Pushed by DataDreamer
Browse files
README.md
CHANGED
@@ -1,199 +1,40 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
|
|
104 |
|
105 |
-
|
|
|
|
|
106 |
|
107 |
-
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
|
2 |
---
|
3 |
+
base_model: google/t5-v1_1-base
|
4 |
+
|
5 |
+
tags:
|
6 |
+
- datadreamer
|
7 |
+
- datadreamer-0.46.0
|
8 |
+
- synthetic
|
9 |
+
- mistral-tiny
|
10 |
+
- mistral-tiny
|
11 |
+
- text2text-generation
|
12 |
+
|
13 |
+
pipeline_tag: text2text-generation
|
14 |
+
widget:
|
15 |
+
- text: "In this paper, we introduce a novel learning framework for addressing inconsistencies and incompleteness inEffects of Pre-training Task Structure on Cross-lingual Transferof large-scale, multilingual machine reading comprehension (MRC) models. Our proposed method, termed Structured-MRC, employs a new task structure that strategically balances knowledge transfer and specialized information acquisition across languages. Rather than using one universal pre-training task, Structured-MRC synchronizes task-wise pre-training across related language pairs. This technique allows our models to effectively learn and transfer recurring patterns while avoiding overgeneralization. Comprehensive experiments are carried out on eight diverse languages from the XNLI, XNLG, MARC, and WikiMRC datasets, demonstrating that the Structured-MRC framework significantly outperforms state-of-the-art approaches in terms of consistency, comprehensibility, and generality. The insights gained from this study highlight the importance of structuring learning tasks for cross-lingual transfer in MRC, with implications for various NLP applications."
|
16 |
+
example_title: "Example 1"
|
17 |
+
- text: "Title: Unsupervised Multilingual Contextual Word Embeddings: Incorporating Morphological and Syntactic Features\n\nIn this paper, we propose an unsupervised approach for developing multilingual contextual word embeddings that capture both morphological and syntactic properties. The model framework, dubbed 'UniMorph Syn', targets 100 low-resource languages while accounting for diverse inflection patterns and structurally complex sentences. By employing morphological analyzers, POS taggers, and dependency parsers as pre-processing steps, we enhance the quality and comprehensiveness of contextual representations. We analyze the model's performance through cross-linguistic and cross-task evaluations using several datasets and benchmarks, obtaining promising results and outperforming relevant baselines. Our work showcases the potential of unsupervised, large-scale, both morphologically and syntactically-aware models for low-resource languages within a multilingual context."
|
18 |
+
example_title: "Example 2"
|
19 |
+
- text: "In this work, we present an innovative deep learning model for Natural Language Processing (NLP) tasks that leverages the transformer architecture supplemented with a robust pre-training strategy on vast unstructured data. Our model, Scored-Efficient Transformer (SET), excels in balancing efficiency with quality, achieving competitive and in some cases better performance than existing models while being significantly more computationally efficient.\n\nSET's unique feature is the introduction of a novel dynamic attention mechanism, which selectively accord focus to important contextual features, steadfastly reducing computational requirements without compromising the semantic understanding or performance. Furthermore, we explore a novel pre-training schema, named PseudoCorpus, which entails the creation of pseudo corpora from task-specific data, effectively tailoring the model to cater to a diverse range of NLP tasks with minimal need for task-specific fine-tuning.\n\nExperimental evaluations on benchmark datasets including GLUE, SQuAD, and STS-B demonstrate not only signs of consistent improvements in various NLP tasks for SET, but also highlight its remarkable generalization ability across various tasks. In summary, SET revolutionizes the NLP paradigm with a critical balance of efficiency, productivity, and efficacy, pushing the boundaries of potential applications in real-world scenarios."
|
20 |
+
example_title: "Example 3"
|
21 |
---
|
22 |
+
# Model Card
|
23 |
|
24 |
+
[Add more information here](https://huggingface.co/templates/model-card-example)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
## Example Usage
|
27 |
|
28 |
+
```python3
|
29 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
|
30 |
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained('andersoncliffb/abstracts_to_tweet_model', revision=None) # Load tokenizer
|
32 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('andersoncliffb/abstracts_to_tweet_model', revision=None) # Load model
|
33 |
+
pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id)
|
34 |
|
35 |
+
inputs = ['In this paper, we introduce a novel learning framework for addressing inconsistencies and incompleteness inEffects of Pre-training Task Structure on Cross-lingual Transferof large-scale, multilingual machine reading comprehension (MRC) models. Our proposed method, termed Structured-MRC, employs a new task structure that strategically balances knowledge transfer and specialized information acquisition across languages. Rather than using one universal pre-training task, Structured-MRC synchronizes task-wise pre-training across related language pairs. This technique allows our models to effectively learn and transfer recurring patterns while avoiding overgeneralization. Comprehensive experiments are carried out on eight diverse languages from the XNLI, XNLG, MARC, and WikiMRC datasets, demonstrating that the Structured-MRC framework significantly outperforms state-of-the-art approaches in terms of consistency, comprehensibility, and generality. The insights gained from this study highlight the importance of structuring learning tasks for cross-lingual transfer in MRC, with implications for various NLP applications.']
|
36 |
+
print(pipe(inputs, max_length=512, do_sample=False))
|
37 |
+
```
|
38 |
|
39 |
+
---
|
40 |
+
This model was trained with a synthetic dataset with [DataDreamer 🤖💤](https://datadreamer.dev). The synthetic dataset card and model card can be found [here](datadreamer.json). The training arguments can be found [here](training_args.json).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|