anilguven commited on
Commit
0b58869
1 Parent(s): e10ec56

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -1
README.md CHANGED
@@ -15,4 +15,56 @@ tags:
15
  - review
16
  - bert
17
  - classification
18
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  - review
16
  - bert
17
  - classification
18
+ ---
19
+ ### Model Info
20
+
21
+ This model was developed/finetuned for product review task for Turkish Language. Model was finetuned via hepsiburada.com product review dataset.
22
+ - LABEL_0: negative review
23
+ - LABEL_1: positive review
24
+
25
+ ### Model Sources
26
+
27
+ <!-- Provide the basic links for the model. -->
28
+
29
+ - **Dataset:** https://huggingface.co/datasets/anilguven/turkish_product_reviews_sentiment
30
+ - **Paper:** https://ieeexplore.ieee.org/document/9559007
31
+ - **Demo-Coding [optional]:** https://github.com/anil1055/Turkish_Product_Review_Analysis_with_Language_Models
32
+ - **Finetuned from model [optional]:** https://huggingface.co/dbmdz/bert-base-turkish-cased
33
+
34
+ #### Preprocessing
35
+
36
+ You must apply removing stopwords, stemming, or lemmatization process for Turkish.
37
+
38
+ ### Results
39
+
40
+ - auprc = 0.9703364794020499
41
+ - auroc = 0.9740012964967856
42
+ - eval_loss = 0.358846469963511
43
+ - fn = 193
44
+ - fp = 207
45
+ - mcc = 0.8537512867685785
46
+ - tn = 2493
47
+ - tp = 2578
48
+ - Accuracy: %92.68
49
+
50
+ ## Citation
51
+
52
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
53
+
54
+ **BibTeX:**
55
+
56
+ @INPROCEEDINGS{9559007,
57
+ author={Guven, Zekeriya Anil},
58
+ booktitle={2021 6th International Conference on Computer Science and Engineering (UBMK)},
59
+ title={The Effect of BERT, ELECTRA and ALBERT Language Models on Sentiment Analysis for Turkish Product Reviews},
60
+ year={2021},
61
+ volume={},
62
+ number={},
63
+ pages={629-632},
64
+ keywords={Computer science;Sentiment analysis;Analytical models;Computational modeling;Bit error rate;Time factors;Random forests;Sentiment Analysis;Language Model;Product Review;Machine Learning;E-commerce},
65
+ doi={10.1109/UBMK52708.2021.9559007}}
66
+
67
+
68
+ **APA:**
69
+
70
+ Guven, Z. A. (2021, September). The effect of bert, electra and albert language models on sentiment analysis for turkish product reviews. In 2021 6th International Conference on Computer Science and Engineering (UBMK) (pp. 629-632). IEEE.