anismahmahi commited on
Commit
4d7e7f5
·
1 Parent(s): b5c0a2a

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: 'Texas: Cop Walks Into Home She Thought Was Hers, Kills Innocent Homeowner—Not
12
+ Arrested'
13
+ - text: Ellison subsequently agreed to dismiss his restraining order against her if
14
+ she no longer contacted him.
15
+ - text: Gina Haspel will become the new Director of the CIA, and the first woman so
16
+ chosen.
17
+ - text: At some point, the officer fired her weapon striking the victim.
18
+ - text: Ronaldo Rauseo-Ricupero, a lawyer for the Indonesians, argued they should
19
+ have 90 days to move to reopen their cases after receiving copies of their administrative
20
+ case files and time to appeal any decision rejecting those motions.
21
+ pipeline_tag: text-classification
22
+ inference: false
23
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
24
+ model-index:
25
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
26
+ results:
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: Unknown
32
+ type: unknown
33
+ split: test
34
+ metrics:
35
+ - type: accuracy
36
+ value: 0.8151016456921588
37
+ name: Accuracy
38
+ ---
39
+
40
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
41
+
42
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
43
+
44
+ The model has been trained using an efficient few-shot learning technique that involves:
45
+
46
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
47
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** SetFit
53
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
54
+ - **Classification head:** a OneVsRestClassifier instance
55
+ - **Maximum Sequence Length:** 512 tokens
56
+ <!-- - **Number of Classes:** Unknown -->
57
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
64
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
65
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
66
+
67
+ ## Evaluation
68
+
69
+ ### Metrics
70
+ | Label | Accuracy |
71
+ |:--------|:---------|
72
+ | **all** | 0.8151 |
73
+
74
+ ## Uses
75
+
76
+ ### Direct Use for Inference
77
+
78
+ First install the SetFit library:
79
+
80
+ ```bash
81
+ pip install setfit
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+
86
+ ```python
87
+ from setfit import SetFitModel
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SetFitModel.from_pretrained("anismahmahi/doubt_repetition_with_noPropaganda_SetFit")
91
+ # Run inference
92
+ preds = model("At some point, the officer fired her weapon striking the victim.")
93
+ ```
94
+
95
+ <!--
96
+ ### Downstream Use
97
+
98
+ *List how someone could finetune this model on their own dataset.*
99
+ -->
100
+
101
+ <!--
102
+ ### Out-of-Scope Use
103
+
104
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
105
+ -->
106
+
107
+ <!--
108
+ ## Bias, Risks and Limitations
109
+
110
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
111
+ -->
112
+
113
+ <!--
114
+ ### Recommendations
115
+
116
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
117
+ -->
118
+
119
+ ## Training Details
120
+
121
+ ### Training Set Metrics
122
+ | Training set | Min | Median | Max |
123
+ |:-------------|:----|:--------|:----|
124
+ | Word count | 1 | 20.8138 | 129 |
125
+
126
+ ### Training Hyperparameters
127
+ - batch_size: (16, 16)
128
+ - num_epochs: (2, 2)
129
+ - max_steps: -1
130
+ - sampling_strategy: oversampling
131
+ - num_iterations: 5
132
+ - body_learning_rate: (2e-05, 1e-05)
133
+ - head_learning_rate: 0.01
134
+ - loss: CosineSimilarityLoss
135
+ - distance_metric: cosine_distance
136
+ - margin: 0.25
137
+ - end_to_end: False
138
+ - use_amp: False
139
+ - warmup_proportion: 0.1
140
+ - seed: 42
141
+ - eval_max_steps: -1
142
+ - load_best_model_at_end: True
143
+
144
+ ### Training Results
145
+ | Epoch | Step | Training Loss | Validation Loss |
146
+ |:-------:|:--------:|:-------------:|:---------------:|
147
+ | 0.0004 | 1 | 0.3567 | - |
148
+ | 0.0209 | 50 | 0.3286 | - |
149
+ | 0.0419 | 100 | 0.2663 | - |
150
+ | 0.0628 | 150 | 0.2378 | - |
151
+ | 0.0838 | 200 | 0.1935 | - |
152
+ | 0.1047 | 250 | 0.2549 | - |
153
+ | 0.1257 | 300 | 0.2654 | - |
154
+ | 0.1466 | 350 | 0.1668 | - |
155
+ | 0.1676 | 400 | 0.1811 | - |
156
+ | 0.1885 | 450 | 0.1884 | - |
157
+ | 0.2095 | 500 | 0.157 | - |
158
+ | 0.2304 | 550 | 0.1237 | - |
159
+ | 0.2514 | 600 | 0.1318 | - |
160
+ | 0.2723 | 650 | 0.1334 | - |
161
+ | 0.2933 | 700 | 0.1067 | - |
162
+ | 0.3142 | 750 | 0.1189 | - |
163
+ | 0.3351 | 800 | 0.135 | - |
164
+ | 0.3561 | 850 | 0.0782 | - |
165
+ | 0.3770 | 900 | 0.0214 | - |
166
+ | 0.3980 | 950 | 0.0511 | - |
167
+ | 0.4189 | 1000 | 0.0924 | - |
168
+ | 0.4399 | 1050 | 0.1418 | - |
169
+ | 0.4608 | 1100 | 0.0132 | - |
170
+ | 0.4818 | 1150 | 0.0018 | - |
171
+ | 0.5027 | 1200 | 0.0706 | - |
172
+ | 0.5237 | 1250 | 0.1502 | - |
173
+ | 0.5446 | 1300 | 0.133 | - |
174
+ | 0.5656 | 1350 | 0.0207 | - |
175
+ | 0.5865 | 1400 | 0.0589 | - |
176
+ | 0.6075 | 1450 | 0.0771 | - |
177
+ | 0.6284 | 1500 | 0.0241 | - |
178
+ | 0.6494 | 1550 | 0.0905 | - |
179
+ | 0.6703 | 1600 | 0.0106 | - |
180
+ | 0.6912 | 1650 | 0.0451 | - |
181
+ | 0.7122 | 1700 | 0.0011 | - |
182
+ | 0.7331 | 1750 | 0.0075 | - |
183
+ | 0.7541 | 1800 | 0.0259 | - |
184
+ | 0.7750 | 1850 | 0.0052 | - |
185
+ | 0.7960 | 1900 | 0.0464 | - |
186
+ | 0.8169 | 1950 | 0.0039 | - |
187
+ | 0.8379 | 2000 | 0.0112 | - |
188
+ | 0.8588 | 2050 | 0.0061 | - |
189
+ | 0.8798 | 2100 | 0.0143 | - |
190
+ | 0.9007 | 2150 | 0.0886 | - |
191
+ | 0.9217 | 2200 | 0.2225 | - |
192
+ | 0.9426 | 2250 | 0.0022 | - |
193
+ | 0.9636 | 2300 | 0.0035 | - |
194
+ | 0.9845 | 2350 | 0.002 | - |
195
+ | **1.0** | **2387** | **-** | **0.2827** |
196
+ | 1.0054 | 2400 | 0.0315 | - |
197
+ | 1.0264 | 2450 | 0.0049 | - |
198
+ | 1.0473 | 2500 | 0.0305 | - |
199
+ | 1.0683 | 2550 | 0.0334 | - |
200
+ | 1.0892 | 2600 | 0.0493 | - |
201
+ | 1.1102 | 2650 | 0.0424 | - |
202
+ | 1.1311 | 2700 | 0.0011 | - |
203
+ | 1.1521 | 2750 | 0.0109 | - |
204
+ | 1.1730 | 2800 | 0.0009 | - |
205
+ | 1.1940 | 2850 | 0.0005 | - |
206
+ | 1.2149 | 2900 | 0.0171 | - |
207
+ | 1.2359 | 2950 | 0.0004 | - |
208
+ | 1.2568 | 3000 | 0.0717 | - |
209
+ | 1.2778 | 3050 | 0.0019 | - |
210
+ | 1.2987 | 3100 | 0.062 | - |
211
+ | 1.3196 | 3150 | 0.0003 | - |
212
+ | 1.3406 | 3200 | 0.0018 | - |
213
+ | 1.3615 | 3250 | 0.0011 | - |
214
+ | 1.3825 | 3300 | 0.0005 | - |
215
+ | 1.4034 | 3350 | 0.0208 | - |
216
+ | 1.4244 | 3400 | 0.0004 | - |
217
+ | 1.4453 | 3450 | 0.001 | - |
218
+ | 1.4663 | 3500 | 0.0003 | - |
219
+ | 1.4872 | 3550 | 0.0015 | - |
220
+ | 1.5082 | 3600 | 0.0004 | - |
221
+ | 1.5291 | 3650 | 0.0473 | - |
222
+ | 1.5501 | 3700 | 0.0092 | - |
223
+ | 1.5710 | 3750 | 0.032 | - |
224
+ | 1.5920 | 3800 | 0.0016 | - |
225
+ | 1.6129 | 3850 | 0.0623 | - |
226
+ | 1.6339 | 3900 | 0.0291 | - |
227
+ | 1.6548 | 3950 | 0.0386 | - |
228
+ | 1.6757 | 4000 | 0.002 | - |
229
+ | 1.6967 | 4050 | 0.0006 | - |
230
+ | 1.7176 | 4100 | 0.0005 | - |
231
+ | 1.7386 | 4150 | 0.0004 | - |
232
+ | 1.7595 | 4200 | 0.0004 | - |
233
+ | 1.7805 | 4250 | 0.0007 | - |
234
+ | 1.8014 | 4300 | 0.033 | - |
235
+ | 1.8224 | 4350 | 0.0001 | - |
236
+ | 1.8433 | 4400 | 0.0489 | - |
237
+ | 1.8643 | 4450 | 0.0754 | - |
238
+ | 1.8852 | 4500 | 0.0086 | - |
239
+ | 1.9062 | 4550 | 0.0092 | - |
240
+ | 1.9271 | 4600 | 0.0591 | - |
241
+ | 1.9481 | 4650 | 0.0013 | - |
242
+ | 1.9690 | 4700 | 0.0043 | - |
243
+ | 1.9899 | 4750 | 0.0338 | - |
244
+ | 2.0 | 4774 | - | 0.3304 |
245
+
246
+ * The bold row denotes the saved checkpoint.
247
+ ### Framework Versions
248
+ - Python: 3.10.12
249
+ - SetFit: 1.0.1
250
+ - Sentence Transformers: 2.2.2
251
+ - Transformers: 4.35.2
252
+ - PyTorch: 2.1.0+cu121
253
+ - Datasets: 2.16.1
254
+ - Tokenizers: 0.15.0
255
+
256
+ ## Citation
257
+
258
+ ### BibTeX
259
+ ```bibtex
260
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
261
+ doi = {10.48550/ARXIV.2209.11055},
262
+ url = {https://arxiv.org/abs/2209.11055},
263
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
264
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
265
+ title = {Efficient Few-Shot Learning Without Prompts},
266
+ publisher = {arXiv},
267
+ year = {2022},
268
+ copyright = {Creative Commons Attribution 4.0 International}
269
+ }
270
+ ```
271
+
272
+ <!--
273
+ ## Glossary
274
+
275
+ *Clearly define terms in order to be accessible across audiences.*
276
+ -->
277
+
278
+ <!--
279
+ ## Model Card Authors
280
+
281
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
282
+ -->
283
+
284
+ <!--
285
+ ## Model Card Contact
286
+
287
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
288
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_2387/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3fc287914c26c498a057b721938578d8ded6f5ccd9744f39d726ce66814509f
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0543ded0c1d7956acd348eba536c949d166d7033262a12ee1c4bd838c8b30e
3
+ size 20436
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff