File size: 27,472 Bytes
508ce38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#!/usr/bin/env python3
# prefill.py
# Copyright (c) 2025 Anemll
# Licensed under the MIT License

import argparse
import os
import re
import glob
from pathlib import Path
import coremltools as ct
from transformers import AutoTokenizer
import torch
import torch.nn.functional as F
import numpy as np
import time
import yaml
import sys

# ANSI color codes
LIGHT_BLUE = "\033[94m"
DARK_BLUE = "\033[34m"
LIGHT_GREEN = "\033[92m"
RESET_COLOR = "\033[0m"

def parse_model_path(path):
    """Parse model path and return full path with .mlmodelc or .mlpackage extension."""
    path = Path(path)
    
    # If path exists exactly as specified, return it
    if path.exists():
        return str(path)
        
    # Try with both extensions
    candidates = [
        path,  # Original path
        path.with_suffix('.mlmodelc'),  # With .mlmodelc
        path.with_suffix('.mlpackage'),  # With .mlpackage
        Path(str(path) + '.mlmodelc'),  # Handle case where extension is included
        Path(str(path) + '.mlpackage')
    ]
    
    # Try all possible paths
    for candidate in candidates:
        if candidate.exists():
            print(f"Found model at: {candidate}")
            return str(candidate)
            
    # If we get here, no valid path was found
    print("\nError: Model not found. Tried following paths:")
    for candidate in candidates:
        print(f"  {candidate}")
    raise FileNotFoundError(f"Model not found: {path}")

def parse_ffn_filename(path):
    """Parse FFN model filename to extract chunk information."""
    path = Path(path)
    pattern = r'FFN_PF.*_chunk_(\d+)of(\d+)'
    match = re.search(pattern, path.name)
    
    if match:
        current_chunk = int(match.group(1))
        total_chunks = int(match.group(2))
        return current_chunk, total_chunks
    return None, None

def find_all_chunks(base_path):
    """Find all chunk files matching the base FFN path pattern."""
    path = Path(base_path)
    pattern = re.sub(r'_chunk_\d+of\d+', '_chunk_*', str(path))
    return sorted(glob.glob(pattern))

def load_model(path, function_name=None):
    """Load a CoreML model, handling both .mlmodelc and .mlpackage formats."""
    path = Path(path)
    compute_unit = ct.ComputeUnit.CPU_AND_NE
    
    try:
        if path.suffix == '.mlmodelc':
            # For compiled models (.mlmodelc), use CompiledMLModel
            if function_name:
                return ct.models.CompiledMLModel(str(path), compute_unit, function_name=function_name)
            else:
                return ct.models.CompiledMLModel(str(path), compute_unit)
        else:
            # For packages (.mlpackage)
            if function_name:
                return ct.models.MLModel(str(path), function_name=function_name)
            else:
                return ct.models.MLModel(str(path))
                
    except RuntimeError as e:
        if "valid manifest does not exist" in str(e):
            print(f"\nError: Could not load compiled model at {path}")
            print("This might be because:")
            print("1. The model is not properly compiled")
            print("2. The model was compiled for a different OS version")
            print("3. The model needs to be recompiled")
            print("\nTry using the .mlpackage version instead, or recompile the model.")
        raise

def load_metadata(model, args):
    # Extract metadata and config parameters
    metadata = {}
    if hasattr(model, 'user_defined_metadata'):
        meta = model.user_defined_metadata
        
        # Extract key parameters with defaults
        metadata['context_length'] = int(meta.get('com.anemll.context_length', 512))
        metadata['state_length'] = int(meta.get('com.anemll.state_length', metadata['context_length']))
        metadata['batch_size'] = int(meta.get('com.anemll.batch_size', 64))
        metadata['lut_bits'] = int(meta.get('com.anemll.lut_bits', 0))
        metadata['num_chunks'] = int(meta.get('com.anemll.num_chunks', 1))
        
        print("\nExtracted Parameters:")
        print(f"  Context Length: {metadata['context_length']}")
        print(f"  State Length: {metadata['state_length']}")
        print(f"  Prefill Batch Size: {metadata['batch_size']}")
        print(f"  LUT Bits: {metadata['lut_bits']}")
        print(f"  Number of Chunks: {metadata['num_chunks']}")
    else:
        print("\nWarning: No metadata found in model")

        # Check if model directory name contains context length pattern (ctxXXX)
        ctx_len = 512
        if args.context_length is None:
            import re
            ctx_match = re.search(r'ctx(\d+)', str(args.d))
            if ctx_match:
                ctx_len0 = int(ctx_match.group(1))
                if 512 <= ctx_len0 <= 8096:
                    ctx_len = ctx_len0
                    print(f"\nDetected context length {ctx_len} from directory name")
            else:
                print(f"\nWarning: No context length found in directory, using default {ctx_len}")
        else:
            ctx_len = args.context_length

        # Use defaults or values from args
        metadata['context_length'] = ctx_len
        metadata['state_length'] = ctx_len
        # Get batch size from args or use default
        metadata['batch_size'] = getattr(args, 'batch_size', 64)
        metadata['lut_bits'] = 4
        metadata['num_chunks'] = getattr(args, 'num_chunks', 4)
        print("\nUsing parameters:")
        print(f"  Context Length: {metadata['context_length']}")
        print(f"  State Length: {metadata['state_length']}")
        print(f"  Prefill Batch Size: {metadata['batch_size']}")
        print(f"  LUT Bits: {metadata['lut_bits']}")
        print(f"  Number of Chunks: {metadata['num_chunks']}")

    # Override with values from args if they exist
    if hasattr(args, 'batch_size') and args.batch_size is not None:
        metadata['batch_size'] = args.batch_size
        print(f"\nOverriding batch size from args: {args.batch_size}")
    if hasattr(args, 'num_chunks') and args.num_chunks is not None:
        metadata['num_chunks'] = args.num_chunks
        print(f"\nOverriding num chunks from args: {args.num_chunks}")
    
    return metadata
    
def load_models(args, metadata):
    """Load all required models and extract metadata."""
    print("\nLoading models...")
    
    try:
        # Load embeddings model
        print("\nLoading embeddings model...")
        embed_path = parse_model_path(args.embed)
        print(f"Loading from: {embed_path}")
        embed_model = load_model(embed_path)
        print("Embeddings model loaded successfully")
        metadata = load_metadata(embed_model, args)
        
        # Load FFN model(s)
        print("\nLoading PREFILL functionality only...")
        ffn_path = parse_model_path(args.ffn)
        chunk_no, total_chunks = parse_ffn_filename(ffn_path)
        
        ffn_models = []
        if chunk_no and total_chunks:
            print(f"\nDetected chunked model with {total_chunks} chunks")
            # Find and load all chunks
            chunk_paths = find_all_chunks(ffn_path)
            if len(chunk_paths) != total_chunks:
                raise ValueError(f"Found {len(chunk_paths)} chunks but filename indicates {total_chunks} chunks")
                
            for chunk_path in chunk_paths:
                print(f"\nLoading PREFILL function from chunk: {Path(chunk_path).name}")
                try:
                    # For prefill testing, we only need the prefill function
                    prefill_model = load_model(chunk_path, function_name='prefill')
                    ffn_models.append(prefill_model)
                    print("Chunk loaded successfully (prefill only)")
                except Exception as e:
                    print(f"Error loading chunk {chunk_path}: {str(e)}")
                    raise
            metadata = load_metadata(ffn_models[0], args)
        else:
            print("\nLoading single model (prefill functionality only)...")
            ffn_models.append(load_model(ffn_path))
            print("Model loaded successfully")
        
        return embed_model, ffn_models, metadata
        
    except Exception as e:
        print(f"\nError loading models: {str(e)}")
        print("\nPlease ensure all model files exist and are accessible.")
        print("Expected files:")
        print(f"  Embeddings: {args.embed}")
        print(f"  FFN: {args.ffn}")
        raise

def initialize_tokenizer(model_path=None):
    """Initialize and configure the tokenizer."""
    try:
        tokenizer = AutoTokenizer.from_pretrained(
            str(model_path), 
            use_fast=False,
            trust_remote_code=True
        )
        
        print("\nTokenizer Configuration:")
        print(f"Tokenizer type: {type(tokenizer)}")
        print(f"Tokenizer name: {tokenizer.__class__.__name__}")
        print(f"Vocabulary size: {len(tokenizer)}")
        
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            tokenizer.pad_token_id = tokenizer.eos_token_id
            print("Set PAD token to EOS token")
        
        tokenizer.padding_side = "left"
        
        return tokenizer
        
    except Exception as e:
        print(f"\nError: Failed to load tokenizer from {model_path}")
        print(f"Error details: {str(e)}")
        raise

def make_causal_mask(length, start):
    """Create causal attention mask."""
    mask = np.full((1, 1, length, length), -np.inf, dtype=np.float16)
    row_indices = np.arange(length).reshape(length, 1)
    col_indices = np.arange(length).reshape(1, length)
    mask[:, :, col_indices <= (row_indices + start)] = 0
    return mask

def initialize_causal_mask(context_length):
    """Initialize causal mask for transformer attention."""
    causal_mask = make_causal_mask(context_length, 0)
    causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
    print(f"\nInitialized causal mask for context length {context_length}")
    return causal_mask

def run_prefill(embed_model, ffn_models, input_ids, context_pos, context_length, batch_size=64, state=None, causal_mask=None):
    """Run prefill on the input sequence."""
    # Use provided causal mask or create one if not provided
    if causal_mask is None:
        causal_mask = make_causal_mask(context_length, 0)
        causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
    
    # Process in batches
    batch_pos = 0
    while batch_pos < context_pos:
        batch_end = min(batch_pos + batch_size, context_pos)
        current_batch_size = batch_end - batch_pos
        
        # Get current batch
        batch_input = input_ids[:, batch_pos:batch_end]
        
        # Always pad to full batch size for prefill
        batch_input = F.pad(
            batch_input,
            (0, batch_size - current_batch_size),
            value=0
        )
        
        # Generate position IDs for full batch size
        position_ids = torch.arange(batch_size, dtype=torch.int32)
        batch_causal_mask = causal_mask[:, :, :batch_size, :]
        
        # Run embeddings with proper batch size
        hidden_states = torch.from_numpy(
            embed_model.predict({
                'input_ids': batch_input.numpy(),
                'batch_size': np.array([batch_size], dtype=np.int32)
            })['hidden_states']
        )
        
        # Run through FFN chunks with state
        for ffn_model in ffn_models:
            # Handle both direct model and dictionary formats
            if isinstance(ffn_model, dict) and 'prefill' in ffn_model:
                # For backward compatibility with dictionary format
                prefill_model = ffn_model['prefill']
            else:
                # Direct access for models loaded with function_name='prefill'
                prefill_model = ffn_model
                
            inputs = {
                'hidden_states': hidden_states.numpy(),
                'position_ids': position_ids.numpy(),
                'causal_mask': batch_causal_mask.numpy(),
                'current_pos': np.array([batch_pos], dtype=np.int32)
            }
            output = prefill_model.predict(inputs, state)
            hidden_states = torch.from_numpy(output['output_hidden_states'])
        
        batch_pos = batch_end
    
    return torch.tensor([context_pos], dtype=torch.int32)

def create_unified_state(ffn_models, context_length):
    """Create unified KV cache state for transformer."""
    if hasattr(ffn_models[0], 'make_state'):
        # Direct access for models loaded with 'prefill' function_name
        state = ffn_models[0].make_state()
        print(f"\nCreated unified transformer state for {len(ffn_models)} chunks")
        return state
    else:
        # Fallback for dictionary-based models (for backward compatibility)
        if isinstance(ffn_models[0], dict) and 'prefill' in ffn_models[0]:
            state = ffn_models[0]['prefill'].make_state()
            print(f"\nCreated unified transformer state for {len(ffn_models)} chunks")
            return state
        else:
            state = ffn_models[0].make_state()
            print("\nCreated unified transformer state")
            return state

def test_prefill_speed(embed_model, ffn_models, tokenizer, batch_size, context_length, num_test_tokens, num_runs=20, test_single_chunk=True):
    """Test prefill speed with sample token sequences."""
    print(f"\n{LIGHT_GREEN}Testing prefill speed for {num_test_tokens} tokens (using internal batch size {batch_size}){RESET_COLOR}")
    print(f"Running {num_runs} iterations for warmup and measurement")

    # Create sample input sequence of exactly num_test_tokens tokens
    sample_text = "This is a test sequence. " * ((num_test_tokens + 4) // 5) # Ensure enough text
    input_ids = tokenizer(sample_text, return_tensors="pt").input_ids.to(torch.int32)

    # Trim or pad to exactly num_test_tokens tokens
    if input_ids.size(1) > num_test_tokens:
        input_ids = input_ids[:, :num_test_tokens]
    elif input_ids.size(1) < num_test_tokens:
        pad_length = num_test_tokens - input_ids.size(1)
        input_ids = F.pad(input_ids, (0, pad_length), value=tokenizer.pad_token_id)

    print(f"Sample input sequence length: {input_ids.size(1)} tokens")

    # Test with all chunks first
    print(f"\n{LIGHT_BLUE}Testing with all chunks ({len(ffn_models)} chunks){RESET_COLOR}")
    
    # Create unified state
    state_all_chunks = create_unified_state(ffn_models, context_length)
    
    # Initialize causal mask
    causal_mask = initialize_causal_mask(context_length)
    
    # Run prefill multiple times for warmup and testing
    all_chunks_times = []
    for i in range(num_runs):
        # Reset state for each run
        if i == 0:
            print("\nStarting warmup runs...")
        elif i == num_runs // 2:
            print("\nWarmup complete, starting measurement runs...")
        
        start_time = time.time()
        
        # Run prefill
        run_prefill(
            embed_model,
            ffn_models,
            input_ids,
            input_ids.size(1),  # context_pos
            context_length,
            batch_size, # Internal batching within run_prefill
            state_all_chunks,
            causal_mask
        )
        
        elapsed = time.time() - start_time
        all_chunks_times.append(elapsed)
        
        # Print progress
        if i < num_runs // 2:  # Warmup phase
            print(f"Warmup run {i+1}/{num_runs//2}: {elapsed:.4f}s ({batch_size/elapsed:.1f} tokens/s)")
        else:  # Measurement phase
            print(f"Run {i+1-num_runs//2}/{num_runs//2}: {elapsed:.4f}s ({batch_size/elapsed:.1f} tokens/s)")
    
    # Calculate and report statistics for all chunks (excluding warmup runs)
    all_chunks_measurement_times = all_chunks_times[num_runs // 2:]
    all_chunks_avg_time = sum(all_chunks_measurement_times) / len(all_chunks_measurement_times)
    all_chunks_min_time = min(all_chunks_measurement_times)
    all_chunks_max_time = max(all_chunks_measurement_times)
    all_chunks_tokens_per_sec = num_test_tokens / all_chunks_avg_time # Use num_test_tokens for speed calculation
    
    print(f"\n{LIGHT_BLUE}All Chunks Prefill Speed Results:{RESET_COLOR}")
    print(f"Number of Chunks: {len(ffn_models)}")
    print(f"Test Tokens: {num_test_tokens} tokens")
    print(f"Internal Batch Size: {batch_size} tokens")
    print(f"Context Size: {context_length} tokens")
    print(f"Average Time: {all_chunks_avg_time:.4f}s")
    print(f"Min Time: {all_chunks_min_time:.4f}s")
    print(f"Max Time: {all_chunks_max_time:.4f}s")
    print(f"Average Speed: {all_chunks_tokens_per_sec:.1f} tokens/second")
    print(f"Best Speed: {num_test_tokens / all_chunks_min_time:.1f} tokens/second") # Use num_test_tokens
    
    # Test with single chunk if requested and if multiple chunks exist
    single_chunk_tokens_per_sec = 0
    if test_single_chunk and len(ffn_models) > 1:
        print(f"\n{LIGHT_BLUE}Testing with single chunk (first chunk only){RESET_COLOR}")
        
        # Create a list with only the first chunk
        single_chunk_model = [ffn_models[0]]
        
        # Create unified state for single chunk
        state_single_chunk = create_unified_state(single_chunk_model, context_length)
        
        # Run prefill multiple times for single chunk
        single_chunk_times = []
        for i in range(num_runs):
            if i == 0:
                print("\nStarting single chunk warmup runs...")
            elif i == num_runs // 2:
                print("\nSingle chunk warmup complete, starting measurement runs...")
            
            start_time = time.time()
            
            # Run prefill with single chunk
            run_prefill(
                embed_model,
                single_chunk_model,
                input_ids,
                input_ids.size(1),  # context_pos
                context_length,
                batch_size, # Internal batching within run_prefill
                state_single_chunk,
                causal_mask
            )
            
            elapsed = time.time() - start_time
            single_chunk_times.append(elapsed)
            
            # Print progress
            if i < num_runs // 2:  # Warmup phase
                print(f"Single chunk warmup run {i+1}/{num_runs//2}: {elapsed:.4f}s ({batch_size/elapsed:.1f} tokens/s)")
            else:  # Measurement phase
                print(f"Single chunk run {i+1-num_runs//2}/{num_runs//2}: {elapsed:.4f}s ({batch_size/elapsed:.1f} tokens/s)")
        
        # Calculate and report statistics for single chunk
        single_chunk_measurement_times = single_chunk_times[num_runs // 2:]
        single_chunk_avg_time = sum(single_chunk_measurement_times) / len(single_chunk_measurement_times)
        single_chunk_min_time = min(single_chunk_measurement_times)
        single_chunk_max_time = max(single_chunk_measurement_times)
        single_chunk_tokens_per_sec = num_test_tokens / single_chunk_avg_time # Use num_test_tokens
        
        print(f"\n{LIGHT_BLUE}Single Chunk Prefill Speed Results:{RESET_COLOR}")
        print(f"Test Tokens: {num_test_tokens} tokens")
        print(f"Internal Batch Size: {batch_size} tokens")
        print(f"Context Size: {context_length} tokens")
        print(f"Average Time: {single_chunk_avg_time:.4f}s")
        print(f"Min Time: {single_chunk_min_time:.4f}s")
        print(f"Max Time: {single_chunk_max_time:.4f}s")
        print(f"Average Speed: {single_chunk_tokens_per_sec:.1f} tokens/second")
        print(f"Best Speed: {num_test_tokens / single_chunk_min_time:.1f} tokens/second") # Use num_test_tokens
        
        # Calculate overhead per chunk
        if len(ffn_models) > 1:
            chunk_overhead = (all_chunks_avg_time - single_chunk_avg_time) / (len(ffn_models) - 1)
            print(f"\n{LIGHT_GREEN}Chunk Overhead Analysis:{RESET_COLOR}")
            print(f"Single Chunk Time: {single_chunk_avg_time:.4f}s")
            print(f"All Chunks Time ({len(ffn_models)} chunks): {all_chunks_avg_time:.4f}s")
            print(f"Additional Time Per Chunk: {chunk_overhead:.4f}s")
            print(f"Overhead Percentage: {(all_chunks_avg_time/single_chunk_avg_time - 1)*100:.1f}%")
    
    return all_chunks_tokens_per_sec, single_chunk_tokens_per_sec

def parse_args():
    parser = argparse.ArgumentParser(description='Test prefill speed with CoreML LLaMA models (c) 2025 Anemll')
    
    # Add meta.yaml option
    parser.add_argument('--meta', type=str, help='Path to meta.yaml to load all parameters')
    
    # Model paths
    parser.add_argument('--d', '--dir', type=str, default='.',
                       help='Directory containing model files (default: current directory)')
    parser.add_argument('--embed', type=str, required=False,
                       help='Path to embeddings model (relative to --dir)')
    parser.add_argument('--ffn', type=str, required=False,
                       help='Path to FFN model (can be chunked, relative to --dir)')
    parser.add_argument('--tokenizer', type=str, required=False,
                       help='Path to tokenizer')
    
    # Test configuration
    parser.add_argument('--batch-size', type=int,
                       help='Batch size for prefill test (default: 64)')
    parser.add_argument('--runs', type=int, default=20,
                       help='Number of test runs (default: 20)')
    parser.add_argument('--context-length', type=int,
                       help='Context length for the model')
    parser.add_argument('--no-single-chunk', action='store_true',
                       help='Disable single chunk testing')
    parser.add_argument('--test-tokens', type=int,
                       help='Number of tokens to use for the speed test (default: batch_size)')
    parser.add_argument('--test-full-context', action='store_true',
                       help='Test prefill speed using the full context length (overrides --test-tokens)')
    
    args = parser.parse_args()
    
    # If meta.yaml is provided, load parameters from it
    if args.meta:
        try:
            with open(args.meta, 'r') as f:
                meta = yaml.safe_load(f)
            params = meta['model_info']['parameters']
            
            # Set model directory to meta.yaml directory if not specified
            if not args.d or args.d == '.':
                args.d = str(Path(args.meta).parent)
            
            # Build model paths based on parameters
            prefix = params.get('model_prefix', 'llama')
            lut_ffn = f"_lut{params['lut_ffn']}" if params['lut_ffn'] != 'none' else ''
            lut_embeddings = f"_lut{params['lut_embeddings']}" if params['lut_embeddings'] != 'none' else ''
            num_chunks = int(params['num_chunks'])
            
            # Set model paths if not specified
            if not args.embed:
                args.embed = f'{prefix}_embeddings{lut_embeddings}'
            if not args.ffn:
                args.ffn = f'{prefix}_FFN_PF{lut_ffn}_chunk_01of{num_chunks:02d}'
            if not args.tokenizer:
                args.tokenizer = args.d
            
            # Set other parameters if not overridden by command line
            if args.context_length is None:
                args.context_length = int(params['context_length'])
            if args.batch_size is None:
                args.batch_size = int(params['batch_size'])
            args.num_chunks = num_chunks
            
            print(f"\nLoaded parameters from {args.meta}:")
            print(f"  Context Length: {args.context_length}")
            print(f"  Batch Size: {args.batch_size}")
            print(f"  Num Chunks: {args.num_chunks}")
            print(f"  Models Directory: {args.d}")
            print(f"  Embeddings: {args.embed}")
            print(f"  FFN: {args.ffn}")
            
        except Exception as e:
            print(f"\nError loading meta.yaml: {str(e)}")
            sys.exit(1)
    
    return args

def main():
    args = parse_args()
    
    # Use default batch size if not specified
    if args.batch_size is None:
        args.batch_size = 64
        print(f"\nUsing default batch size: {args.batch_size}")
    
    # Convert directory to absolute path
    model_dir = Path(args.d).resolve()
    if not model_dir.exists():
        print(f"\nError: Model directory not found: {model_dir}")
        return 1
        
    print(f"\nUsing model directory: {model_dir}")
    
    try:
        # Update paths to be relative to model directory
        args.embed = str(model_dir / args.embed)
        args.ffn = str(model_dir / args.ffn)
        
        # Handle tokenizer path separately
        if args.tokenizer is None:
            args.tokenizer = str(model_dir)
        
        if not Path(args.tokenizer).exists():
            print(f"\nError: Tokenizer directory not found: {args.tokenizer}")
            return 1
    
        args.tokenizer = str(Path(args.tokenizer).resolve())
        print(f"Using tokenizer path: {args.tokenizer}")
        
        # Load models and extract metadata
        metadata = {}
        embed_model, ffn_models, metadata = load_models(args, metadata)
        
        # Override context length from command line if provided
        if args.context_length is not None:
            metadata['context_length'] = args.context_length
            metadata['state_length'] = args.context_length
            print(f"\nOverriding context length from command line: {args.context_length}")
        
        # Load tokenizer
        tokenizer = initialize_tokenizer(args.tokenizer)
        if tokenizer is None:
            raise RuntimeError("Failed to initialize tokenizer")
        
        # Determine number of tokens for the test
        if args.test_full_context:
            num_test_tokens = metadata['context_length']
            print(f"\nTesting with full context length: {num_test_tokens} tokens")
        elif args.test_tokens is not None:
            num_test_tokens = args.test_tokens
            print(f"\nTesting with specified tokens: {num_test_tokens} tokens")
        else:
            num_test_tokens = args.batch_size # Default to batch size
            print(f"\nTesting with default tokens (batch size): {num_test_tokens} tokens")

        # Ensure test tokens do not exceed context length
        if num_test_tokens > metadata['context_length']:
            print(f"\nWarning: Requested test tokens ({num_test_tokens}) exceed context length ({metadata['context_length']}).")
            print(f"Clamping test tokens to context length.")
            num_test_tokens = metadata['context_length']

        # Run prefill speed test
        test_prefill_speed(
            embed_model=embed_model,
            ffn_models=ffn_models,
            tokenizer=tokenizer,
            batch_size=args.batch_size, # Pass original batch_size for run_prefill internal logic
            context_length=metadata['context_length'],
            num_test_tokens=num_test_tokens, # Pass the number of tokens to actually test
            num_runs=args.runs,
            test_single_chunk=not args.no_single_chunk
        )
        
    except Exception as e:
        print(f"\nError: {str(e)}")
        import traceback
        traceback.print_exc()
        return 1
    
    return 0

if __name__ == "__main__":
    exit(main())