--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-case-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.6530483972344437 - name: Recall type: recall value: 0.7162224264705882 - name: F1 type: f1 value: 0.6831780821917808 - name: Accuracy type: accuracy value: 0.9547333889783954 --- # biobert-base-case-ner This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1655 - Precision: 0.6530 - Recall: 0.7162 - F1: 0.6832 - Accuracy: 0.9547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1257 | 1.0 | 1041 | 0.1724 | 0.6232 | 0.6788 | 0.6498 | 0.9510 | | 0.0846 | 2.0 | 2082 | 0.1655 | 0.6530 | 0.7162 | 0.6832 | 0.9547 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1