amphora commited on
Commit
dcad34d
·
verified ·
1 Parent(s): 7997cd3

Delete checkpoint-732

Browse files
checkpoint-732/added_tokens.json DELETED
@@ -1,24 +0,0 @@
1
- {
2
- "</tool_call>": 151658,
3
- "<tool_call>": 151657,
4
- "<|box_end|>": 151649,
5
- "<|box_start|>": 151648,
6
- "<|endoftext|>": 151643,
7
- "<|file_sep|>": 151664,
8
- "<|fim_middle|>": 151660,
9
- "<|fim_pad|>": 151662,
10
- "<|fim_prefix|>": 151659,
11
- "<|fim_suffix|>": 151661,
12
- "<|im_end|>": 151645,
13
- "<|im_start|>": 151644,
14
- "<|image_pad|>": 151655,
15
- "<|object_ref_end|>": 151647,
16
- "<|object_ref_start|>": 151646,
17
- "<|quad_end|>": 151651,
18
- "<|quad_start|>": 151650,
19
- "<|repo_name|>": 151663,
20
- "<|video_pad|>": 151656,
21
- "<|vision_end|>": 151653,
22
- "<|vision_pad|>": 151654,
23
- "<|vision_start|>": 151652
24
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-732/config.json DELETED
@@ -1,28 +0,0 @@
1
- {
2
- "_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
3
- "architectures": [
4
- "Qwen2ForCausalLM"
5
- ],
6
- "attention_dropout": 0.0,
7
- "eos_token_id": 151645,
8
- "hidden_act": "silu",
9
- "hidden_size": 2048,
10
- "initializer_range": 0.02,
11
- "intermediate_size": 11008,
12
- "max_position_embeddings": 32768,
13
- "max_window_layers": 70,
14
- "model_type": "qwen2",
15
- "num_attention_heads": 16,
16
- "num_hidden_layers": 36,
17
- "num_key_value_heads": 2,
18
- "rms_norm_eps": 1e-06,
19
- "rope_scaling": null,
20
- "rope_theta": 1000000.0,
21
- "sliding_window": null,
22
- "tie_word_embeddings": true,
23
- "torch_dtype": "bfloat16",
24
- "transformers_version": "4.48.1",
25
- "use_cache": false,
26
- "use_sliding_window": false,
27
- "vocab_size": 151665
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-732/generation_config.json DELETED
@@ -1,14 +0,0 @@
1
- {
2
- "bos_token_id": 151643,
3
- "do_sample": true,
4
- "eos_token_id": [
5
- 151645,
6
- 151643
7
- ],
8
- "pad_token_id": 151643,
9
- "repetition_penalty": 1.05,
10
- "temperature": 0.7,
11
- "top_k": 20,
12
- "top_p": 0.8,
13
- "transformers_version": "4.48.1"
14
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-732/latest DELETED
@@ -1 +0,0 @@
1
- global_step732
 
 
checkpoint-732/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-732/model-00001-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:94e77145585997322f3e99da879afe33d1189e28971acf742a4a46e57fb43e28
3
- size 4956450288
 
 
 
 
checkpoint-732/model-00002-of-00002.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b4416d56b700f372991da3e4f93be86ca790c88aec666652aa0d55ec0bfa11ce
3
- size 1835586736
 
 
 
 
checkpoint-732/model.safetensors.index.json DELETED
@@ -1,442 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 6791987200
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "model-00002-of-00002.safetensors",
7
- "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
- "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
- "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
- "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
- "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
- "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
- "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
- "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
- "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
- "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
- "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
- "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
- "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
- "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
- "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
- "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
- "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
- "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
- "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
- "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
- "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
- "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
- "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
- "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
- "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
- "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
- "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
- "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
- "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
- "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
- "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
- "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
- "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
- "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
- "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
- "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
- "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
- "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
- "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
- "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
- "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
- "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
- "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
- "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
- "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
- "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
- "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
- "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
- "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
- "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
- "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
- "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
- "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
- "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
- "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
- "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
- "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
- "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
- "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
- "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
- "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
- "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
- "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
- "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
- "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
- "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
- "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
- "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
- "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
- "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
- "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
- "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
- "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
- "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
- "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
- "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
- "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
- "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
- "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
- "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
- "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
- "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
- "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
- "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
- "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
- "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
- "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
- "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
- "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
- "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
- "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
- "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
- "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
- "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
- "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
- "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
- "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
- "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
- "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
- "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
- "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
- "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
- "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
- "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
- "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
- "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
- "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
- "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
- "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
- "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
- "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
- "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
- "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
- "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
- "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
- "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
- "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
- "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
- "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
- "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
- "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
- "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
- "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
- "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
- "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
- "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
- "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
- "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
141
- "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
142
- "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
- "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
- "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
145
- "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
- "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
- "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
- "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
- "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
- "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
- "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
- "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
- "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
- "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
- "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
- "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
- "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
- "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
- "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
- "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
- "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
- "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
- "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
- "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
- "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
- "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
170
- "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
171
- "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
172
- "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
173
- "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
174
- "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
175
- "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
176
- "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
- "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
- "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
179
- "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
180
- "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
181
- "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
182
- "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
183
- "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
184
- "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
185
- "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
186
- "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
187
- "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
- "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
- "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
- "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
- "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
- "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
- "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
194
- "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
195
- "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
196
- "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
197
- "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
198
- "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
199
- "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
200
- "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
201
- "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
202
- "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
203
- "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
204
- "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
205
- "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
206
- "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
207
- "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
208
- "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
209
- "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
210
- "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
211
- "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
212
- "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
213
- "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
214
- "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
215
- "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
216
- "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
217
- "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
218
- "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
219
- "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
220
- "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
221
- "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
- "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
223
- "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
- "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
225
- "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
226
- "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
227
- "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
228
- "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
229
- "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
230
- "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
231
- "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
232
- "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
233
- "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
234
- "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
235
- "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
236
- "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
237
- "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
238
- "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
239
- "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
240
- "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
241
- "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
- "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
- "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
244
- "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
245
- "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
246
- "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
247
- "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
248
- "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
- "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
250
- "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
251
- "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
252
- "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
253
- "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
254
- "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
255
- "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
256
- "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
257
- "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
- "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
259
- "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
- "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
- "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
- "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
- "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
- "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
- "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
266
- "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
- "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
- "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
269
- "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
- "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
271
- "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
272
- "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
- "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
- "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
- "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
- "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
- "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
- "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
- "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
- "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
- "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
- "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
- "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
- "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
- "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
- "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
- "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
- "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
- "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
- "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
- "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
- "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
- "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
- "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
- "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
- "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
- "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
- "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
- "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
- "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
- "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
- "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
- "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
- "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
- "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
- "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
- "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
- "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
- "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
- "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
- "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
- "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
- "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
- "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
- "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
- "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
- "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
- "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
- "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
- "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
- "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
- "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
- "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
- "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
- "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
- "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
- "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
- "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
- "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
- "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
- "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
- "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
- "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
- "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
- "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
- "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
- "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
- "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
- "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
- "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
- "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
- "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
- "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
- "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
- "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
- "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
- "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
- "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
- "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
- "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
- "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
- "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
- "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
- "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
- "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
- "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
- "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
- "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
- "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
- "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
- "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
- "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
- "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
- "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
- "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
- "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
- "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
- "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
- "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
- "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
- "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
- "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
- "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
- "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
- "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
- "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
- "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
- "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
- "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
- "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
- "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
- "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
- "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
- "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
- "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
- "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
- "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
- "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
- "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
- "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
- "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
- "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
- "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
- "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
- "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
- "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
- "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
- "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
- "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
- "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
- "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
- "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
- "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
- "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
- "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
- "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
- "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
- "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
- "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
- "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
- "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
- "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
- "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
- "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
- "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
- "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
- "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
- "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
- "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
- "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
- "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
- "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
- "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
- "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
- "model.norm.weight": "model-00002-of-00002.safetensors"
441
- }
442
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-732/rng_state_0.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6f3803bff3f596c03b55881de967a825b5734e4a581739164f9cb9e7fd1aee89
3
- size 14512
 
 
 
 
checkpoint-732/rng_state_1.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d768a04b798e2ca42effbe096b8e4481f32a402a9125a2ced390586dab8eb29e
3
- size 14512
 
 
 
 
checkpoint-732/scheduler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e3674e6d322bb18fac688dee98de72d6d1e9649274ab1079046232a9da36c9b5
3
- size 1064
 
 
 
 
checkpoint-732/special_tokens_map.json DELETED
@@ -1,31 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>",
5
- "<|object_ref_start|>",
6
- "<|object_ref_end|>",
7
- "<|box_start|>",
8
- "<|box_end|>",
9
- "<|quad_start|>",
10
- "<|quad_end|>",
11
- "<|vision_start|>",
12
- "<|vision_end|>",
13
- "<|vision_pad|>",
14
- "<|image_pad|>",
15
- "<|video_pad|>"
16
- ],
17
- "eos_token": {
18
- "content": "<|im_end|>",
19
- "lstrip": false,
20
- "normalized": false,
21
- "rstrip": false,
22
- "single_word": false
23
- },
24
- "pad_token": {
25
- "content": "<|endoftext|>",
26
- "lstrip": false,
27
- "normalized": false,
28
- "rstrip": false,
29
- "single_word": false
30
- }
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-732/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
- size 11421896
 
 
 
 
checkpoint-732/tokenizer_config.json DELETED
@@ -1,208 +0,0 @@
1
- {
2
- "add_bos_token": false,
3
- "add_prefix_space": false,
4
- "added_tokens_decoder": {
5
- "151643": {
6
- "content": "<|endoftext|>",
7
- "lstrip": false,
8
- "normalized": false,
9
- "rstrip": false,
10
- "single_word": false,
11
- "special": true
12
- },
13
- "151644": {
14
- "content": "<|im_start|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false,
19
- "special": true
20
- },
21
- "151645": {
22
- "content": "<|im_end|>",
23
- "lstrip": false,
24
- "normalized": false,
25
- "rstrip": false,
26
- "single_word": false,
27
- "special": true
28
- },
29
- "151646": {
30
- "content": "<|object_ref_start|>",
31
- "lstrip": false,
32
- "normalized": false,
33
- "rstrip": false,
34
- "single_word": false,
35
- "special": true
36
- },
37
- "151647": {
38
- "content": "<|object_ref_end|>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false,
43
- "special": true
44
- },
45
- "151648": {
46
- "content": "<|box_start|>",
47
- "lstrip": false,
48
- "normalized": false,
49
- "rstrip": false,
50
- "single_word": false,
51
- "special": true
52
- },
53
- "151649": {
54
- "content": "<|box_end|>",
55
- "lstrip": false,
56
- "normalized": false,
57
- "rstrip": false,
58
- "single_word": false,
59
- "special": true
60
- },
61
- "151650": {
62
- "content": "<|quad_start|>",
63
- "lstrip": false,
64
- "normalized": false,
65
- "rstrip": false,
66
- "single_word": false,
67
- "special": true
68
- },
69
- "151651": {
70
- "content": "<|quad_end|>",
71
- "lstrip": false,
72
- "normalized": false,
73
- "rstrip": false,
74
- "single_word": false,
75
- "special": true
76
- },
77
- "151652": {
78
- "content": "<|vision_start|>",
79
- "lstrip": false,
80
- "normalized": false,
81
- "rstrip": false,
82
- "single_word": false,
83
- "special": true
84
- },
85
- "151653": {
86
- "content": "<|vision_end|>",
87
- "lstrip": false,
88
- "normalized": false,
89
- "rstrip": false,
90
- "single_word": false,
91
- "special": true
92
- },
93
- "151654": {
94
- "content": "<|vision_pad|>",
95
- "lstrip": false,
96
- "normalized": false,
97
- "rstrip": false,
98
- "single_word": false,
99
- "special": true
100
- },
101
- "151655": {
102
- "content": "<|image_pad|>",
103
- "lstrip": false,
104
- "normalized": false,
105
- "rstrip": false,
106
- "single_word": false,
107
- "special": true
108
- },
109
- "151656": {
110
- "content": "<|video_pad|>",
111
- "lstrip": false,
112
- "normalized": false,
113
- "rstrip": false,
114
- "single_word": false,
115
- "special": true
116
- },
117
- "151657": {
118
- "content": "<tool_call>",
119
- "lstrip": false,
120
- "normalized": false,
121
- "rstrip": false,
122
- "single_word": false,
123
- "special": false
124
- },
125
- "151658": {
126
- "content": "</tool_call>",
127
- "lstrip": false,
128
- "normalized": false,
129
- "rstrip": false,
130
- "single_word": false,
131
- "special": false
132
- },
133
- "151659": {
134
- "content": "<|fim_prefix|>",
135
- "lstrip": false,
136
- "normalized": false,
137
- "rstrip": false,
138
- "single_word": false,
139
- "special": false
140
- },
141
- "151660": {
142
- "content": "<|fim_middle|>",
143
- "lstrip": false,
144
- "normalized": false,
145
- "rstrip": false,
146
- "single_word": false,
147
- "special": false
148
- },
149
- "151661": {
150
- "content": "<|fim_suffix|>",
151
- "lstrip": false,
152
- "normalized": false,
153
- "rstrip": false,
154
- "single_word": false,
155
- "special": false
156
- },
157
- "151662": {
158
- "content": "<|fim_pad|>",
159
- "lstrip": false,
160
- "normalized": false,
161
- "rstrip": false,
162
- "single_word": false,
163
- "special": false
164
- },
165
- "151663": {
166
- "content": "<|repo_name|>",
167
- "lstrip": false,
168
- "normalized": false,
169
- "rstrip": false,
170
- "single_word": false,
171
- "special": false
172
- },
173
- "151664": {
174
- "content": "<|file_sep|>",
175
- "lstrip": false,
176
- "normalized": false,
177
- "rstrip": false,
178
- "single_word": false,
179
- "special": false
180
- }
181
- },
182
- "additional_special_tokens": [
183
- "<|im_start|>",
184
- "<|im_end|>",
185
- "<|object_ref_start|>",
186
- "<|object_ref_end|>",
187
- "<|box_start|>",
188
- "<|box_end|>",
189
- "<|quad_start|>",
190
- "<|quad_end|>",
191
- "<|vision_start|>",
192
- "<|vision_end|>",
193
- "<|vision_pad|>",
194
- "<|image_pad|>",
195
- "<|video_pad|>"
196
- ],
197
- "bos_token": null,
198
- "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
- "clean_up_tokenization_spaces": false,
200
- "eos_token": "<|im_end|>",
201
- "errors": "replace",
202
- "extra_special_tokens": {},
203
- "model_max_length": 131072,
204
- "pad_token": "<|endoftext|>",
205
- "split_special_tokens": false,
206
- "tokenizer_class": "Qwen2Tokenizer",
207
- "unk_token": null
208
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-732/trainer_state.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-732/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8a51e619db41bfecd4e2978f86e8cb848022d32d79a042203708d80062927ea
3
- size 10744
 
 
 
 
checkpoint-732/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-732/zero_to_fp32.py DELETED
@@ -1,760 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example:
14
- # python zero_to_fp32.py . output_dir/
15
- # or
16
- # python zero_to_fp32.py . output_dir/ --safe_serialization
17
-
18
- import argparse
19
- import torch
20
- import glob
21
- import math
22
- import os
23
- import re
24
- import gc
25
- import json
26
- import numpy as np
27
- from tqdm import tqdm
28
- from collections import OrderedDict
29
- from dataclasses import dataclass
30
-
31
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
- # DeepSpeed data structures it has to be available in the current python environment.
33
- from deepspeed.utils import logger
34
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
-
38
-
39
- @dataclass
40
- class zero_model_state:
41
- buffers: dict()
42
- param_shapes: dict()
43
- shared_params: list
44
- ds_version: int
45
- frozen_param_shapes: dict()
46
- frozen_param_fragments: dict()
47
-
48
-
49
- debug = 0
50
-
51
- # load to cpu
52
- device = torch.device('cpu')
53
-
54
-
55
- def atoi(text):
56
- return int(text) if text.isdigit() else text
57
-
58
-
59
- def natural_keys(text):
60
- '''
61
- alist.sort(key=natural_keys) sorts in human order
62
- http://nedbatchelder.com/blog/200712/human_sorting.html
63
- (See Toothy's implementation in the comments)
64
- '''
65
- return [atoi(c) for c in re.split(r'(\d+)', text)]
66
-
67
-
68
- def get_model_state_file(checkpoint_dir, zero_stage):
69
- if not os.path.isdir(checkpoint_dir):
70
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
-
72
- # there should be only one file
73
- if zero_stage <= 2:
74
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
- elif zero_stage == 3:
76
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
-
78
- if not os.path.exists(file):
79
- raise FileNotFoundError(f"can't find model states file at '{file}'")
80
-
81
- return file
82
-
83
-
84
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
- # XXX: need to test that this simple glob rule works for multi-node setup too
86
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
-
88
- if len(ckpt_files) == 0:
89
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
-
91
- return ckpt_files
92
-
93
-
94
- def get_optim_files(checkpoint_dir):
95
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
-
97
-
98
- def get_model_state_files(checkpoint_dir):
99
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
-
101
-
102
- def parse_model_states(files):
103
- zero_model_states = []
104
- for file in files:
105
- state_dict = torch.load(file, map_location=device, weights_only=False)
106
-
107
- if BUFFER_NAMES not in state_dict:
108
- raise ValueError(f"{file} is not a model state checkpoint")
109
- buffer_names = state_dict[BUFFER_NAMES]
110
- if debug:
111
- print("Found buffers:", buffer_names)
112
-
113
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
- param_shapes = state_dict[PARAM_SHAPES]
116
-
117
- # collect parameters that are included in param_shapes
118
- param_names = []
119
- for s in param_shapes:
120
- for name in s.keys():
121
- param_names.append(name)
122
-
123
- # update with frozen parameters
124
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
- if frozen_param_shapes is not None:
126
- if debug:
127
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
- param_names += list(frozen_param_shapes.keys())
129
-
130
- # handle shared params
131
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
-
133
- ds_version = state_dict.get(DS_VERSION, None)
134
-
135
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
-
137
- z_model_state = zero_model_state(buffers=buffers,
138
- param_shapes=param_shapes,
139
- shared_params=shared_params,
140
- ds_version=ds_version,
141
- frozen_param_shapes=frozen_param_shapes,
142
- frozen_param_fragments=frozen_param_fragments)
143
- zero_model_states.append(z_model_state)
144
-
145
- return zero_model_states
146
-
147
-
148
- def parse_optim_states(files, ds_checkpoint_dir):
149
- total_files = len(files)
150
- state_dicts = []
151
- for f in tqdm(files, desc='Loading checkpoint shards'):
152
- state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
- # and also handle the case where it was already removed by another helper script
155
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
- state_dicts.append(state_dict)
157
-
158
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
- raise ValueError(f"{files[0]} is not a zero checkpoint")
160
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
-
163
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
- # parameters can be different from data parallelism for non-expert parameters. So we can just
165
- # use the max of the partition_count to get the dp world_size.
166
-
167
- if type(world_size) is list:
168
- world_size = max(world_size)
169
-
170
- if world_size != total_files:
171
- raise ValueError(
172
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
- )
175
-
176
- # the groups are named differently in each stage
177
- if zero_stage <= 2:
178
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
- elif zero_stage == 3:
180
- fp32_groups_key = FP32_FLAT_GROUPS
181
- else:
182
- raise ValueError(f"unknown zero stage {zero_stage}")
183
-
184
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
- return zero_stage, world_size, fp32_flat_groups
186
-
187
-
188
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
- """
190
- Returns fp32 state_dict reconstructed from ds checkpoint
191
-
192
- Args:
193
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
-
195
- """
196
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
-
198
- optim_files = get_optim_files(ds_checkpoint_dir)
199
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
-
202
- model_files = get_model_state_files(ds_checkpoint_dir)
203
-
204
- zero_model_states = parse_model_states(model_files)
205
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
-
207
- if zero_stage <= 2:
208
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
- exclude_frozen_parameters)
210
- elif zero_stage == 3:
211
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
- exclude_frozen_parameters)
213
-
214
-
215
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
- return
218
-
219
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
-
222
- if debug:
223
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
-
226
- wanted_params = len(frozen_param_shapes)
227
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
- print(f'Frozen params: Have {avail_numel} numels to process.')
230
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
-
232
- total_params = 0
233
- total_numel = 0
234
- for name, shape in frozen_param_shapes.items():
235
- total_params += 1
236
- unpartitioned_numel = shape.numel()
237
- total_numel += unpartitioned_numel
238
-
239
- state_dict[name] = frozen_param_fragments[name]
240
-
241
- if debug:
242
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
-
244
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
-
246
-
247
- def _has_callable(obj, fn):
248
- attr = getattr(obj, fn, None)
249
- return callable(attr)
250
-
251
-
252
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
- param_shapes = zero_model_states[0].param_shapes
254
-
255
- # Reconstruction protocol:
256
- #
257
- # XXX: document this
258
-
259
- if debug:
260
- for i in range(world_size):
261
- for j in range(len(fp32_flat_groups[0])):
262
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
-
264
- # XXX: memory usage doubles here (zero2)
265
- num_param_groups = len(fp32_flat_groups[0])
266
- merged_single_partition_of_fp32_groups = []
267
- for i in range(num_param_groups):
268
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
- avail_numel = sum(
272
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
-
274
- if debug:
275
- wanted_params = sum([len(shapes) for shapes in param_shapes])
276
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
- # not asserting if there is a mismatch due to possible padding
278
- print(f"Have {avail_numel} numels to process.")
279
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
-
281
- # params
282
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
- # out-of-core computing solution
284
- total_numel = 0
285
- total_params = 0
286
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
- offset = 0
288
- avail_numel = full_single_fp32_vector.numel()
289
- for name, shape in shapes.items():
290
-
291
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
- total_numel += unpartitioned_numel
293
- total_params += 1
294
-
295
- if debug:
296
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
- offset += unpartitioned_numel
299
-
300
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
- # live optimizer object, so we are checking that the numbers are within the right range
304
- align_to = 2 * world_size
305
-
306
- def zero2_align(x):
307
- return align_to * math.ceil(x / align_to)
308
-
309
- if debug:
310
- print(f"original offset={offset}, avail_numel={avail_numel}")
311
-
312
- offset = zero2_align(offset)
313
- avail_numel = zero2_align(avail_numel)
314
-
315
- if debug:
316
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
-
318
- # Sanity check
319
- if offset != avail_numel:
320
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
-
322
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
-
324
-
325
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
- exclude_frozen_parameters):
327
- state_dict = OrderedDict()
328
-
329
- # buffers
330
- buffers = zero_model_states[0].buffers
331
- state_dict.update(buffers)
332
- if debug:
333
- print(f"added {len(buffers)} buffers")
334
-
335
- if not exclude_frozen_parameters:
336
- _zero2_merge_frozen_params(state_dict, zero_model_states)
337
-
338
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
-
340
- # recover shared parameters
341
- for pair in zero_model_states[0].shared_params:
342
- if pair[1] in state_dict:
343
- state_dict[pair[0]] = state_dict[pair[1]]
344
-
345
- return state_dict
346
-
347
-
348
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
- remainder = unpartitioned_numel % world_size
350
- padding_numel = (world_size - remainder) if remainder else 0
351
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
- return partitioned_numel, padding_numel
353
-
354
-
355
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
- return
358
-
359
- if debug:
360
- for i in range(world_size):
361
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
-
364
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
- wanted_params = len(frozen_param_shapes)
366
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
- print(f'Frozen params: Have {avail_numel} numels to process.')
369
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
-
371
- total_params = 0
372
- total_numel = 0
373
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
- total_params += 1
375
- unpartitioned_numel = shape.numel()
376
- total_numel += unpartitioned_numel
377
-
378
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
-
381
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
-
383
- if debug:
384
- print(
385
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
- )
387
-
388
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
-
390
-
391
- class GatheredTensor:
392
- """
393
- A pseudo tensor that collects partitioned weights.
394
- It is more memory efficient when there are multiple groups.
395
- """
396
-
397
- def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
- self.flat_groups = flat_groups
399
- self.flat_groups_offset = flat_groups_offset
400
- self.offset = offset
401
- self.partitioned_numel = partitioned_numel
402
- self.shape = shape
403
- self.dtype = self.flat_groups[0][0].dtype
404
-
405
- def contiguous(self):
406
- """
407
- Merge partitioned weights from flat_groups into a single tensor.
408
- """
409
- end_idx = self.offset + self.partitioned_numel
410
- world_size = len(self.flat_groups)
411
- pad_flat_param_chunks = []
412
-
413
- for rank_i in range(world_size):
414
- # for each rank, we need to collect weights from related group/groups
415
- flat_groups_at_rank_i = self.flat_groups[rank_i]
416
- start_group_id = None
417
- end_group_id = None
418
- for group_id in range(len(self.flat_groups_offset)):
419
- if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
- start_group_id = group_id
421
- if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
- end_group_id = group_id
423
- break
424
- # collect weights from related group/groups
425
- for group_id in range(start_group_id, end_group_id + 1):
426
- flat_tensor = flat_groups_at_rank_i[group_id]
427
- start_offset = self.offset - self.flat_groups_offset[group_id]
428
- end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
- pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
-
431
- # collect weights from all ranks
432
- pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
- param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
- return param
435
-
436
-
437
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
- param_shapes = zero_model_states[0].param_shapes
439
- avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
-
441
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
- # param, re-consolidating each param, while dealing with padding if any
443
-
444
- # merge list of dicts, preserving order
445
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
-
447
- if debug:
448
- for i in range(world_size):
449
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
-
451
- wanted_params = len(param_shapes)
452
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
- # not asserting if there is a mismatch due to possible padding
454
- avail_numel = fp32_flat_groups[0].numel() * world_size
455
- print(f"Trainable params: Have {avail_numel} numels to process.")
456
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
-
458
- # params
459
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
- # out-of-core computing solution
461
- offset = 0
462
- total_numel = 0
463
- total_params = 0
464
- flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
- for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
- unpartitioned_numel = shape.numel()
467
- total_numel += unpartitioned_numel
468
- total_params += 1
469
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
-
471
- if debug:
472
- print(
473
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
- )
475
-
476
- # memory efficient tensor
477
- tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
- state_dict[name] = tensor
479
- offset += partitioned_numel
480
-
481
- offset *= world_size
482
-
483
- # Sanity check
484
- if offset != avail_numel:
485
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
-
487
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
-
489
-
490
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
- exclude_frozen_parameters):
492
- state_dict = OrderedDict()
493
-
494
- # buffers
495
- buffers = zero_model_states[0].buffers
496
- state_dict.update(buffers)
497
- if debug:
498
- print(f"added {len(buffers)} buffers")
499
-
500
- if not exclude_frozen_parameters:
501
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
-
503
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
-
505
- # recover shared parameters
506
- for pair in zero_model_states[0].shared_params:
507
- if pair[1] in state_dict:
508
- state_dict[pair[0]] = state_dict[pair[1]]
509
-
510
- return state_dict
511
-
512
-
513
- def to_torch_tensor(state_dict, return_empty_tensor=False):
514
- """
515
- Convert state_dict of GatheredTensor to torch tensor
516
- """
517
- torch_state_dict = {}
518
- converted_tensors = {}
519
- for name, tensor in state_dict.items():
520
- tensor_id = id(tensor)
521
- if tensor_id in converted_tensors: # shared tensors
522
- shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
- torch_state_dict[name] = shared_tensor
524
- else:
525
- converted_tensors[tensor_id] = name
526
- if return_empty_tensor:
527
- torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
- else:
529
- torch_state_dict[name] = tensor.contiguous()
530
- return torch_state_dict
531
-
532
-
533
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
- tag=None,
535
- exclude_frozen_parameters=False,
536
- lazy_mode=False):
537
- """
538
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
- via a model hub.
541
-
542
- Args:
543
- - ``checkpoint_dir``: path to the desired checkpoint folder
544
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
- - ``exclude_frozen_parameters``: exclude frozen parameters
546
- - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
- Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
-
549
- Returns:
550
- - pytorch ``state_dict``
551
-
552
- A typical usage might be ::
553
-
554
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
- # do the training and checkpoint saving
556
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
- model = model.cpu() # move to cpu
558
- model.load_state_dict(state_dict)
559
- # submit to model hub or save the model to share with others
560
-
561
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
- application. i.e. you will need to re-initialize the deepspeed engine, since
563
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
-
565
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
-
567
- Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
- You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
- the checkpoint. Or you can load state_dict in lazy mode ::
570
-
571
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
- for name, lazy_tensor in state_dict.item():
574
- tensor = lazy_tensor.contiguous() # to cpu
575
- print(name, tensor)
576
- # del tensor to release memory if it no longer in use
577
- """
578
- if tag is None:
579
- latest_path = os.path.join(checkpoint_dir, 'latest')
580
- if os.path.isfile(latest_path):
581
- with open(latest_path, 'r') as fd:
582
- tag = fd.read().strip()
583
- else:
584
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
-
586
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
-
588
- if not os.path.isdir(ds_checkpoint_dir):
589
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
-
591
- state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
- if lazy_mode:
593
- return state_dict
594
- else:
595
- return to_torch_tensor(state_dict)
596
-
597
-
598
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
- output_dir,
600
- max_shard_size="5GB",
601
- safe_serialization=False,
602
- tag=None,
603
- exclude_frozen_parameters=False):
604
- """
605
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
-
608
- Args:
609
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
- - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
- - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
- - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
- - ``exclude_frozen_parameters``: exclude frozen parameters
615
- """
616
-
617
- # Dependency pre-check
618
- if safe_serialization:
619
- try:
620
- from safetensors.torch import save_file
621
- except ImportError:
622
- print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
- raise
624
- if max_shard_size is not None:
625
- try:
626
- from huggingface_hub import split_torch_state_dict_into_shards
627
- except ImportError:
628
- print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
- raise
630
-
631
- # Convert zero checkpoint to state_dict
632
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
- tag,
634
- exclude_frozen_parameters,
635
- lazy_mode=True)
636
-
637
- # Shard the model if it is too big.
638
- weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
- if max_shard_size is not None:
640
- filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
- # an memory-efficient approach for sharding
642
- empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
- state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
- filename_pattern=filename_pattern,
645
- max_shard_size=max_shard_size)
646
- else:
647
- from collections import namedtuple
648
- StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
- state_dict_split = StateDictSplit(is_sharded=False,
650
- filename_to_tensors={weights_name: list(state_dict.keys())})
651
-
652
- # Save the model by shard
653
- os.makedirs(output_dir, exist_ok=True)
654
- filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
- for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
- shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
- shard_state_dict = to_torch_tensor(shard_state_dict)
658
- output_path = os.path.join(output_dir, shard_file)
659
- if safe_serialization:
660
- save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
- else:
662
- torch.save(shard_state_dict, output_path)
663
- # release the memory of current shard
664
- for tensor_name in list(shard_state_dict.keys()):
665
- del state_dict[tensor_name]
666
- del shard_state_dict[tensor_name]
667
- del shard_state_dict
668
- gc.collect()
669
-
670
- # Save index if sharded
671
- if state_dict_split.is_sharded:
672
- index = {
673
- "metadata": state_dict_split.metadata,
674
- "weight_map": state_dict_split.tensor_to_filename,
675
- }
676
- save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
- save_index_file = os.path.join(output_dir, save_index_file)
678
- with open(save_index_file, "w", encoding="utf-8") as f:
679
- content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
- f.write(content)
681
-
682
-
683
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
- """
685
- 1. Put the provided model to cpu
686
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
- 3. Load it into the provided model
688
-
689
- Args:
690
- - ``model``: the model object to update
691
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
-
694
- Returns:
695
- - ``model`: modified model
696
-
697
- Make sure you have plenty of CPU memory available before you call this function. If you don't
698
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
- conveniently placed for you in the checkpoint folder.
700
-
701
- A typical usage might be ::
702
-
703
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
- # submit to model hub or save the model to share with others
706
-
707
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
-
711
- """
712
- logger.info(f"Extracting fp32 weights")
713
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
-
715
- logger.info(f"Overwriting model with fp32 weights")
716
- model = model.cpu()
717
- model.load_state_dict(state_dict, strict=False)
718
-
719
- return model
720
-
721
-
722
- if __name__ == "__main__":
723
- parser = argparse.ArgumentParser()
724
- parser.add_argument("checkpoint_dir",
725
- type=str,
726
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
- parser.add_argument("output_dir",
728
- type=str,
729
- help="directory to the pytorch fp32 state_dict output files"
730
- "(e.g. path/checkpoint-12-output/)")
731
- parser.add_argument(
732
- "--max_shard_size",
733
- type=str,
734
- default="5GB",
735
- help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
- "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
- "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
- "without CPU OOM issues.")
739
- parser.add_argument(
740
- "--safe_serialization",
741
- default=False,
742
- action='store_true',
743
- help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
- parser.add_argument("-t",
745
- "--tag",
746
- type=str,
747
- default=None,
748
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
- args = parser.parse_args()
752
-
753
- debug = args.debug
754
-
755
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
- args.output_dir,
757
- max_shard_size=args.max_shard_size,
758
- safe_serialization=args.safe_serialization,
759
- tag=args.tag,
760
- exclude_frozen_parameters=args.exclude_frozen_parameters)