Delete checkpoint-732
Browse files- checkpoint-732/added_tokens.json +0 -24
- checkpoint-732/config.json +0 -28
- checkpoint-732/generation_config.json +0 -14
- checkpoint-732/latest +0 -1
- checkpoint-732/merges.txt +0 -0
- checkpoint-732/model-00001-of-00002.safetensors +0 -3
- checkpoint-732/model-00002-of-00002.safetensors +0 -3
- checkpoint-732/model.safetensors.index.json +0 -442
- checkpoint-732/rng_state_0.pth +0 -3
- checkpoint-732/rng_state_1.pth +0 -3
- checkpoint-732/scheduler.pt +0 -3
- checkpoint-732/special_tokens_map.json +0 -31
- checkpoint-732/tokenizer.json +0 -3
- checkpoint-732/tokenizer_config.json +0 -208
- checkpoint-732/trainer_state.json +0 -0
- checkpoint-732/training_args.bin +0 -3
- checkpoint-732/vocab.json +0 -0
- checkpoint-732/zero_to_fp32.py +0 -760
checkpoint-732/added_tokens.json
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"</tool_call>": 151658,
|
3 |
-
"<tool_call>": 151657,
|
4 |
-
"<|box_end|>": 151649,
|
5 |
-
"<|box_start|>": 151648,
|
6 |
-
"<|endoftext|>": 151643,
|
7 |
-
"<|file_sep|>": 151664,
|
8 |
-
"<|fim_middle|>": 151660,
|
9 |
-
"<|fim_pad|>": 151662,
|
10 |
-
"<|fim_prefix|>": 151659,
|
11 |
-
"<|fim_suffix|>": 151661,
|
12 |
-
"<|im_end|>": 151645,
|
13 |
-
"<|im_start|>": 151644,
|
14 |
-
"<|image_pad|>": 151655,
|
15 |
-
"<|object_ref_end|>": 151647,
|
16 |
-
"<|object_ref_start|>": 151646,
|
17 |
-
"<|quad_end|>": 151651,
|
18 |
-
"<|quad_start|>": 151650,
|
19 |
-
"<|repo_name|>": 151663,
|
20 |
-
"<|video_pad|>": 151656,
|
21 |
-
"<|vision_end|>": 151653,
|
22 |
-
"<|vision_pad|>": 151654,
|
23 |
-
"<|vision_start|>": 151652
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-732/config.json
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "Qwen/Qwen2.5-3B-Instruct",
|
3 |
-
"architectures": [
|
4 |
-
"Qwen2ForCausalLM"
|
5 |
-
],
|
6 |
-
"attention_dropout": 0.0,
|
7 |
-
"eos_token_id": 151645,
|
8 |
-
"hidden_act": "silu",
|
9 |
-
"hidden_size": 2048,
|
10 |
-
"initializer_range": 0.02,
|
11 |
-
"intermediate_size": 11008,
|
12 |
-
"max_position_embeddings": 32768,
|
13 |
-
"max_window_layers": 70,
|
14 |
-
"model_type": "qwen2",
|
15 |
-
"num_attention_heads": 16,
|
16 |
-
"num_hidden_layers": 36,
|
17 |
-
"num_key_value_heads": 2,
|
18 |
-
"rms_norm_eps": 1e-06,
|
19 |
-
"rope_scaling": null,
|
20 |
-
"rope_theta": 1000000.0,
|
21 |
-
"sliding_window": null,
|
22 |
-
"tie_word_embeddings": true,
|
23 |
-
"torch_dtype": "bfloat16",
|
24 |
-
"transformers_version": "4.48.1",
|
25 |
-
"use_cache": false,
|
26 |
-
"use_sliding_window": false,
|
27 |
-
"vocab_size": 151665
|
28 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-732/generation_config.json
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token_id": 151643,
|
3 |
-
"do_sample": true,
|
4 |
-
"eos_token_id": [
|
5 |
-
151645,
|
6 |
-
151643
|
7 |
-
],
|
8 |
-
"pad_token_id": 151643,
|
9 |
-
"repetition_penalty": 1.05,
|
10 |
-
"temperature": 0.7,
|
11 |
-
"top_k": 20,
|
12 |
-
"top_p": 0.8,
|
13 |
-
"transformers_version": "4.48.1"
|
14 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-732/latest
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
global_step732
|
|
|
|
checkpoint-732/merges.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-732/model-00001-of-00002.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:94e77145585997322f3e99da879afe33d1189e28971acf742a4a46e57fb43e28
|
3 |
-
size 4956450288
|
|
|
|
|
|
|
|
checkpoint-732/model-00002-of-00002.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b4416d56b700f372991da3e4f93be86ca790c88aec666652aa0d55ec0bfa11ce
|
3 |
-
size 1835586736
|
|
|
|
|
|
|
|
checkpoint-732/model.safetensors.index.json
DELETED
@@ -1,442 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"metadata": {
|
3 |
-
"total_size": 6791987200
|
4 |
-
},
|
5 |
-
"weight_map": {
|
6 |
-
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
-
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
-
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
-
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
-
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
-
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
-
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
-
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
-
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
-
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
-
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
-
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
-
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
-
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
-
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
-
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
-
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
-
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
-
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
-
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
-
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
-
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
-
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
-
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
-
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
-
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
-
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
-
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
-
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
-
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
-
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
-
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
-
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
-
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
-
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
-
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
-
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
-
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
-
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
-
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
-
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
-
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
-
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
-
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
-
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
-
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
-
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
-
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
-
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
-
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
-
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
-
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
-
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
-
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
-
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
-
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
-
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
-
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
-
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
-
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
-
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
-
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
-
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
-
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
-
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
-
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
-
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
-
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
-
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
-
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
-
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
-
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
-
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
-
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
-
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
-
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
-
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
-
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
-
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
-
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
-
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
-
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
-
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
-
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
-
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
-
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
-
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
-
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
-
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
-
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
-
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
-
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
-
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
-
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
-
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
-
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
-
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
-
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
-
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
-
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
-
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
-
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
-
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
-
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
-
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
-
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
-
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
-
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
-
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
-
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
-
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
-
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
-
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
-
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
-
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
-
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
-
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
-
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
-
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
-
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
-
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
-
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
-
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
-
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
-
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
-
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
-
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
-
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
-
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
-
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
-
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
-
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
-
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
-
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
-
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
-
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
-
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
-
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
-
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
-
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
-
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
-
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
-
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
-
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
-
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
-
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
-
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
-
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
-
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
-
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
-
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
-
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
-
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
-
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
-
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
-
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
-
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
-
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
-
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
-
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
-
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
-
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
-
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
-
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
-
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
-
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
-
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
-
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
-
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
-
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
-
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
-
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
-
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
-
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
-
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
-
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
-
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
-
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
-
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
-
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
-
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
-
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
-
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
-
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
-
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
-
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
-
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
-
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
-
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
-
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
-
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
-
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
-
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
-
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
-
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
-
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
-
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
-
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
-
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
-
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
-
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
-
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
-
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
-
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
-
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
-
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
-
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
-
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
-
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
-
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
-
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
-
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
-
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
-
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
-
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
-
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
-
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
-
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
-
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
-
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
-
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
-
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
-
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
-
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
-
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
-
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
-
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
237 |
-
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
-
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
-
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
240 |
-
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
241 |
-
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
-
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
-
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
-
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
-
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
-
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
-
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
-
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
249 |
-
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
-
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
-
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
252 |
-
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
253 |
-
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
254 |
-
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
-
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
256 |
-
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
257 |
-
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
-
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
259 |
-
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
-
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
-
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
-
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
-
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
-
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
-
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
266 |
-
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
-
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
-
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
269 |
-
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
270 |
-
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
271 |
-
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
-
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
-
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
-
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
-
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
-
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
-
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
-
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
-
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
-
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
-
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
-
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
-
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
-
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
-
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
-
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
-
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
-
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
-
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
-
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
-
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
-
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
-
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
-
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
-
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
-
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
-
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
-
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
-
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
-
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
-
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
-
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
-
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
-
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
-
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
-
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
-
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
-
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
-
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
-
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
-
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
-
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
-
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
-
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
-
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
-
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
-
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
-
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
-
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
-
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
-
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
-
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
-
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
-
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
-
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
-
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
-
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
-
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
-
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
-
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
-
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
-
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
-
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
-
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
-
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
-
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
-
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
-
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
-
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
-
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
-
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
-
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
-
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
-
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
-
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
-
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
-
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
-
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
-
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
-
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
-
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
-
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
-
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
-
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
-
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
-
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
-
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
-
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
-
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
-
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
-
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
-
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
-
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
-
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
-
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
-
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
-
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
-
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
369 |
-
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
-
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
-
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
372 |
-
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
373 |
-
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
374 |
-
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
-
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
376 |
-
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
377 |
-
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
378 |
-
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
379 |
-
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
380 |
-
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
381 |
-
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
-
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
-
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
384 |
-
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
385 |
-
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
386 |
-
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
-
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
388 |
-
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
389 |
-
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
390 |
-
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
391 |
-
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
392 |
-
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
393 |
-
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
-
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
-
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
396 |
-
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
397 |
-
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
398 |
-
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
-
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
400 |
-
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
401 |
-
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
402 |
-
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
403 |
-
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
404 |
-
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
405 |
-
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
-
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
-
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
408 |
-
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
409 |
-
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
410 |
-
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
-
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
412 |
-
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
413 |
-
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
414 |
-
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
415 |
-
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
416 |
-
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
-
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
-
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
-
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
-
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
-
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
-
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
-
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
-
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
-
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
-
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
-
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
-
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
-
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
-
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
-
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
-
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
-
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
-
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
-
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
-
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
-
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
-
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
-
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
-
"model.norm.weight": "model-00002-of-00002.safetensors"
|
441 |
-
}
|
442 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-732/rng_state_0.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6f3803bff3f596c03b55881de967a825b5734e4a581739164f9cb9e7fd1aee89
|
3 |
-
size 14512
|
|
|
|
|
|
|
|
checkpoint-732/rng_state_1.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d768a04b798e2ca42effbe096b8e4481f32a402a9125a2ced390586dab8eb29e
|
3 |
-
size 14512
|
|
|
|
|
|
|
|
checkpoint-732/scheduler.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e3674e6d322bb18fac688dee98de72d6d1e9649274ab1079046232a9da36c9b5
|
3 |
-
size 1064
|
|
|
|
|
|
|
|
checkpoint-732/special_tokens_map.json
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"additional_special_tokens": [
|
3 |
-
"<|im_start|>",
|
4 |
-
"<|im_end|>",
|
5 |
-
"<|object_ref_start|>",
|
6 |
-
"<|object_ref_end|>",
|
7 |
-
"<|box_start|>",
|
8 |
-
"<|box_end|>",
|
9 |
-
"<|quad_start|>",
|
10 |
-
"<|quad_end|>",
|
11 |
-
"<|vision_start|>",
|
12 |
-
"<|vision_end|>",
|
13 |
-
"<|vision_pad|>",
|
14 |
-
"<|image_pad|>",
|
15 |
-
"<|video_pad|>"
|
16 |
-
],
|
17 |
-
"eos_token": {
|
18 |
-
"content": "<|im_end|>",
|
19 |
-
"lstrip": false,
|
20 |
-
"normalized": false,
|
21 |
-
"rstrip": false,
|
22 |
-
"single_word": false
|
23 |
-
},
|
24 |
-
"pad_token": {
|
25 |
-
"content": "<|endoftext|>",
|
26 |
-
"lstrip": false,
|
27 |
-
"normalized": false,
|
28 |
-
"rstrip": false,
|
29 |
-
"single_word": false
|
30 |
-
}
|
31 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-732/tokenizer.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
-
size 11421896
|
|
|
|
|
|
|
|
checkpoint-732/tokenizer_config.json
DELETED
@@ -1,208 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"add_bos_token": false,
|
3 |
-
"add_prefix_space": false,
|
4 |
-
"added_tokens_decoder": {
|
5 |
-
"151643": {
|
6 |
-
"content": "<|endoftext|>",
|
7 |
-
"lstrip": false,
|
8 |
-
"normalized": false,
|
9 |
-
"rstrip": false,
|
10 |
-
"single_word": false,
|
11 |
-
"special": true
|
12 |
-
},
|
13 |
-
"151644": {
|
14 |
-
"content": "<|im_start|>",
|
15 |
-
"lstrip": false,
|
16 |
-
"normalized": false,
|
17 |
-
"rstrip": false,
|
18 |
-
"single_word": false,
|
19 |
-
"special": true
|
20 |
-
},
|
21 |
-
"151645": {
|
22 |
-
"content": "<|im_end|>",
|
23 |
-
"lstrip": false,
|
24 |
-
"normalized": false,
|
25 |
-
"rstrip": false,
|
26 |
-
"single_word": false,
|
27 |
-
"special": true
|
28 |
-
},
|
29 |
-
"151646": {
|
30 |
-
"content": "<|object_ref_start|>",
|
31 |
-
"lstrip": false,
|
32 |
-
"normalized": false,
|
33 |
-
"rstrip": false,
|
34 |
-
"single_word": false,
|
35 |
-
"special": true
|
36 |
-
},
|
37 |
-
"151647": {
|
38 |
-
"content": "<|object_ref_end|>",
|
39 |
-
"lstrip": false,
|
40 |
-
"normalized": false,
|
41 |
-
"rstrip": false,
|
42 |
-
"single_word": false,
|
43 |
-
"special": true
|
44 |
-
},
|
45 |
-
"151648": {
|
46 |
-
"content": "<|box_start|>",
|
47 |
-
"lstrip": false,
|
48 |
-
"normalized": false,
|
49 |
-
"rstrip": false,
|
50 |
-
"single_word": false,
|
51 |
-
"special": true
|
52 |
-
},
|
53 |
-
"151649": {
|
54 |
-
"content": "<|box_end|>",
|
55 |
-
"lstrip": false,
|
56 |
-
"normalized": false,
|
57 |
-
"rstrip": false,
|
58 |
-
"single_word": false,
|
59 |
-
"special": true
|
60 |
-
},
|
61 |
-
"151650": {
|
62 |
-
"content": "<|quad_start|>",
|
63 |
-
"lstrip": false,
|
64 |
-
"normalized": false,
|
65 |
-
"rstrip": false,
|
66 |
-
"single_word": false,
|
67 |
-
"special": true
|
68 |
-
},
|
69 |
-
"151651": {
|
70 |
-
"content": "<|quad_end|>",
|
71 |
-
"lstrip": false,
|
72 |
-
"normalized": false,
|
73 |
-
"rstrip": false,
|
74 |
-
"single_word": false,
|
75 |
-
"special": true
|
76 |
-
},
|
77 |
-
"151652": {
|
78 |
-
"content": "<|vision_start|>",
|
79 |
-
"lstrip": false,
|
80 |
-
"normalized": false,
|
81 |
-
"rstrip": false,
|
82 |
-
"single_word": false,
|
83 |
-
"special": true
|
84 |
-
},
|
85 |
-
"151653": {
|
86 |
-
"content": "<|vision_end|>",
|
87 |
-
"lstrip": false,
|
88 |
-
"normalized": false,
|
89 |
-
"rstrip": false,
|
90 |
-
"single_word": false,
|
91 |
-
"special": true
|
92 |
-
},
|
93 |
-
"151654": {
|
94 |
-
"content": "<|vision_pad|>",
|
95 |
-
"lstrip": false,
|
96 |
-
"normalized": false,
|
97 |
-
"rstrip": false,
|
98 |
-
"single_word": false,
|
99 |
-
"special": true
|
100 |
-
},
|
101 |
-
"151655": {
|
102 |
-
"content": "<|image_pad|>",
|
103 |
-
"lstrip": false,
|
104 |
-
"normalized": false,
|
105 |
-
"rstrip": false,
|
106 |
-
"single_word": false,
|
107 |
-
"special": true
|
108 |
-
},
|
109 |
-
"151656": {
|
110 |
-
"content": "<|video_pad|>",
|
111 |
-
"lstrip": false,
|
112 |
-
"normalized": false,
|
113 |
-
"rstrip": false,
|
114 |
-
"single_word": false,
|
115 |
-
"special": true
|
116 |
-
},
|
117 |
-
"151657": {
|
118 |
-
"content": "<tool_call>",
|
119 |
-
"lstrip": false,
|
120 |
-
"normalized": false,
|
121 |
-
"rstrip": false,
|
122 |
-
"single_word": false,
|
123 |
-
"special": false
|
124 |
-
},
|
125 |
-
"151658": {
|
126 |
-
"content": "</tool_call>",
|
127 |
-
"lstrip": false,
|
128 |
-
"normalized": false,
|
129 |
-
"rstrip": false,
|
130 |
-
"single_word": false,
|
131 |
-
"special": false
|
132 |
-
},
|
133 |
-
"151659": {
|
134 |
-
"content": "<|fim_prefix|>",
|
135 |
-
"lstrip": false,
|
136 |
-
"normalized": false,
|
137 |
-
"rstrip": false,
|
138 |
-
"single_word": false,
|
139 |
-
"special": false
|
140 |
-
},
|
141 |
-
"151660": {
|
142 |
-
"content": "<|fim_middle|>",
|
143 |
-
"lstrip": false,
|
144 |
-
"normalized": false,
|
145 |
-
"rstrip": false,
|
146 |
-
"single_word": false,
|
147 |
-
"special": false
|
148 |
-
},
|
149 |
-
"151661": {
|
150 |
-
"content": "<|fim_suffix|>",
|
151 |
-
"lstrip": false,
|
152 |
-
"normalized": false,
|
153 |
-
"rstrip": false,
|
154 |
-
"single_word": false,
|
155 |
-
"special": false
|
156 |
-
},
|
157 |
-
"151662": {
|
158 |
-
"content": "<|fim_pad|>",
|
159 |
-
"lstrip": false,
|
160 |
-
"normalized": false,
|
161 |
-
"rstrip": false,
|
162 |
-
"single_word": false,
|
163 |
-
"special": false
|
164 |
-
},
|
165 |
-
"151663": {
|
166 |
-
"content": "<|repo_name|>",
|
167 |
-
"lstrip": false,
|
168 |
-
"normalized": false,
|
169 |
-
"rstrip": false,
|
170 |
-
"single_word": false,
|
171 |
-
"special": false
|
172 |
-
},
|
173 |
-
"151664": {
|
174 |
-
"content": "<|file_sep|>",
|
175 |
-
"lstrip": false,
|
176 |
-
"normalized": false,
|
177 |
-
"rstrip": false,
|
178 |
-
"single_word": false,
|
179 |
-
"special": false
|
180 |
-
}
|
181 |
-
},
|
182 |
-
"additional_special_tokens": [
|
183 |
-
"<|im_start|>",
|
184 |
-
"<|im_end|>",
|
185 |
-
"<|object_ref_start|>",
|
186 |
-
"<|object_ref_end|>",
|
187 |
-
"<|box_start|>",
|
188 |
-
"<|box_end|>",
|
189 |
-
"<|quad_start|>",
|
190 |
-
"<|quad_end|>",
|
191 |
-
"<|vision_start|>",
|
192 |
-
"<|vision_end|>",
|
193 |
-
"<|vision_pad|>",
|
194 |
-
"<|image_pad|>",
|
195 |
-
"<|video_pad|>"
|
196 |
-
],
|
197 |
-
"bos_token": null,
|
198 |
-
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
-
"clean_up_tokenization_spaces": false,
|
200 |
-
"eos_token": "<|im_end|>",
|
201 |
-
"errors": "replace",
|
202 |
-
"extra_special_tokens": {},
|
203 |
-
"model_max_length": 131072,
|
204 |
-
"pad_token": "<|endoftext|>",
|
205 |
-
"split_special_tokens": false,
|
206 |
-
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
-
"unk_token": null
|
208 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-732/trainer_state.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-732/training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d8a51e619db41bfecd4e2978f86e8cb848022d32d79a042203708d80062927ea
|
3 |
-
size 10744
|
|
|
|
|
|
|
|
checkpoint-732/vocab.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-732/zero_to_fp32.py
DELETED
@@ -1,760 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
# Copyright (c) Microsoft Corporation.
|
4 |
-
# SPDX-License-Identifier: Apache-2.0
|
5 |
-
|
6 |
-
# DeepSpeed Team
|
7 |
-
|
8 |
-
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
-
# application.
|
12 |
-
#
|
13 |
-
# example:
|
14 |
-
# python zero_to_fp32.py . output_dir/
|
15 |
-
# or
|
16 |
-
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
-
|
18 |
-
import argparse
|
19 |
-
import torch
|
20 |
-
import glob
|
21 |
-
import math
|
22 |
-
import os
|
23 |
-
import re
|
24 |
-
import gc
|
25 |
-
import json
|
26 |
-
import numpy as np
|
27 |
-
from tqdm import tqdm
|
28 |
-
from collections import OrderedDict
|
29 |
-
from dataclasses import dataclass
|
30 |
-
|
31 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
-
from deepspeed.utils import logger
|
34 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
-
|
38 |
-
|
39 |
-
@dataclass
|
40 |
-
class zero_model_state:
|
41 |
-
buffers: dict()
|
42 |
-
param_shapes: dict()
|
43 |
-
shared_params: list
|
44 |
-
ds_version: int
|
45 |
-
frozen_param_shapes: dict()
|
46 |
-
frozen_param_fragments: dict()
|
47 |
-
|
48 |
-
|
49 |
-
debug = 0
|
50 |
-
|
51 |
-
# load to cpu
|
52 |
-
device = torch.device('cpu')
|
53 |
-
|
54 |
-
|
55 |
-
def atoi(text):
|
56 |
-
return int(text) if text.isdigit() else text
|
57 |
-
|
58 |
-
|
59 |
-
def natural_keys(text):
|
60 |
-
'''
|
61 |
-
alist.sort(key=natural_keys) sorts in human order
|
62 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
-
(See Toothy's implementation in the comments)
|
64 |
-
'''
|
65 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
-
|
67 |
-
|
68 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
-
if not os.path.isdir(checkpoint_dir):
|
70 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
-
|
72 |
-
# there should be only one file
|
73 |
-
if zero_stage <= 2:
|
74 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
-
elif zero_stage == 3:
|
76 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
-
|
78 |
-
if not os.path.exists(file):
|
79 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
-
|
81 |
-
return file
|
82 |
-
|
83 |
-
|
84 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
-
|
88 |
-
if len(ckpt_files) == 0:
|
89 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
-
|
91 |
-
return ckpt_files
|
92 |
-
|
93 |
-
|
94 |
-
def get_optim_files(checkpoint_dir):
|
95 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
-
|
97 |
-
|
98 |
-
def get_model_state_files(checkpoint_dir):
|
99 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
-
|
101 |
-
|
102 |
-
def parse_model_states(files):
|
103 |
-
zero_model_states = []
|
104 |
-
for file in files:
|
105 |
-
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
-
|
107 |
-
if BUFFER_NAMES not in state_dict:
|
108 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
-
if debug:
|
111 |
-
print("Found buffers:", buffer_names)
|
112 |
-
|
113 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
-
|
117 |
-
# collect parameters that are included in param_shapes
|
118 |
-
param_names = []
|
119 |
-
for s in param_shapes:
|
120 |
-
for name in s.keys():
|
121 |
-
param_names.append(name)
|
122 |
-
|
123 |
-
# update with frozen parameters
|
124 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
-
if frozen_param_shapes is not None:
|
126 |
-
if debug:
|
127 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
-
param_names += list(frozen_param_shapes.keys())
|
129 |
-
|
130 |
-
# handle shared params
|
131 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
-
|
133 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
-
|
135 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
-
|
137 |
-
z_model_state = zero_model_state(buffers=buffers,
|
138 |
-
param_shapes=param_shapes,
|
139 |
-
shared_params=shared_params,
|
140 |
-
ds_version=ds_version,
|
141 |
-
frozen_param_shapes=frozen_param_shapes,
|
142 |
-
frozen_param_fragments=frozen_param_fragments)
|
143 |
-
zero_model_states.append(z_model_state)
|
144 |
-
|
145 |
-
return zero_model_states
|
146 |
-
|
147 |
-
|
148 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
-
total_files = len(files)
|
150 |
-
state_dicts = []
|
151 |
-
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
-
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
-
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
-
# and also handle the case where it was already removed by another helper script
|
155 |
-
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
-
state_dicts.append(state_dict)
|
157 |
-
|
158 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
-
|
163 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
-
# use the max of the partition_count to get the dp world_size.
|
166 |
-
|
167 |
-
if type(world_size) is list:
|
168 |
-
world_size = max(world_size)
|
169 |
-
|
170 |
-
if world_size != total_files:
|
171 |
-
raise ValueError(
|
172 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
-
)
|
175 |
-
|
176 |
-
# the groups are named differently in each stage
|
177 |
-
if zero_stage <= 2:
|
178 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
-
elif zero_stage == 3:
|
180 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
-
else:
|
182 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
-
|
184 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
-
return zero_stage, world_size, fp32_flat_groups
|
186 |
-
|
187 |
-
|
188 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
-
"""
|
190 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
-
|
192 |
-
Args:
|
193 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
-
|
195 |
-
"""
|
196 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
-
|
198 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
-
|
202 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
-
|
204 |
-
zero_model_states = parse_model_states(model_files)
|
205 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
-
|
207 |
-
if zero_stage <= 2:
|
208 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
-
exclude_frozen_parameters)
|
210 |
-
elif zero_stage == 3:
|
211 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
-
exclude_frozen_parameters)
|
213 |
-
|
214 |
-
|
215 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
-
return
|
218 |
-
|
219 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
-
|
222 |
-
if debug:
|
223 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
-
|
226 |
-
wanted_params = len(frozen_param_shapes)
|
227 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
-
|
232 |
-
total_params = 0
|
233 |
-
total_numel = 0
|
234 |
-
for name, shape in frozen_param_shapes.items():
|
235 |
-
total_params += 1
|
236 |
-
unpartitioned_numel = shape.numel()
|
237 |
-
total_numel += unpartitioned_numel
|
238 |
-
|
239 |
-
state_dict[name] = frozen_param_fragments[name]
|
240 |
-
|
241 |
-
if debug:
|
242 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
-
|
244 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
-
|
246 |
-
|
247 |
-
def _has_callable(obj, fn):
|
248 |
-
attr = getattr(obj, fn, None)
|
249 |
-
return callable(attr)
|
250 |
-
|
251 |
-
|
252 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
-
param_shapes = zero_model_states[0].param_shapes
|
254 |
-
|
255 |
-
# Reconstruction protocol:
|
256 |
-
#
|
257 |
-
# XXX: document this
|
258 |
-
|
259 |
-
if debug:
|
260 |
-
for i in range(world_size):
|
261 |
-
for j in range(len(fp32_flat_groups[0])):
|
262 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
-
|
264 |
-
# XXX: memory usage doubles here (zero2)
|
265 |
-
num_param_groups = len(fp32_flat_groups[0])
|
266 |
-
merged_single_partition_of_fp32_groups = []
|
267 |
-
for i in range(num_param_groups):
|
268 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
-
avail_numel = sum(
|
272 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
-
|
274 |
-
if debug:
|
275 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
-
# not asserting if there is a mismatch due to possible padding
|
278 |
-
print(f"Have {avail_numel} numels to process.")
|
279 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
-
|
281 |
-
# params
|
282 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
-
# out-of-core computing solution
|
284 |
-
total_numel = 0
|
285 |
-
total_params = 0
|
286 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
-
offset = 0
|
288 |
-
avail_numel = full_single_fp32_vector.numel()
|
289 |
-
for name, shape in shapes.items():
|
290 |
-
|
291 |
-
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
-
total_numel += unpartitioned_numel
|
293 |
-
total_params += 1
|
294 |
-
|
295 |
-
if debug:
|
296 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
-
offset += unpartitioned_numel
|
299 |
-
|
300 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
-
align_to = 2 * world_size
|
305 |
-
|
306 |
-
def zero2_align(x):
|
307 |
-
return align_to * math.ceil(x / align_to)
|
308 |
-
|
309 |
-
if debug:
|
310 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
-
|
312 |
-
offset = zero2_align(offset)
|
313 |
-
avail_numel = zero2_align(avail_numel)
|
314 |
-
|
315 |
-
if debug:
|
316 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
-
|
318 |
-
# Sanity check
|
319 |
-
if offset != avail_numel:
|
320 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
-
|
322 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
-
|
324 |
-
|
325 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
-
exclude_frozen_parameters):
|
327 |
-
state_dict = OrderedDict()
|
328 |
-
|
329 |
-
# buffers
|
330 |
-
buffers = zero_model_states[0].buffers
|
331 |
-
state_dict.update(buffers)
|
332 |
-
if debug:
|
333 |
-
print(f"added {len(buffers)} buffers")
|
334 |
-
|
335 |
-
if not exclude_frozen_parameters:
|
336 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
-
|
338 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
-
|
340 |
-
# recover shared parameters
|
341 |
-
for pair in zero_model_states[0].shared_params:
|
342 |
-
if pair[1] in state_dict:
|
343 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
-
|
345 |
-
return state_dict
|
346 |
-
|
347 |
-
|
348 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
-
remainder = unpartitioned_numel % world_size
|
350 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
-
return partitioned_numel, padding_numel
|
353 |
-
|
354 |
-
|
355 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
-
return
|
358 |
-
|
359 |
-
if debug:
|
360 |
-
for i in range(world_size):
|
361 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
-
|
364 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
-
wanted_params = len(frozen_param_shapes)
|
366 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
-
|
371 |
-
total_params = 0
|
372 |
-
total_numel = 0
|
373 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
-
total_params += 1
|
375 |
-
unpartitioned_numel = shape.numel()
|
376 |
-
total_numel += unpartitioned_numel
|
377 |
-
|
378 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
-
|
381 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
-
|
383 |
-
if debug:
|
384 |
-
print(
|
385 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
-
)
|
387 |
-
|
388 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
-
|
390 |
-
|
391 |
-
class GatheredTensor:
|
392 |
-
"""
|
393 |
-
A pseudo tensor that collects partitioned weights.
|
394 |
-
It is more memory efficient when there are multiple groups.
|
395 |
-
"""
|
396 |
-
|
397 |
-
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
-
self.flat_groups = flat_groups
|
399 |
-
self.flat_groups_offset = flat_groups_offset
|
400 |
-
self.offset = offset
|
401 |
-
self.partitioned_numel = partitioned_numel
|
402 |
-
self.shape = shape
|
403 |
-
self.dtype = self.flat_groups[0][0].dtype
|
404 |
-
|
405 |
-
def contiguous(self):
|
406 |
-
"""
|
407 |
-
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
-
"""
|
409 |
-
end_idx = self.offset + self.partitioned_numel
|
410 |
-
world_size = len(self.flat_groups)
|
411 |
-
pad_flat_param_chunks = []
|
412 |
-
|
413 |
-
for rank_i in range(world_size):
|
414 |
-
# for each rank, we need to collect weights from related group/groups
|
415 |
-
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
-
start_group_id = None
|
417 |
-
end_group_id = None
|
418 |
-
for group_id in range(len(self.flat_groups_offset)):
|
419 |
-
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
-
start_group_id = group_id
|
421 |
-
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
-
end_group_id = group_id
|
423 |
-
break
|
424 |
-
# collect weights from related group/groups
|
425 |
-
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
-
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
-
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
-
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
-
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
-
|
431 |
-
# collect weights from all ranks
|
432 |
-
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
-
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
-
return param
|
435 |
-
|
436 |
-
|
437 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
-
param_shapes = zero_model_states[0].param_shapes
|
439 |
-
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
-
|
441 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
-
# param, re-consolidating each param, while dealing with padding if any
|
443 |
-
|
444 |
-
# merge list of dicts, preserving order
|
445 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
-
|
447 |
-
if debug:
|
448 |
-
for i in range(world_size):
|
449 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
-
|
451 |
-
wanted_params = len(param_shapes)
|
452 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
-
# not asserting if there is a mismatch due to possible padding
|
454 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
-
|
458 |
-
# params
|
459 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
-
# out-of-core computing solution
|
461 |
-
offset = 0
|
462 |
-
total_numel = 0
|
463 |
-
total_params = 0
|
464 |
-
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
-
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
-
unpartitioned_numel = shape.numel()
|
467 |
-
total_numel += unpartitioned_numel
|
468 |
-
total_params += 1
|
469 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
-
|
471 |
-
if debug:
|
472 |
-
print(
|
473 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
-
)
|
475 |
-
|
476 |
-
# memory efficient tensor
|
477 |
-
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
-
state_dict[name] = tensor
|
479 |
-
offset += partitioned_numel
|
480 |
-
|
481 |
-
offset *= world_size
|
482 |
-
|
483 |
-
# Sanity check
|
484 |
-
if offset != avail_numel:
|
485 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
-
|
487 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
-
|
489 |
-
|
490 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
-
exclude_frozen_parameters):
|
492 |
-
state_dict = OrderedDict()
|
493 |
-
|
494 |
-
# buffers
|
495 |
-
buffers = zero_model_states[0].buffers
|
496 |
-
state_dict.update(buffers)
|
497 |
-
if debug:
|
498 |
-
print(f"added {len(buffers)} buffers")
|
499 |
-
|
500 |
-
if not exclude_frozen_parameters:
|
501 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
-
|
503 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
-
|
505 |
-
# recover shared parameters
|
506 |
-
for pair in zero_model_states[0].shared_params:
|
507 |
-
if pair[1] in state_dict:
|
508 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
-
|
510 |
-
return state_dict
|
511 |
-
|
512 |
-
|
513 |
-
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
-
"""
|
515 |
-
Convert state_dict of GatheredTensor to torch tensor
|
516 |
-
"""
|
517 |
-
torch_state_dict = {}
|
518 |
-
converted_tensors = {}
|
519 |
-
for name, tensor in state_dict.items():
|
520 |
-
tensor_id = id(tensor)
|
521 |
-
if tensor_id in converted_tensors: # shared tensors
|
522 |
-
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
-
torch_state_dict[name] = shared_tensor
|
524 |
-
else:
|
525 |
-
converted_tensors[tensor_id] = name
|
526 |
-
if return_empty_tensor:
|
527 |
-
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
-
else:
|
529 |
-
torch_state_dict[name] = tensor.contiguous()
|
530 |
-
return torch_state_dict
|
531 |
-
|
532 |
-
|
533 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
-
tag=None,
|
535 |
-
exclude_frozen_parameters=False,
|
536 |
-
lazy_mode=False):
|
537 |
-
"""
|
538 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
-
via a model hub.
|
541 |
-
|
542 |
-
Args:
|
543 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
-
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
-
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
-
|
549 |
-
Returns:
|
550 |
-
- pytorch ``state_dict``
|
551 |
-
|
552 |
-
A typical usage might be ::
|
553 |
-
|
554 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
-
# do the training and checkpoint saving
|
556 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
-
model = model.cpu() # move to cpu
|
558 |
-
model.load_state_dict(state_dict)
|
559 |
-
# submit to model hub or save the model to share with others
|
560 |
-
|
561 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
-
|
565 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
-
|
567 |
-
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
-
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
-
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
-
|
571 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
-
for name, lazy_tensor in state_dict.item():
|
574 |
-
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
-
print(name, tensor)
|
576 |
-
# del tensor to release memory if it no longer in use
|
577 |
-
"""
|
578 |
-
if tag is None:
|
579 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
-
if os.path.isfile(latest_path):
|
581 |
-
with open(latest_path, 'r') as fd:
|
582 |
-
tag = fd.read().strip()
|
583 |
-
else:
|
584 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
-
|
586 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
-
|
588 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
-
|
591 |
-
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
-
if lazy_mode:
|
593 |
-
return state_dict
|
594 |
-
else:
|
595 |
-
return to_torch_tensor(state_dict)
|
596 |
-
|
597 |
-
|
598 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
-
output_dir,
|
600 |
-
max_shard_size="5GB",
|
601 |
-
safe_serialization=False,
|
602 |
-
tag=None,
|
603 |
-
exclude_frozen_parameters=False):
|
604 |
-
"""
|
605 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
-
|
608 |
-
Args:
|
609 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
-
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
-
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
-
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
-
"""
|
616 |
-
|
617 |
-
# Dependency pre-check
|
618 |
-
if safe_serialization:
|
619 |
-
try:
|
620 |
-
from safetensors.torch import save_file
|
621 |
-
except ImportError:
|
622 |
-
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
-
raise
|
624 |
-
if max_shard_size is not None:
|
625 |
-
try:
|
626 |
-
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
-
except ImportError:
|
628 |
-
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
-
raise
|
630 |
-
|
631 |
-
# Convert zero checkpoint to state_dict
|
632 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
-
tag,
|
634 |
-
exclude_frozen_parameters,
|
635 |
-
lazy_mode=True)
|
636 |
-
|
637 |
-
# Shard the model if it is too big.
|
638 |
-
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
-
if max_shard_size is not None:
|
640 |
-
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
-
# an memory-efficient approach for sharding
|
642 |
-
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
-
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
-
filename_pattern=filename_pattern,
|
645 |
-
max_shard_size=max_shard_size)
|
646 |
-
else:
|
647 |
-
from collections import namedtuple
|
648 |
-
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
-
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
-
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
-
|
652 |
-
# Save the model by shard
|
653 |
-
os.makedirs(output_dir, exist_ok=True)
|
654 |
-
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
-
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
-
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
-
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
-
output_path = os.path.join(output_dir, shard_file)
|
659 |
-
if safe_serialization:
|
660 |
-
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
-
else:
|
662 |
-
torch.save(shard_state_dict, output_path)
|
663 |
-
# release the memory of current shard
|
664 |
-
for tensor_name in list(shard_state_dict.keys()):
|
665 |
-
del state_dict[tensor_name]
|
666 |
-
del shard_state_dict[tensor_name]
|
667 |
-
del shard_state_dict
|
668 |
-
gc.collect()
|
669 |
-
|
670 |
-
# Save index if sharded
|
671 |
-
if state_dict_split.is_sharded:
|
672 |
-
index = {
|
673 |
-
"metadata": state_dict_split.metadata,
|
674 |
-
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
-
}
|
676 |
-
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
-
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
-
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
-
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
-
f.write(content)
|
681 |
-
|
682 |
-
|
683 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
-
"""
|
685 |
-
1. Put the provided model to cpu
|
686 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
-
3. Load it into the provided model
|
688 |
-
|
689 |
-
Args:
|
690 |
-
- ``model``: the model object to update
|
691 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
-
|
694 |
-
Returns:
|
695 |
-
- ``model`: modified model
|
696 |
-
|
697 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
-
conveniently placed for you in the checkpoint folder.
|
700 |
-
|
701 |
-
A typical usage might be ::
|
702 |
-
|
703 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
-
# submit to model hub or save the model to share with others
|
706 |
-
|
707 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
-
|
711 |
-
"""
|
712 |
-
logger.info(f"Extracting fp32 weights")
|
713 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
-
|
715 |
-
logger.info(f"Overwriting model with fp32 weights")
|
716 |
-
model = model.cpu()
|
717 |
-
model.load_state_dict(state_dict, strict=False)
|
718 |
-
|
719 |
-
return model
|
720 |
-
|
721 |
-
|
722 |
-
if __name__ == "__main__":
|
723 |
-
parser = argparse.ArgumentParser()
|
724 |
-
parser.add_argument("checkpoint_dir",
|
725 |
-
type=str,
|
726 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
-
parser.add_argument("output_dir",
|
728 |
-
type=str,
|
729 |
-
help="directory to the pytorch fp32 state_dict output files"
|
730 |
-
"(e.g. path/checkpoint-12-output/)")
|
731 |
-
parser.add_argument(
|
732 |
-
"--max_shard_size",
|
733 |
-
type=str,
|
734 |
-
default="5GB",
|
735 |
-
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
-
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
-
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
-
"without CPU OOM issues.")
|
739 |
-
parser.add_argument(
|
740 |
-
"--safe_serialization",
|
741 |
-
default=False,
|
742 |
-
action='store_true',
|
743 |
-
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
-
parser.add_argument("-t",
|
745 |
-
"--tag",
|
746 |
-
type=str,
|
747 |
-
default=None,
|
748 |
-
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
-
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
-
args = parser.parse_args()
|
752 |
-
|
753 |
-
debug = args.debug
|
754 |
-
|
755 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
-
args.output_dir,
|
757 |
-
max_shard_size=args.max_shard_size,
|
758 |
-
safe_serialization=args.safe_serialization,
|
759 |
-
tag=args.tag,
|
760 |
-
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|