andrewljohnson commited on
Commit
c717881
·
1 Parent(s): 80ad14c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: segformer-b5-finetuned-magic-cards-230117-3
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # segformer-b5-finetuned-magic-cards-230117-3
16
+
17
+ This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the andrewljohnson/magic_cards dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0691
20
+ - Mean Iou: 0.6585
21
+ - Mean Accuracy: 0.9878
22
+ - Overall Accuracy: 0.9912
23
+ - Accuracy Unlabeled: nan
24
+ - Accuracy Front: 0.9978
25
+ - Accuracy Back: 0.9777
26
+ - Iou Unlabeled: 0.0
27
+ - Iou Front: 0.9978
28
+ - Iou Back: 0.9777
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 6e-05
48
+ - train_batch_size: 1
49
+ - eval_batch_size: 1
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 5
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Front | Accuracy Back | Iou Unlabeled | Iou Front | Iou Back |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:-------------:|:---------:|:--------:|
59
+ | 1.2232 | 0.37 | 20 | 0.4691 | 0.6041 | 0.9201 | 0.9218 | nan | 0.9252 | 0.9150 | 0.0 | 0.9252 | 0.8870 |
60
+ | 0.2718 | 0.74 | 40 | 0.1983 | 0.6509 | 0.9764 | 0.9785 | nan | 0.9826 | 0.9702 | 0.0 | 0.9826 | 0.9702 |
61
+ | 0.255 | 1.11 | 60 | 0.0939 | 0.6524 | 0.9785 | 0.9794 | nan | 0.9812 | 0.9758 | 0.0 | 0.9812 | 0.9758 |
62
+ | 0.1103 | 1.48 | 80 | 0.0682 | 0.6536 | 0.9804 | 0.9813 | nan | 0.9830 | 0.9779 | 0.0 | 0.9830 | 0.9779 |
63
+ | 0.1373 | 1.85 | 100 | 0.1260 | 0.6631 | 0.9946 | 0.9961 | nan | 0.9989 | 0.9903 | 0.0 | 0.9989 | 0.9903 |
64
+ | 0.0566 | 2.22 | 120 | 0.1558 | 0.6578 | 0.9868 | 0.9912 | nan | 0.9999 | 0.9736 | 0.0 | 0.9999 | 0.9736 |
65
+ | 0.1535 | 2.59 | 140 | 0.1330 | 0.6558 | 0.9838 | 0.9883 | nan | 0.9973 | 0.9703 | 0.0 | 0.9973 | 0.9703 |
66
+ | 0.0586 | 2.96 | 160 | 0.2317 | 0.6599 | 0.9899 | 0.9933 | nan | 1.0000 | 0.9798 | 0.0 | 1.0000 | 0.9798 |
67
+ | 0.0727 | 3.33 | 180 | 0.1018 | 0.6586 | 0.9880 | 0.9919 | nan | 0.9995 | 0.9764 | 0.0 | 0.9995 | 0.9764 |
68
+ | 0.3588 | 3.7 | 200 | 0.1151 | 0.6608 | 0.9912 | 0.9939 | nan | 0.9993 | 0.9831 | 0.0 | 0.9993 | 0.9831 |
69
+ | 0.0463 | 4.07 | 220 | 0.0538 | 0.6610 | 0.9915 | 0.9934 | nan | 0.9969 | 0.9862 | 0.0 | 0.9969 | 0.9862 |
70
+ | 0.046 | 4.44 | 240 | 0.1201 | 0.6581 | 0.9871 | 0.9912 | nan | 0.9991 | 0.9751 | 0.0 | 0.9991 | 0.9751 |
71
+ | 0.0468 | 4.81 | 260 | 0.0691 | 0.6585 | 0.9878 | 0.9912 | nan | 0.9978 | 0.9777 | 0.0 | 0.9978 | 0.9777 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.25.1
77
+ - Pytorch 1.12.1
78
+ - Datasets 2.8.0
79
+ - Tokenizers 0.13.0.dev0