--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-base-finetuned-coling24 results: [] --- # deberta-v3-base-finetuned-coling24 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4024 - Accuracy: 0.7172 - F1: 0.6969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2662 | 1.0 | 1909 | 0.9077 | 0.7468 | 0.7402 | | 0.134 | 2.0 | 3818 | 1.4337 | 0.7099 | 0.6963 | | 0.0734 | 3.0 | 5727 | 1.6688 | 0.6912 | 0.6617 | | 0.037 | 4.0 | 7636 | 2.1374 | 0.7199 | 0.7047 | | 0.017 | 5.0 | 9545 | 2.4024 | 0.7172 | 0.6969 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1