445447,
|
2748 |
+
"grad_norm": 0.12098892778158188,
|
2749 |
+
"learning_rate": 1.0109537302227012e-05,
|
2750 |
+
"loss": 0.2299,
|
2751 |
+
"step": 386
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 1.5485485485485486,
|
2755 |
+
"grad_norm": 0.1374930441379547,
|
2756 |
+
"learning_rate": 1.0065723222515566e-05,
|
2757 |
+
"loss": 0.223,
|
2758 |
+
"step": 387
|
2759 |
+
},
|
2760 |
+
{
|
2761 |
+
"epoch": 1.5525525525525525,
|
2762 |
+
"grad_norm": 0.14887316524982452,
|
2763 |
+
"learning_rate": 1.0021907881035891e-05,
|
2764 |
+
"loss": 0.2266,
|
2765 |
+
"step": 388
|
2766 |
+
},
|
2767 |
+
{
|
2768 |
+
"epoch": 1.5565565565565564,
|
2769 |
+
"grad_norm": 0.13595186173915863,
|
2770 |
+
"learning_rate": 9.97809211896411e-06,
|
2771 |
+
"loss": 0.2182,
|
2772 |
+
"step": 389
|
2773 |
+
},
|
2774 |
+
{
|
2775 |
+
"epoch": 1.5605605605605606,
|
2776 |
+
"grad_norm": 0.144562229514122,
|
2777 |
+
"learning_rate": 9.934276777484436e-06,
|
2778 |
+
"loss": 0.2271,
|
2779 |
+
"step": 390
|
2780 |
+
},
|
2781 |
+
{
|
2782 |
+
"epoch": 1.5645645645645647,
|
2783 |
+
"grad_norm": 0.13522008061408997,
|
2784 |
+
"learning_rate": 9.89046269777299e-06,
|
2785 |
+
"loss": 0.228,
|
2786 |
+
"step": 391
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 1.5685685685685686,
|
2790 |
+
"grad_norm": 0.12187031656503677,
|
2791 |
+
"learning_rate": 9.846650720981682e-06,
|
2792 |
+
"loss": 0.2112,
|
2793 |
+
"step": 392
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 1.5725725725725725,
|
2797 |
+
"grad_norm": 0.14943794906139374,
|
2798 |
+
"learning_rate": 9.802841688222043e-06,
|
2799 |
+
"loss": 0.2148,
|
2800 |
+
"step": 393
|
2801 |
+
},
|
2802 |
+
{
|
2803 |
+
"epoch": 1.5765765765765765,
|
2804 |
+
"grad_norm": 0.13538117706775665,
|
2805 |
+
"learning_rate": 9.759036440549093e-06,
|
2806 |
+
"loss": 0.2204,
|
2807 |
+
"step": 394
|
2808 |
+
},
|
2809 |
+
{
|
2810 |
+
"epoch": 1.5805805805805806,
|
2811 |
+
"grad_norm": 0.12736183404922485,
|
2812 |
+
"learning_rate": 9.715235818945171e-06,
|
2813 |
+
"loss": 0.2118,
|
2814 |
+
"step": 395
|
2815 |
+
},
|
2816 |
+
{
|
2817 |
+
"epoch": 1.5845845845845847,
|
2818 |
+
"grad_norm": 0.1528167724609375,
|
2819 |
+
"learning_rate": 9.671440664303813e-06,
|
2820 |
+
"loss": 0.235,
|
2821 |
+
"step": 396
|
2822 |
+
},
|
2823 |
+
{
|
2824 |
+
"epoch": 1.5885885885885886,
|
2825 |
+
"grad_norm": 0.12496887892484665,
|
2826 |
+
"learning_rate": 9.627651817413605e-06,
|
2827 |
+
"loss": 0.2222,
|
2828 |
+
"step": 397
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 1.5925925925925926,
|
2832 |
+
"grad_norm": 0.11347772926092148,
|
2833 |
+
"learning_rate": 9.583870118942014e-06,
|
2834 |
+
"loss": 0.2125,
|
2835 |
+
"step": 398
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 1.5965965965965965,
|
2839 |
+
"grad_norm": 0.12634208798408508,
|
2840 |
+
"learning_rate": 9.540096409419295e-06,
|
2841 |
+
"loss": 0.209,
|
2842 |
+
"step": 399
|
2843 |
+
},
|
2844 |
+
{
|
2845 |
+
"epoch": 1.6006006006006006,
|
2846 |
+
"grad_norm": 0.1373746246099472,
|
2847 |
+
"learning_rate": 9.496331529222313e-06,
|
2848 |
+
"loss": 0.2223,
|
2849 |
+
"step": 400
|
2850 |
+
},
|
2851 |
+
{
|
2852 |
+
"epoch": 1.6046046046046047,
|
2853 |
+
"grad_norm": 0.13776709139347076,
|
2854 |
+
"learning_rate": 9.452576318558437e-06,
|
2855 |
+
"loss": 0.212,
|
2856 |
+
"step": 401
|
2857 |
+
},
|
2858 |
+
{
|
2859 |
+
"epoch": 1.6086086086086087,
|
2860 |
+
"grad_norm": 0.13330040872097015,
|
2861 |
+
"learning_rate": 9.408831617449385e-06,
|
2862 |
+
"loss": 0.2319,
|
2863 |
+
"step": 402
|
2864 |
+
},
|
2865 |
+
{
|
2866 |
+
"epoch": 1.6126126126126126,
|
2867 |
+
"grad_norm": 0.1234062984585762,
|
2868 |
+
"learning_rate": 9.365098265715124e-06,
|
2869 |
+
"loss": 0.2195,
|
2870 |
+
"step": 403
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 1.6166166166166165,
|
2874 |
+
"grad_norm": 0.13824118673801422,
|
2875 |
+
"learning_rate": 9.321377102957723e-06,
|
2876 |
+
"loss": 0.2119,
|
2877 |
+
"step": 404
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 1.6206206206206206,
|
2881 |
+
"grad_norm": 0.13618600368499756,
|
2882 |
+
"learning_rate": 9.277668968545253e-06,
|
2883 |
+
"loss": 0.2179,
|
2884 |
+
"step": 405
|
2885 |
+
},
|
2886 |
+
{
|
2887 |
+
"epoch": 1.6246246246246248,
|
2888 |
+
"grad_norm": 0.15361671149730682,
|
2889 |
+
"learning_rate": 9.233974701595654e-06,
|
2890 |
+
"loss": 0.2162,
|
2891 |
+
"step": 406
|
2892 |
+
},
|
2893 |
+
{
|
2894 |
+
"epoch": 1.6286286286286287,
|
2895 |
+
"grad_norm": 0.15466053783893585,
|
2896 |
+
"learning_rate": 9.190295140960649e-06,
|
2897 |
+
"loss": 0.2199,
|
2898 |
+
"step": 407
|
2899 |
+
},
|
2900 |
+
{
|
2901 |
+
"epoch": 1.6326326326326326,
|
2902 |
+
"grad_norm": 0.1456158608198166,
|
2903 |
+
"learning_rate": 9.146631125209608e-06,
|
2904 |
+
"loss": 0.2192,
|
2905 |
+
"step": 408
|
2906 |
+
},
|
2907 |
+
{
|
2908 |
+
"epoch": 1.6366366366366365,
|
2909 |
+
"grad_norm": 0.1501886397600174,
|
2910 |
+
"learning_rate": 9.102983492613489e-06,
|
2911 |
+
"loss": 0.2269,
|
2912 |
+
"step": 409
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 1.6406406406406406,
|
2916 |
+
"grad_norm": 0.13893765211105347,
|
2917 |
+
"learning_rate": 9.059353081128702e-06,
|
2918 |
+
"loss": 0.2322,
|
2919 |
+
"step": 410
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 1.6446446446446448,
|
2923 |
+
"grad_norm": 0.15337541699409485,
|
2924 |
+
"learning_rate": 9.015740728381055e-06,
|
2925 |
+
"loss": 0.2262,
|
2926 |
+
"step": 411
|
2927 |
+
},
|
2928 |
+
{
|
2929 |
+
"epoch": 1.6486486486486487,
|
2930 |
+
"grad_norm": 0.13367938995361328,
|
2931 |
+
"learning_rate": 8.972147271649662e-06,
|
2932 |
+
"loss": 0.2095,
|
2933 |
+
"step": 412
|
2934 |
+
},
|
2935 |
+
{
|
2936 |
+
"epoch": 1.6526526526526526,
|
2937 |
+
"grad_norm": 0.1440502554178238,
|
2938 |
+
"learning_rate": 8.928573547850852e-06,
|
2939 |
+
"loss": 0.2287,
|
2940 |
+
"step": 413
|
2941 |
+
},
|
2942 |
+
{
|
2943 |
+
"epoch": 1.6566566566566565,
|
2944 |
+
"grad_norm": 0.1278400868177414,
|
2945 |
+
"learning_rate": 8.885020393522136e-06,
|
2946 |
+
"loss": 0.2233,
|
2947 |
+
"step": 414
|
2948 |
+
},
|
2949 |
+
{
|
2950 |
+
"epoch": 1.6606606606606606,
|
2951 |
+
"grad_norm": 0.15888282656669617,
|
2952 |
+
"learning_rate": 8.841488644806115e-06,
|
2953 |
+
"loss": 0.2436,
|
2954 |
+
"step": 415
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 1.6606606606606606,
|
2958 |
+
"eval_loss": 0.30414843559265137,
|
2959 |
+
"eval_runtime": 6.1188,
|
2960 |
+
"eval_samples_per_second": 13.238,
|
2961 |
+
"eval_steps_per_second": 1.798,
|
2962 |
+
"step": 415
|
2963 |
+
},
|
2964 |
+
{
|
2965 |
+
"epoch": 1.6646646646646648,
|
2966 |
+
"grad_norm": 0.1494596004486084,
|
2967 |
+
"learning_rate": 8.797979137434452e-06,
|
2968 |
+
"loss": 0.2171,
|
2969 |
+
"step": 416
|
2970 |
+
},
|
2971 |
+
{
|
2972 |
+
"epoch": 1.6686686686686687,
|
2973 |
+
"grad_norm": 0.14288803935050964,
|
2974 |
+
"learning_rate": 8.754492706711798e-06,
|
2975 |
+
"loss": 0.218,
|
2976 |
+
"step": 417
|
2977 |
+
},
|
2978 |
+
{
|
2979 |
+
"epoch": 1.6726726726726726,
|
2980 |
+
"grad_norm": 0.14627306163311005,
|
2981 |
+
"learning_rate": 8.711030187499795e-06,
|
2982 |
+
"loss": 0.2196,
|
2983 |
+
"step": 418
|
2984 |
+
},
|
2985 |
+
{
|
2986 |
+
"epoch": 1.6766766766766765,
|
2987 |
+
"grad_norm": 0.15222109854221344,
|
2988 |
+
"learning_rate": 8.66759241420101e-06,
|
2989 |
+
"loss": 0.2323,
|
2990 |
+
"step": 419
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 1.6806806806806807,
|
2994 |
+
"grad_norm": 0.1480226367712021,
|
2995 |
+
"learning_rate": 8.624180220742945e-06,
|
2996 |
+
"loss": 0.2168,
|
2997 |
+
"step": 420
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 1.6846846846846848,
|
3001 |
+
"grad_norm": 0.14224019646644592,
|
3002 |
+
"learning_rate": 8.580794440562003e-06,
|
3003 |
+
"loss": 0.2228,
|
3004 |
+
"step": 421
|
3005 |
+
},
|
3006 |
+
{
|
3007 |
+
"epoch": 1.6886886886886887,
|
3008 |
+
"grad_norm": 0.13837142288684845,
|
3009 |
+
"learning_rate": 8.53743590658751e-06,
|
3010 |
+
"loss": 0.2175,
|
3011 |
+
"step": 422
|
3012 |
+
},
|
3013 |
+
{
|
3014 |
+
"epoch": 1.6926926926926926,
|
3015 |
+
"grad_norm": 0.1258038580417633,
|
3016 |
+
"learning_rate": 8.494105451225706e-06,
|
3017 |
+
"loss": 0.2078,
|
3018 |
+
"step": 423
|
3019 |
+
},
|
3020 |
+
{
|
3021 |
+
"epoch": 1.6966966966966965,
|
3022 |
+
"grad_norm": 0.1426319181919098,
|
3023 |
+
"learning_rate": 8.45080390634378e-06,
|
3024 |
+
"loss": 0.2228,
|
3025 |
+
"step": 424
|
3026 |
+
},
|
3027 |
+
{
|
3028 |
+
"epoch": 1.7007007007007007,
|
3029 |
+
"grad_norm": 0.14483590424060822,
|
3030 |
+
"learning_rate": 8.407532103253878e-06,
|
3031 |
+
"loss": 0.2249,
|
3032 |
+
"step": 425
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 1.7047047047047048,
|
3036 |
+
"grad_norm": 0.1365538090467453,
|
3037 |
+
"learning_rate": 8.364290872697175e-06,
|
3038 |
+
"loss": 0.2241,
|
3039 |
+
"step": 426
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 1.7087087087087087,
|
3043 |
+
"grad_norm": 0.15289802849292755,
|
3044 |
+
"learning_rate": 8.321081044827894e-06,
|
3045 |
+
"loss": 0.2182,
|
3046 |
+
"step": 427
|
3047 |
+
},
|
3048 |
+
{
|
3049 |
+
"epoch": 1.7127127127127126,
|
3050 |
+
"grad_norm": 0.13033711910247803,
|
3051 |
+
"learning_rate": 8.277903449197383e-06,
|
3052 |
+
"loss": 0.216,
|
3053 |
+
"step": 428
|
3054 |
+
},
|
3055 |
+
{
|
3056 |
+
"epoch": 1.7167167167167166,
|
3057 |
+
"grad_norm": 0.13258293271064758,
|
3058 |
+
"learning_rate": 8.2347589147382e-06,
|
3059 |
+
"loss": 0.1956,
|
3060 |
+
"step": 429
|
3061 |
+
},
|
3062 |
+
{
|
3063 |
+
"epoch": 1.7207207207207207,
|
3064 |
+
"grad_norm": 0.13521750271320343,
|
3065 |
+
"learning_rate": 8.191648269748173e-06,
|
3066 |
+
"loss": 0.2258,
|
3067 |
+
"step": 430
|
3068 |
+
},
|
3069 |
+
{
|
3070 |
+
"epoch": 1.7247247247247248,
|
3071 |
+
"grad_norm": 0.15456490218639374,
|
3072 |
+
"learning_rate": 8.14857234187453e-06,
|
3073 |
+
"loss": 0.2256,
|
3074 |
+
"step": 431
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 1.7287287287287287,
|
3078 |
+
"grad_norm": 0.13333886861801147,
|
3079 |
+
"learning_rate": 8.105531958097973e-06,
|
3080 |
+
"loss": 0.2209,
|
3081 |
+
"step": 432
|
3082 |
+
},
|
3083 |
+
{
|
3084 |
+
"epoch": 1.7327327327327327,
|
3085 |
+
"grad_norm": 0.1298181712627411,
|
3086 |
+
"learning_rate": 8.062527944716837e-06,
|
3087 |
+
"loss": 0.2106,
|
3088 |
+
"step": 433
|
3089 |
+
},
|
3090 |
+
{
|
3091 |
+
"epoch": 1.7367367367367368,
|
3092 |
+
"grad_norm": 0.13067086040973663,
|
3093 |
+
"learning_rate": 8.019561127331202e-06,
|
3094 |
+
"loss": 0.224,
|
3095 |
+
"step": 434
|
3096 |
+
},
|
3097 |
+
{
|
3098 |
+
"epoch": 1.7407407407407407,
|
3099 |
+
"grad_norm": 0.13905219733715057,
|
3100 |
+
"learning_rate": 7.976632330827056e-06,
|
3101 |
+
"loss": 0.2206,
|
3102 |
+
"step": 435
|
3103 |
+
},
|
3104 |
+
{
|
3105 |
+
"epoch": 1.7447447447447448,
|
3106 |
+
"grad_norm": 0.13740921020507812,
|
3107 |
+
"learning_rate": 7.933742379360446e-06,
|
3108 |
+
"loss": 0.217,
|
3109 |
+
"step": 436
|
3110 |
+
},
|
3111 |
+
{
|
3112 |
+
"epoch": 1.7487487487487487,
|
3113 |
+
"grad_norm": 0.12991660833358765,
|
3114 |
+
"learning_rate": 7.890892096341677e-06,
|
3115 |
+
"loss": 0.2173,
|
3116 |
+
"step": 437
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 1.7527527527527527,
|
3120 |
+
"grad_norm": 0.13946564495563507,
|
3121 |
+
"learning_rate": 7.848082304419478e-06,
|
3122 |
+
"loss": 0.2293,
|
3123 |
+
"step": 438
|
3124 |
+
},
|
3125 |
+
{
|
3126 |
+
"epoch": 1.7567567567567568,
|
3127 |
+
"grad_norm": 0.12789933383464813,
|
3128 |
+
"learning_rate": 7.805313825465232e-06,
|
3129 |
+
"loss": 0.2116,
|
3130 |
+
"step": 439
|
3131 |
+
},
|
3132 |
+
{
|
3133 |
+
"epoch": 1.7607607607607607,
|
3134 |
+
"grad_norm": 0.14676792919635773,
|
3135 |
+
"learning_rate": 7.762587480557175e-06,
|
3136 |
+
"loss": 0.2293,
|
3137 |
+
"step": 440
|
3138 |
+
},
|
3139 |
+
{
|
3140 |
+
"epoch": 1.7647647647647648,
|
3141 |
+
"grad_norm": 0.14003834128379822,
|
3142 |
+
"learning_rate": 7.719904089964658e-06,
|
3143 |
+
"loss": 0.2137,
|
3144 |
+
"step": 441
|
3145 |
+
},
|
3146 |
+
{
|
3147 |
+
"epoch": 1.7687687687687688,
|
3148 |
+
"grad_norm": 0.14215737581253052,
|
3149 |
+
"learning_rate": 7.67726447313238e-06,
|
3150 |
+
"loss": 0.2221,
|
3151 |
+
"step": 442
|
3152 |
+
},
|
3153 |
+
{
|
3154 |
+
"epoch": 1.7727727727727727,
|
3155 |
+
"grad_norm": 0.12992604076862335,
|
3156 |
+
"learning_rate": 7.634669448664655e-06,
|
3157 |
+
"loss": 0.2006,
|
3158 |
+
"step": 443
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 1.7767767767767768,
|
3162 |
+
"grad_norm": 0.13772279024124146,
|
3163 |
+
"learning_rate": 7.5921198343097145e-06,
|
3164 |
+
"loss": 0.2266,
|
3165 |
+
"step": 444
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 1.7807807807807807,
|
3169 |
+
"grad_norm": 0.14676547050476074,
|
3170 |
+
"learning_rate": 7.549616446943992e-06,
|
3171 |
+
"loss": 0.2248,
|
3172 |
+
"step": 445
|
3173 |
+
},
|
3174 |
+
{
|
3175 |
+
"epoch": 1.7847847847847849,
|
3176 |
+
"grad_norm": 0.13406066596508026,
|
3177 |
+
"learning_rate": 7.507160102556451e-06,
|
3178 |
+
"loss": 0.2028,
|
3179 |
+
"step": 446
|
3180 |
+
},
|
3181 |
+
{
|
3182 |
+
"epoch": 1.7887887887887888,
|
3183 |
+
"grad_norm": 0.14275118708610535,
|
3184 |
+
"learning_rate": 7.464751616232902e-06,
|
3185 |
+
"loss": 0.2129,
|
3186 |
+
"step": 447
|
3187 |
+
},
|
3188 |
+
{
|
3189 |
+
"epoch": 1.7927927927927927,
|
3190 |
+
"grad_norm": 0.1265939474105835,
|
3191 |
+
"learning_rate": 7.422391802140376e-06,
|
3192 |
+
"loss": 0.2102,
|
3193 |
+
"step": 448
|
3194 |
+
},
|
3195 |
+
{
|
3196 |
+
"epoch": 1.7967967967967968,
|
3197 |
+
"grad_norm": 0.13890117406845093,
|
3198 |
+
"learning_rate": 7.380081473511484e-06,
|
3199 |
+
"loss": 0.2094,
|
3200 |
+
"step": 449
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 1.800800800800801,
|
3204 |
+
"grad_norm": 0.14124225080013275,
|
3205 |
+
"learning_rate": 7.337821442628805e-06,
|
3206 |
+
"loss": 0.2323,
|
3207 |
+
"step": 450
|
3208 |
+
},
|
3209 |
+
{
|
3210 |
+
"epoch": 1.8048048048048049,
|
3211 |
+
"grad_norm": 0.15107014775276184,
|
3212 |
+
"learning_rate": 7.295612520809281e-06,
|
3213 |
+
"loss": 0.224,
|
3214 |
+
"step": 451
|
3215 |
+
},
|
3216 |
+
{
|
3217 |
+
"epoch": 1.8088088088088088,
|
3218 |
+
"grad_norm": 0.1297285109758377,
|
3219 |
+
"learning_rate": 7.253455518388668e-06,
|
3220 |
+
"loss": 0.2053,
|
3221 |
+
"step": 452
|
3222 |
+
},
|
3223 |
+
{
|
3224 |
+
"epoch": 1.8128128128128127,
|
3225 |
+
"grad_norm": 0.12204065918922424,
|
3226 |
+
"learning_rate": 7.211351244705947e-06,
|
3227 |
+
"loss": 0.2189,
|
3228 |
+
"step": 453
|
3229 |
+
},
|
3230 |
+
{
|
3231 |
+
"epoch": 1.8168168168168168,
|
3232 |
+
"grad_norm": 0.15427479147911072,
|
3233 |
+
"learning_rate": 7.169300508087815e-06,
|
3234 |
+
"loss": 0.2337,
|
3235 |
+
"step": 454
|
3236 |
+
},
|
3237 |
+
{
|
3238 |
+
"epoch": 1.820820820820821,
|
3239 |
+
"grad_norm": 0.13939781486988068,
|
3240 |
+
"learning_rate": 7.127304115833141e-06,
|
3241 |
+
"loss": 0.2175,
|
3242 |
+
"step": 455
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 1.8248248248248249,
|
3246 |
+
"grad_norm": 0.1337432563304901,
|
3247 |
+
"learning_rate": 7.08536287419749e-06,
|
3248 |
+
"loss": 0.2198,
|
3249 |
+
"step": 456
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 1.8288288288288288,
|
3253 |
+
"grad_norm": 0.19405747950077057,
|
3254 |
+
"learning_rate": 7.043477588377623e-06,
|
3255 |
+
"loss": 0.2263,
|
3256 |
+
"step": 457
|
3257 |
+
},
|
3258 |
+
{
|
3259 |
+
"epoch": 1.8328328328328327,
|
3260 |
+
"grad_norm": 0.13952726125717163,
|
3261 |
+
"learning_rate": 7.001649062496065e-06,
|
3262 |
+
"loss": 0.2408,
|
3263 |
+
"step": 458
|
3264 |
+
},
|
3265 |
+
{
|
3266 |
+
"epoch": 1.8368368368368369,
|
3267 |
+
"grad_norm": 0.14409776031970978,
|
3268 |
+
"learning_rate": 6.959878099585634e-06,
|
3269 |
+
"loss": 0.2216,
|
3270 |
+
"step": 459
|
3271 |
+
},
|
3272 |
+
{
|
3273 |
+
"epoch": 1.840840840840841,
|
3274 |
+
"grad_norm": 0.13670873641967773,
|
3275 |
+
"learning_rate": 6.918165501574051e-06,
|
3276 |
+
"loss": 0.2225,
|
3277 |
+
"step": 460
|
3278 |
+
},
|
3279 |
+
{
|
3280 |
+
"epoch": 1.844844844844845,
|
3281 |
+
"grad_norm": 0.11937157064676285,
|
3282 |
+
"learning_rate": 6.876512069268541e-06,
|
3283 |
+
"loss": 0.2097,
|
3284 |
+
"step": 461
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 1.8488488488488488,
|
3288 |
+
"grad_norm": 0.12589742243289948,
|
3289 |
+
"learning_rate": 6.834918602340439e-06,
|
3290 |
+
"loss": 0.2189,
|
3291 |
+
"step": 462
|
3292 |
+
},
|
3293 |
+
{
|
3294 |
+
"epoch": 1.8528528528528527,
|
3295 |
+
"grad_norm": 0.12316793203353882,
|
3296 |
+
"learning_rate": 6.793385899309866e-06,
|
3297 |
+
"loss": 0.2098,
|
3298 |
+
"step": 463
|
3299 |
+
},
|
3300 |
+
{
|
3301 |
+
"epoch": 1.8568568568568569,
|
3302 |
+
"grad_norm": 0.13508102297782898,
|
3303 |
+
"learning_rate": 6.751914757530375e-06,
|
3304 |
+
"loss": 0.2311,
|
3305 |
+
"step": 464
|
3306 |
+
},
|
3307 |
+
{
|
3308 |
+
"epoch": 1.860860860860861,
|
3309 |
+
"grad_norm": 0.13518530130386353,
|
3310 |
+
"learning_rate": 6.7105059731736645e-06,
|
3311 |
+
"loss": 0.2244,
|
3312 |
+
"step": 465
|
3313 |
+
},
|
3314 |
+
{
|
3315 |
+
"epoch": 1.864864864864865,
|
3316 |
+
"grad_norm": 0.1370282769203186,
|
3317 |
+
"learning_rate": 6.669160341214265e-06,
|
3318 |
+
"loss": 0.2175,
|
3319 |
+
"step": 466
|
3320 |
+
},
|
3321 |
+
{
|
3322 |
+
"epoch": 1.8688688688688688,
|
3323 |
+
"grad_norm": 0.13752111792564392,
|
3324 |
+
"learning_rate": 6.627878655414311e-06,
|
3325 |
+
"loss": 0.2211,
|
3326 |
+
"step": 467
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 1.8728728728728727,
|
3330 |
+
"grad_norm": 0.1328887790441513,
|
3331 |
+
"learning_rate": 6.586661708308273e-06,
|
3332 |
+
"loss": 0.2147,
|
3333 |
+
"step": 468
|
3334 |
+
},
|
3335 |
+
{
|
3336 |
+
"epoch": 1.8768768768768769,
|
3337 |
+
"grad_norm": 0.13455736637115479,
|
3338 |
+
"learning_rate": 6.5455102911877665e-06,
|
3339 |
+
"loss": 0.2226,
|
3340 |
+
"step": 469
|
3341 |
+
},
|
3342 |
+
{
|
3343 |
+
"epoch": 1.880880880880881,
|
3344 |
+
"grad_norm": 0.1263863891363144,
|
3345 |
+
"learning_rate": 6.504425194086334e-06,
|
3346 |
+
"loss": 0.2085,
|
3347 |
+
"step": 470
|
3348 |
+
},
|
3349 |
+
{
|
3350 |
+
"epoch": 1.884884884884885,
|
3351 |
+
"grad_norm": 0.14515650272369385,
|
3352 |
+
"learning_rate": 6.4634072057643045e-06,
|
3353 |
+
"loss": 0.2175,
|
3354 |
+
"step": 471
|
3355 |
+
},
|
3356 |
+
{
|
3357 |
+
"epoch": 1.8888888888888888,
|
3358 |
+
"grad_norm": 0.12257494777441025,
|
3359 |
+
"learning_rate": 6.422457113693633e-06,
|
3360 |
+
"loss": 0.2098,
|
3361 |
+
"step": 472
|
3362 |
+
},
|
3363 |
+
{
|
3364 |
+
"epoch": 1.8928928928928928,
|
3365 |
+
"grad_norm": 0.1487148255109787,
|
3366 |
+
"learning_rate": 6.381575704042792e-06,
|
3367 |
+
"loss": 0.2098,
|
3368 |
+
"step": 473
|
3369 |
+
},
|
3370 |
+
{
|
3371 |
+
"epoch": 1.896896896896897,
|
3372 |
+
"grad_norm": 0.13246439397335052,
|
3373 |
+
"learning_rate": 6.340763761661665e-06,
|
3374 |
+
"loss": 0.2169,
|
3375 |
+
"step": 474
|
3376 |
+
},
|
3377 |
+
{
|
3378 |
+
"epoch": 1.900900900900901,
|
3379 |
+
"grad_norm": 0.13017022609710693,
|
3380 |
+
"learning_rate": 6.3000220700664985e-06,
|
3381 |
+
"loss": 0.2119,
|
3382 |
+
"step": 475
|
3383 |
+
},
|
3384 |
+
{
|
3385 |
+
"epoch": 1.904904904904905,
|
3386 |
+
"grad_norm": 0.13715329766273499,
|
3387 |
+
"learning_rate": 6.259351411424849e-06,
|
3388 |
+
"loss": 0.2291,
|
3389 |
+
"step": 476
|
3390 |
+
},
|
3391 |
+
{
|
3392 |
+
"epoch": 1.9089089089089089,
|
3393 |
+
"grad_norm": 0.12503132224082947,
|
3394 |
+
"learning_rate": 6.218752566540555e-06,
|
3395 |
+
"loss": 0.2172,
|
3396 |
+
"step": 477
|
3397 |
+
},
|
3398 |
+
{
|
3399 |
+
"epoch": 1.9129129129129128,
|
3400 |
+
"grad_norm": 0.13519714772701263,
|
3401 |
+
"learning_rate": 6.17822631483878e-06,
|
3402 |
+
"loss": 0.2085,
|
3403 |
+
"step": 478
|
3404 |
+
},
|
3405 |
+
{
|
3406 |
+
"epoch": 1.916916916916917,
|
3407 |
+
"grad_norm": 0.12226010113954544,
|
3408 |
+
"learning_rate": 6.137773434351009e-06,
|
3409 |
+
"loss": 0.1983,
|
3410 |
+
"step": 479
|
3411 |
+
},
|
3412 |
+
{
|
3413 |
+
"epoch": 1.920920920920921,
|
3414 |
+
"grad_norm": 0.14085441827774048,
|
3415 |
+
"learning_rate": 6.097394701700146e-06,
|
3416 |
+
"loss": 0.2175,
|
3417 |
+
"step": 480
|
3418 |
+
},
|
3419 |
+
{
|
3420 |
+
"epoch": 1.924924924924925,
|
3421 |
+
"grad_norm": 0.1396440863609314,
|
3422 |
+
"learning_rate": 6.057090892085571e-06,
|
3423 |
+
"loss": 0.2281,
|
3424 |
+
"step": 481
|
3425 |
+
},
|
3426 |
+
{
|
3427 |
+
"epoch": 1.9289289289289289,
|
3428 |
+
"grad_norm": 0.13764607906341553,
|
3429 |
+
"learning_rate": 6.016862779268301e-06,
|
3430 |
+
"loss": 0.2241,
|
3431 |
+
"step": 482
|
3432 |
+
},
|
3433 |
+
{
|
3434 |
+
"epoch": 1.9329329329329328,
|
3435 |
+
"grad_norm": 0.1312662959098816,
|
3436 |
+
"learning_rate": 5.976711135556086e-06,
|
3437 |
+
"loss": 0.2237,
|
3438 |
+
"step": 483
|
3439 |
+
},
|
3440 |
+
{
|
3441 |
+
"epoch": 1.936936936936937,
|
3442 |
+
"grad_norm": 0.15344005823135376,
|
3443 |
+
"learning_rate": 5.936636731788621e-06,
|
3444 |
+
"loss": 0.215,
|
3445 |
+
"step": 484
|
3446 |
+
},
|
3447 |
+
{
|
3448 |
+
"epoch": 1.940940940940941,
|
3449 |
+
"grad_norm": 0.1357364058494568,
|
3450 |
+
"learning_rate": 5.896640337322725e-06,
|
3451 |
+
"loss": 0.2284,
|
3452 |
+
"step": 485
|
3453 |
+
},
|
3454 |
+
{
|
3455 |
+
"epoch": 1.944944944944945,
|
3456 |
+
"grad_norm": 0.14679481089115143,
|
3457 |
+
"learning_rate": 5.8567227200175865e-06,
|
3458 |
+
"loss": 0.2471,
|
3459 |
+
"step": 486
|
3460 |
+
},
|
3461 |
+
{
|
3462 |
+
"epoch": 1.9489489489489489,
|
3463 |
+
"grad_norm": 0.13242673873901367,
|
3464 |
+
"learning_rate": 5.816884646219997e-06,
|
3465 |
+
"loss": 0.2207,
|
3466 |
+
"step": 487
|
3467 |
+
},
|
3468 |
+
{
|
3469 |
+
"epoch": 1.9529529529529528,
|
3470 |
+
"grad_norm": 0.13282544910907745,
|
3471 |
+
"learning_rate": 5.7771268807496794e-06,
|
3472 |
+
"loss": 0.2133,
|
3473 |
+
"step": 488
|
3474 |
+
},
|
3475 |
+
{
|
3476 |
+
"epoch": 1.956956956956957,
|
3477 |
+
"grad_norm": 0.12988749146461487,
|
3478 |
+
"learning_rate": 5.737450186884555e-06,
|
3479 |
+
"loss": 0.2119,
|
3480 |
+
"step": 489
|
3481 |
+
},
|
3482 |
+
{
|
3483 |
+
"epoch": 1.960960960960961,
|
3484 |
+
"grad_norm": 0.1413298100233078,
|
3485 |
+
"learning_rate": 5.6978553263461265e-06,
|
3486 |
+
"loss": 0.2197,
|
3487 |
+
"step": 490
|
3488 |
+
},
|
3489 |
+
{
|
3490 |
+
"epoch": 1.964964964964965,
|
3491 |
+
"grad_norm": 0.1392560601234436,
|
3492 |
+
"learning_rate": 5.6583430592848565e-06,
|
3493 |
+
"loss": 0.2118,
|
3494 |
+
"step": 491
|
3495 |
+
},
|
3496 |
+
{
|
3497 |
+
"epoch": 1.968968968968969,
|
3498 |
+
"grad_norm": 0.1412695348262787,
|
3499 |
+
"learning_rate": 5.618914144265532e-06,
|
3500 |
+
"loss": 0.2146,
|
3501 |
+
"step": 492
|
3502 |
+
},
|
3503 |
+
{
|
3504 |
+
"epoch": 1.972972972972973,
|
3505 |
+
"grad_norm": 0.14450322091579437,
|
3506 |
+
"learning_rate": 5.579569338252758e-06,
|
3507 |
+
"loss": 0.214,
|
3508 |
+
"step": 493
|
3509 |
+
},
|
3510 |
+
{
|
3511 |
+
"epoch": 1.976976976976977,
|
3512 |
+
"grad_norm": 0.1321956366300583,
|
3513 |
+
"learning_rate": 5.5403093965963806e-06,
|
3514 |
+
"loss": 0.2171,
|
3515 |
+
"step": 494
|
3516 |
+
},
|
3517 |
+
{
|
3518 |
+
"epoch": 1.980980980980981,
|
3519 |
+
"grad_norm": 0.15199291706085205,
|
3520 |
+
"learning_rate": 5.501135073017008e-06,
|
3521 |
+
"loss": 0.2186,
|
3522 |
+
"step": 495
|
3523 |
+
},
|
3524 |
+
{
|
3525 |
+
"epoch": 1.984984984984985,
|
3526 |
+
"grad_norm": 0.13251198828220367,
|
3527 |
+
"learning_rate": 5.4620471195915304e-06,
|
3528 |
+
"loss": 0.2041,
|
3529 |
+
"step": 496
|
3530 |
+
},
|
3531 |
+
{
|
3532 |
+
"epoch": 1.988988988988989,
|
3533 |
+
"grad_norm": 0.16512924432754517,
|
3534 |
+
"learning_rate": 5.42304628673869e-06,
|
3535 |
+
"loss": 0.2219,
|
3536 |
+
"step": 497
|
3537 |
+
},
|
3538 |
+
{
|
3539 |
+
"epoch": 1.992992992992993,
|
3540 |
+
"grad_norm": 0.13640455901622772,
|
3541 |
+
"learning_rate": 5.384133323204666e-06,
|
3542 |
+
"loss": 0.2159,
|
3543 |
+
"step": 498
|
3544 |
+
},
|
3545 |
+
{
|
3546 |
+
"epoch": 1.992992992992993,
|
3547 |
+
"eval_loss": 0.2962433695793152,
|
3548 |
+
"eval_runtime": 6.2218,
|
3549 |
+
"eval_samples_per_second": 13.019,
|
3550 |
+
"eval_steps_per_second": 1.768,
|
3551 |
+
"step": 498
|
3552 |
+
}
|
3553 |
+
],
|
3554 |
+
"logging_steps": 1,
|
3555 |
+
"max_steps": 747,
|
3556 |
+
"num_input_tokens_seen": 0,
|
3557 |
+
"num_train_epochs": 3,
|
3558 |
+
"save_steps": 249,
|
3559 |
+
"stateful_callbacks": {
|
3560 |
+
"TrainerControl": {
|
3561 |
+
"args": {
|
3562 |
+
"should_epoch_stop": false,
|
3563 |
+
"should_evaluate": false,
|
3564 |
+
"should_log": false,
|
3565 |
+
"should_save": true,
|
3566 |
+
"should_training_stop": false
|
3567 |
+
},
|
3568 |
+
"attributes": {}
|
3569 |
+
}
|
3570 |
+
},
|
3571 |
+
"total_flos": 8.308189414870221e+17,
|
3572 |
+
"train_batch_size": 8,
|
3573 |
+
"trial_name": null,
|
3574 |
+
"trial_params": null
|
3575 |
+
}
|
3b-w-cot/checkpoint-498/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ae10bafaded3f1f05741f3f17290afb1efc74a263062c027a77525fa9902f1e
|
3 |
+
size 10744
|
3b-w-cot/checkpoint-498/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-w-cot/checkpoint-498/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
3b-w-cot/checkpoint-747/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
3b-w-cot/checkpoint-747/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.3",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
3b-w-cot/checkpoint-747/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.48.3"
|
14 |
+
}
|
3b-w-cot/checkpoint-747/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step746
|
3b-w-cot/checkpoint-747/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3b-w-cot/checkpoint-747/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d864a3ede4291dbf8954edc730f490c139147b7997a05c84493a7ae77553fe0d
|
3 |
+
size 4957560304
|
3b-w-cot/checkpoint-747/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7732a9d9c741b7b288991f75baa7da5bd2ef0ace964fe0a2a63a19f001ff6734
|
3 |
+
size 1836696752
|
3b-w-cot/checkpoint-747/model.safetensors.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6794207232
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
+
}
|
442 |
+
}
|
3b-w-cot/checkpoint-747/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71792d9986abf333291d25825245eca92628cefa5f54c3852cce3ae98163a606
|
3 |
+
size 14512
|
3b-w-cot/checkpoint-747/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8746eb25faee6c63bdad38e5ccce008abfe09b6a67f278aadc8f5b3e48f5a137
|
3 |
+
size 14512
|
3b-w-cot/checkpoint-747/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b3a54b902ddde79dee7411c1b56d36e553d20b71c14e027984774fd8aa1d553
|
3 |
+
size 1064
|
3b-w-cot/checkpoint-747/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|