File size: 27,472 Bytes
508ce38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
#!/usr/bin/env python3
# prefill.py
# Copyright (c) 2025 Anemll
# Licensed under the MIT License
import argparse
import os
import re
import glob
from pathlib import Path
import coremltools as ct
from transformers import AutoTokenizer
import torch
import torch.nn.functional as F
import numpy as np
import time
import yaml
import sys
# ANSI color codes
LIGHT_BLUE = "\033[94m"
DARK_BLUE = "\033[34m"
LIGHT_GREEN = "\033[92m"
RESET_COLOR = "\033[0m"
def parse_model_path(path):
"""Parse model path and return full path with .mlmodelc or .mlpackage extension."""
path = Path(path)
# If path exists exactly as specified, return it
if path.exists():
return str(path)
# Try with both extensions
candidates = [
path, # Original path
path.with_suffix('.mlmodelc'), # With .mlmodelc
path.with_suffix('.mlpackage'), # With .mlpackage
Path(str(path) + '.mlmodelc'), # Handle case where extension is included
Path(str(path) + '.mlpackage')
]
# Try all possible paths
for candidate in candidates:
if candidate.exists():
print(f"Found model at: {candidate}")
return str(candidate)
# If we get here, no valid path was found
print("\nError: Model not found. Tried following paths:")
for candidate in candidates:
print(f" {candidate}")
raise FileNotFoundError(f"Model not found: {path}")
def parse_ffn_filename(path):
"""Parse FFN model filename to extract chunk information."""
path = Path(path)
pattern = r'FFN_PF.*_chunk_(\d+)of(\d+)'
match = re.search(pattern, path.name)
if match:
current_chunk = int(match.group(1))
total_chunks = int(match.group(2))
return current_chunk, total_chunks
return None, None
def find_all_chunks(base_path):
"""Find all chunk files matching the base FFN path pattern."""
path = Path(base_path)
pattern = re.sub(r'_chunk_\d+of\d+', '_chunk_*', str(path))
return sorted(glob.glob(pattern))
def load_model(path, function_name=None):
"""Load a CoreML model, handling both .mlmodelc and .mlpackage formats."""
path = Path(path)
compute_unit = ct.ComputeUnit.CPU_AND_NE
try:
if path.suffix == '.mlmodelc':
# For compiled models (.mlmodelc), use CompiledMLModel
if function_name:
return ct.models.CompiledMLModel(str(path), compute_unit, function_name=function_name)
else:
return ct.models.CompiledMLModel(str(path), compute_unit)
else:
# For packages (.mlpackage)
if function_name:
return ct.models.MLModel(str(path), function_name=function_name)
else:
return ct.models.MLModel(str(path))
except RuntimeError as e:
if "valid manifest does not exist" in str(e):
print(f"\nError: Could not load compiled model at {path}")
print("This might be because:")
print("1. The model is not properly compiled")
print("2. The model was compiled for a different OS version")
print("3. The model needs to be recompiled")
print("\nTry using the .mlpackage version instead, or recompile the model.")
raise
def load_metadata(model, args):
# Extract metadata and config parameters
metadata = {}
if hasattr(model, 'user_defined_metadata'):
meta = model.user_defined_metadata
# Extract key parameters with defaults
metadata['context_length'] = int(meta.get('com.anemll.context_length', 512))
metadata['state_length'] = int(meta.get('com.anemll.state_length', metadata['context_length']))
metadata['batch_size'] = int(meta.get('com.anemll.batch_size', 64))
metadata['lut_bits'] = int(meta.get('com.anemll.lut_bits', 0))
metadata['num_chunks'] = int(meta.get('com.anemll.num_chunks', 1))
print("\nExtracted Parameters:")
print(f" Context Length: {metadata['context_length']}")
print(f" State Length: {metadata['state_length']}")
print(f" Prefill Batch Size: {metadata['batch_size']}")
print(f" LUT Bits: {metadata['lut_bits']}")
print(f" Number of Chunks: {metadata['num_chunks']}")
else:
print("\nWarning: No metadata found in model")
# Check if model directory name contains context length pattern (ctxXXX)
ctx_len = 512
if args.context_length is None:
import re
ctx_match = re.search(r'ctx(\d+)', str(args.d))
if ctx_match:
ctx_len0 = int(ctx_match.group(1))
if 512 <= ctx_len0 <= 8096:
ctx_len = ctx_len0
print(f"\nDetected context length {ctx_len} from directory name")
else:
print(f"\nWarning: No context length found in directory, using default {ctx_len}")
else:
ctx_len = args.context_length
# Use defaults or values from args
metadata['context_length'] = ctx_len
metadata['state_length'] = ctx_len
# Get batch size from args or use default
metadata['batch_size'] = getattr(args, 'batch_size', 64)
metadata['lut_bits'] = 4
metadata['num_chunks'] = getattr(args, 'num_chunks', 4)
print("\nUsing parameters:")
print(f" Context Length: {metadata['context_length']}")
print(f" State Length: {metadata['state_length']}")
print(f" Prefill Batch Size: {metadata['batch_size']}")
print(f" LUT Bits: {metadata['lut_bits']}")
print(f" Number of Chunks: {metadata['num_chunks']}")
# Override with values from args if they exist
if hasattr(args, 'batch_size') and args.batch_size is not None:
metadata['batch_size'] = args.batch_size
print(f"\nOverriding batch size from args: {args.batch_size}")
if hasattr(args, 'num_chunks') and args.num_chunks is not None:
metadata['num_chunks'] = args.num_chunks
print(f"\nOverriding num chunks from args: {args.num_chunks}")
return metadata
def load_models(args, metadata):
"""Load all required models and extract metadata."""
print("\nLoading models...")
try:
# Load embeddings model
print("\nLoading embeddings model...")
embed_path = parse_model_path(args.embed)
print(f"Loading from: {embed_path}")
embed_model = load_model(embed_path)
print("Embeddings model loaded successfully")
metadata = load_metadata(embed_model, args)
# Load FFN model(s)
print("\nLoading PREFILL functionality only...")
ffn_path = parse_model_path(args.ffn)
chunk_no, total_chunks = parse_ffn_filename(ffn_path)
ffn_models = []
if chunk_no and total_chunks:
print(f"\nDetected chunked model with {total_chunks} chunks")
# Find and load all chunks
chunk_paths = find_all_chunks(ffn_path)
if len(chunk_paths) != total_chunks:
raise ValueError(f"Found {len(chunk_paths)} chunks but filename indicates {total_chunks} chunks")
for chunk_path in chunk_paths:
print(f"\nLoading PREFILL function from chunk: {Path(chunk_path).name}")
try:
# For prefill testing, we only need the prefill function
prefill_model = load_model(chunk_path, function_name='prefill')
ffn_models.append(prefill_model)
print("Chunk loaded successfully (prefill only)")
except Exception as e:
print(f"Error loading chunk {chunk_path}: {str(e)}")
raise
metadata = load_metadata(ffn_models[0], args)
else:
print("\nLoading single model (prefill functionality only)...")
ffn_models.append(load_model(ffn_path))
print("Model loaded successfully")
return embed_model, ffn_models, metadata
except Exception as e:
print(f"\nError loading models: {str(e)}")
print("\nPlease ensure all model files exist and are accessible.")
print("Expected files:")
print(f" Embeddings: {args.embed}")
print(f" FFN: {args.ffn}")
raise
def initialize_tokenizer(model_path=None):
"""Initialize and configure the tokenizer."""
try:
tokenizer = AutoTokenizer.from_pretrained(
str(model_path),
use_fast=False,
trust_remote_code=True
)
print("\nTokenizer Configuration:")
print(f"Tokenizer type: {type(tokenizer)}")
print(f"Tokenizer name: {tokenizer.__class__.__name__}")
print(f"Vocabulary size: {len(tokenizer)}")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
print("Set PAD token to EOS token")
tokenizer.padding_side = "left"
return tokenizer
except Exception as e:
print(f"\nError: Failed to load tokenizer from {model_path}")
print(f"Error details: {str(e)}")
raise
def make_causal_mask(length, start):
"""Create causal attention mask."""
mask = np.full((1, 1, length, length), -np.inf, dtype=np.float16)
row_indices = np.arange(length).reshape(length, 1)
col_indices = np.arange(length).reshape(1, length)
mask[:, :, col_indices <= (row_indices + start)] = 0
return mask
def initialize_causal_mask(context_length):
"""Initialize causal mask for transformer attention."""
causal_mask = make_causal_mask(context_length, 0)
causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
print(f"\nInitialized causal mask for context length {context_length}")
return causal_mask
def run_prefill(embed_model, ffn_models, input_ids, context_pos, context_length, batch_size=64, state=None, causal_mask=None):
"""Run prefill on the input sequence."""
# Use provided causal mask or create one if not provided
if causal_mask is None:
causal_mask = make_causal_mask(context_length, 0)
causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
# Process in batches
batch_pos = 0
while batch_pos < context_pos:
batch_end = min(batch_pos + batch_size, context_pos)
current_batch_size = batch_end - batch_pos
# Get current batch
batch_input = input_ids[:, batch_pos:batch_end]
# Always pad to full batch size for prefill
batch_input = F.pad(
batch_input,
(0, batch_size - current_batch_size),
value=0
)
# Generate position IDs for full batch size
position_ids = torch.arange(batch_size, dtype=torch.int32)
batch_causal_mask = causal_mask[:, :, :batch_size, :]
# Run embeddings with proper batch size
hidden_states = torch.from_numpy(
embed_model.predict({
'input_ids': batch_input.numpy(),
'batch_size': np.array([batch_size], dtype=np.int32)
})['hidden_states']
)
# Run through FFN chunks with state
for ffn_model in ffn_models:
# Handle both direct model and dictionary formats
if isinstance(ffn_model, dict) and 'prefill' in ffn_model:
# For backward compatibility with dictionary format
prefill_model = ffn_model['prefill']
else:
# Direct access for models loaded with function_name='prefill'
prefill_model = ffn_model
inputs = {
'hidden_states': hidden_states.numpy(),
'position_ids': position_ids.numpy(),
'causal_mask': batch_causal_mask.numpy(),
'current_pos': np.array([batch_pos], dtype=np.int32)
}
output = prefill_model.predict(inputs, state)
hidden_states = torch.from_numpy(output['output_hidden_states'])
batch_pos = batch_end
return torch.tensor([context_pos], dtype=torch.int32)
def create_unified_state(ffn_models, context_length):
"""Create unified KV cache state for transformer."""
if hasattr(ffn_models[0], 'make_state'):
# Direct access for models loaded with 'prefill' function_name
state = ffn_models[0].make_state()
print(f"\nCreated unified transformer state for {len(ffn_models)} chunks")
return state
else:
# Fallback for dictionary-based models (for backward compatibility)
if isinstance(ffn_models[0], dict) and 'prefill' in ffn_models[0]:
state = ffn_models[0]['prefill'].make_state()
print(f"\nCreated unified transformer state for {len(ffn_models)} chunks")
return state
else:
state = ffn_models[0].make_state()
print("\nCreated unified transformer state")
return state
def test_prefill_speed(embed_model, ffn_models, tokenizer, batch_size, context_length, num_test_tokens, num_runs=20, test_single_chunk=True):
"""Test prefill speed with sample token sequences."""
print(f"\n{LIGHT_GREEN}Testing prefill speed for {num_test_tokens} tokens (using internal batch size {batch_size}){RESET_COLOR}")
print(f"Running {num_runs} iterations for warmup and measurement")
# Create sample input sequence of exactly num_test_tokens tokens
sample_text = "This is a test sequence. " * ((num_test_tokens + 4) // 5) # Ensure enough text
input_ids = tokenizer(sample_text, return_tensors="pt").input_ids.to(torch.int32)
# Trim or pad to exactly num_test_tokens tokens
if input_ids.size(1) > num_test_tokens:
input_ids = input_ids[:, :num_test_tokens]
elif input_ids.size(1) < num_test_tokens:
pad_length = num_test_tokens - input_ids.size(1)
input_ids = F.pad(input_ids, (0, pad_length), value=tokenizer.pad_token_id)
print(f"Sample input sequence length: {input_ids.size(1)} tokens")
# Test with all chunks first
print(f"\n{LIGHT_BLUE}Testing with all chunks ({len(ffn_models)} chunks){RESET_COLOR}")
# Create unified state
state_all_chunks = create_unified_state(ffn_models, context_length)
# Initialize causal mask
causal_mask = initialize_causal_mask(context_length)
# Run prefill multiple times for warmup and testing
all_chunks_times = []
for i in range(num_runs):
# Reset state for each run
if i == 0:
print("\nStarting warmup runs...")
elif i == num_runs // 2:
print("\nWarmup complete, starting measurement runs...")
start_time = time.time()
# Run prefill
run_prefill(
embed_model,
ffn_models,
input_ids,
input_ids.size(1), # context_pos
context_length,
batch_size, # Internal batching within run_prefill
state_all_chunks,
causal_mask
)
elapsed = time.time() - start_time
all_chunks_times.append(elapsed)
# Print progress
if i < num_runs // 2: # Warmup phase
print(f"Warmup run {i+1}/{num_runs//2}: {elapsed:.4f}s ({batch_size/elapsed:.1f} tokens/s)")
else: # Measurement phase
print(f"Run {i+1-num_runs//2}/{num_runs//2}: {elapsed:.4f}s ({batch_size/elapsed:.1f} tokens/s)")
# Calculate and report statistics for all chunks (excluding warmup runs)
all_chunks_measurement_times = all_chunks_times[num_runs // 2:]
all_chunks_avg_time = sum(all_chunks_measurement_times) / len(all_chunks_measurement_times)
all_chunks_min_time = min(all_chunks_measurement_times)
all_chunks_max_time = max(all_chunks_measurement_times)
all_chunks_tokens_per_sec = num_test_tokens / all_chunks_avg_time # Use num_test_tokens for speed calculation
print(f"\n{LIGHT_BLUE}All Chunks Prefill Speed Results:{RESET_COLOR}")
print(f"Number of Chunks: {len(ffn_models)}")
print(f"Test Tokens: {num_test_tokens} tokens")
print(f"Internal Batch Size: {batch_size} tokens")
print(f"Context Size: {context_length} tokens")
print(f"Average Time: {all_chunks_avg_time:.4f}s")
print(f"Min Time: {all_chunks_min_time:.4f}s")
print(f"Max Time: {all_chunks_max_time:.4f}s")
print(f"Average Speed: {all_chunks_tokens_per_sec:.1f} tokens/second")
print(f"Best Speed: {num_test_tokens / all_chunks_min_time:.1f} tokens/second") # Use num_test_tokens
# Test with single chunk if requested and if multiple chunks exist
single_chunk_tokens_per_sec = 0
if test_single_chunk and len(ffn_models) > 1:
print(f"\n{LIGHT_BLUE}Testing with single chunk (first chunk only){RESET_COLOR}")
# Create a list with only the first chunk
single_chunk_model = [ffn_models[0]]
# Create unified state for single chunk
state_single_chunk = create_unified_state(single_chunk_model, context_length)
# Run prefill multiple times for single chunk
single_chunk_times = []
for i in range(num_runs):
if i == 0:
print("\nStarting single chunk warmup runs...")
elif i == num_runs // 2:
print("\nSingle chunk warmup complete, starting measurement runs...")
start_time = time.time()
# Run prefill with single chunk
run_prefill(
embed_model,
single_chunk_model,
input_ids,
input_ids.size(1), # context_pos
context_length,
batch_size, # Internal batching within run_prefill
state_single_chunk,
causal_mask
)
elapsed = time.time() - start_time
single_chunk_times.append(elapsed)
# Print progress
if i < num_runs // 2: # Warmup phase
print(f"Single chunk warmup run {i+1}/{num_runs//2}: {elapsed:.4f}s ({batch_size/elapsed:.1f} tokens/s)")
else: # Measurement phase
print(f"Single chunk run {i+1-num_runs//2}/{num_runs//2}: {elapsed:.4f}s ({batch_size/elapsed:.1f} tokens/s)")
# Calculate and report statistics for single chunk
single_chunk_measurement_times = single_chunk_times[num_runs // 2:]
single_chunk_avg_time = sum(single_chunk_measurement_times) / len(single_chunk_measurement_times)
single_chunk_min_time = min(single_chunk_measurement_times)
single_chunk_max_time = max(single_chunk_measurement_times)
single_chunk_tokens_per_sec = num_test_tokens / single_chunk_avg_time # Use num_test_tokens
print(f"\n{LIGHT_BLUE}Single Chunk Prefill Speed Results:{RESET_COLOR}")
print(f"Test Tokens: {num_test_tokens} tokens")
print(f"Internal Batch Size: {batch_size} tokens")
print(f"Context Size: {context_length} tokens")
print(f"Average Time: {single_chunk_avg_time:.4f}s")
print(f"Min Time: {single_chunk_min_time:.4f}s")
print(f"Max Time: {single_chunk_max_time:.4f}s")
print(f"Average Speed: {single_chunk_tokens_per_sec:.1f} tokens/second")
print(f"Best Speed: {num_test_tokens / single_chunk_min_time:.1f} tokens/second") # Use num_test_tokens
# Calculate overhead per chunk
if len(ffn_models) > 1:
chunk_overhead = (all_chunks_avg_time - single_chunk_avg_time) / (len(ffn_models) - 1)
print(f"\n{LIGHT_GREEN}Chunk Overhead Analysis:{RESET_COLOR}")
print(f"Single Chunk Time: {single_chunk_avg_time:.4f}s")
print(f"All Chunks Time ({len(ffn_models)} chunks): {all_chunks_avg_time:.4f}s")
print(f"Additional Time Per Chunk: {chunk_overhead:.4f}s")
print(f"Overhead Percentage: {(all_chunks_avg_time/single_chunk_avg_time - 1)*100:.1f}%")
return all_chunks_tokens_per_sec, single_chunk_tokens_per_sec
def parse_args():
parser = argparse.ArgumentParser(description='Test prefill speed with CoreML LLaMA models (c) 2025 Anemll')
# Add meta.yaml option
parser.add_argument('--meta', type=str, help='Path to meta.yaml to load all parameters')
# Model paths
parser.add_argument('--d', '--dir', type=str, default='.',
help='Directory containing model files (default: current directory)')
parser.add_argument('--embed', type=str, required=False,
help='Path to embeddings model (relative to --dir)')
parser.add_argument('--ffn', type=str, required=False,
help='Path to FFN model (can be chunked, relative to --dir)')
parser.add_argument('--tokenizer', type=str, required=False,
help='Path to tokenizer')
# Test configuration
parser.add_argument('--batch-size', type=int,
help='Batch size for prefill test (default: 64)')
parser.add_argument('--runs', type=int, default=20,
help='Number of test runs (default: 20)')
parser.add_argument('--context-length', type=int,
help='Context length for the model')
parser.add_argument('--no-single-chunk', action='store_true',
help='Disable single chunk testing')
parser.add_argument('--test-tokens', type=int,
help='Number of tokens to use for the speed test (default: batch_size)')
parser.add_argument('--test-full-context', action='store_true',
help='Test prefill speed using the full context length (overrides --test-tokens)')
args = parser.parse_args()
# If meta.yaml is provided, load parameters from it
if args.meta:
try:
with open(args.meta, 'r') as f:
meta = yaml.safe_load(f)
params = meta['model_info']['parameters']
# Set model directory to meta.yaml directory if not specified
if not args.d or args.d == '.':
args.d = str(Path(args.meta).parent)
# Build model paths based on parameters
prefix = params.get('model_prefix', 'llama')
lut_ffn = f"_lut{params['lut_ffn']}" if params['lut_ffn'] != 'none' else ''
lut_embeddings = f"_lut{params['lut_embeddings']}" if params['lut_embeddings'] != 'none' else ''
num_chunks = int(params['num_chunks'])
# Set model paths if not specified
if not args.embed:
args.embed = f'{prefix}_embeddings{lut_embeddings}'
if not args.ffn:
args.ffn = f'{prefix}_FFN_PF{lut_ffn}_chunk_01of{num_chunks:02d}'
if not args.tokenizer:
args.tokenizer = args.d
# Set other parameters if not overridden by command line
if args.context_length is None:
args.context_length = int(params['context_length'])
if args.batch_size is None:
args.batch_size = int(params['batch_size'])
args.num_chunks = num_chunks
print(f"\nLoaded parameters from {args.meta}:")
print(f" Context Length: {args.context_length}")
print(f" Batch Size: {args.batch_size}")
print(f" Num Chunks: {args.num_chunks}")
print(f" Models Directory: {args.d}")
print(f" Embeddings: {args.embed}")
print(f" FFN: {args.ffn}")
except Exception as e:
print(f"\nError loading meta.yaml: {str(e)}")
sys.exit(1)
return args
def main():
args = parse_args()
# Use default batch size if not specified
if args.batch_size is None:
args.batch_size = 64
print(f"\nUsing default batch size: {args.batch_size}")
# Convert directory to absolute path
model_dir = Path(args.d).resolve()
if not model_dir.exists():
print(f"\nError: Model directory not found: {model_dir}")
return 1
print(f"\nUsing model directory: {model_dir}")
try:
# Update paths to be relative to model directory
args.embed = str(model_dir / args.embed)
args.ffn = str(model_dir / args.ffn)
# Handle tokenizer path separately
if args.tokenizer is None:
args.tokenizer = str(model_dir)
if not Path(args.tokenizer).exists():
print(f"\nError: Tokenizer directory not found: {args.tokenizer}")
return 1
args.tokenizer = str(Path(args.tokenizer).resolve())
print(f"Using tokenizer path: {args.tokenizer}")
# Load models and extract metadata
metadata = {}
embed_model, ffn_models, metadata = load_models(args, metadata)
# Override context length from command line if provided
if args.context_length is not None:
metadata['context_length'] = args.context_length
metadata['state_length'] = args.context_length
print(f"\nOverriding context length from command line: {args.context_length}")
# Load tokenizer
tokenizer = initialize_tokenizer(args.tokenizer)
if tokenizer is None:
raise RuntimeError("Failed to initialize tokenizer")
# Determine number of tokens for the test
if args.test_full_context:
num_test_tokens = metadata['context_length']
print(f"\nTesting with full context length: {num_test_tokens} tokens")
elif args.test_tokens is not None:
num_test_tokens = args.test_tokens
print(f"\nTesting with specified tokens: {num_test_tokens} tokens")
else:
num_test_tokens = args.batch_size # Default to batch size
print(f"\nTesting with default tokens (batch size): {num_test_tokens} tokens")
# Ensure test tokens do not exceed context length
if num_test_tokens > metadata['context_length']:
print(f"\nWarning: Requested test tokens ({num_test_tokens}) exceed context length ({metadata['context_length']}).")
print(f"Clamping test tokens to context length.")
num_test_tokens = metadata['context_length']
# Run prefill speed test
test_prefill_speed(
embed_model=embed_model,
ffn_models=ffn_models,
tokenizer=tokenizer,
batch_size=args.batch_size, # Pass original batch_size for run_prefill internal logic
context_length=metadata['context_length'],
num_test_tokens=num_test_tokens, # Pass the number of tokens to actually test
num_runs=args.runs,
test_single_chunk=not args.no_single_chunk
)
except Exception as e:
print(f"\nError: {str(e)}")
import traceback
traceback.print_exc()
return 1
return 0
if __name__ == "__main__":
exit(main()) |