--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: group2_non_all_zero results: [] --- # group2_non_all_zero This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3907 - Precision: 0.0415 - Recall: 0.086 - F1: 0.0560 - Accuracy: 0.9044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 172 | 0.2512 | 0.0608 | 0.044 | 0.0510 | 0.9439 | | No log | 2.0 | 344 | 0.2667 | 0.0355 | 0.048 | 0.0408 | 0.9194 | | 0.4561 | 3.0 | 516 | 0.2883 | 0.0445 | 0.078 | 0.0566 | 0.9198 | | 0.4561 | 4.0 | 688 | 0.3610 | 0.0379 | 0.092 | 0.0537 | 0.8968 | | 0.4561 | 5.0 | 860 | 0.3840 | 0.0528 | 0.094 | 0.0676 | 0.9095 | | 0.1508 | 6.0 | 1032 | 0.3907 | 0.0415 | 0.086 | 0.0560 | 0.9044 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.13.3