xlm-roberta-quality-classifier

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9815
  • F1: 0.9817
  • F1 High: 0.9741
  • F1 Low: 0.9989
  • F1 Medium: 0.9720
  • Loss: 0.0651
  • Precision: 0.9818
  • Recall: 0.9816

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.0000000000000003e-06
  • train_batch_size: 96
  • eval_batch_size: 256
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 192
  • total_eval_batch_size: 512
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 F1 High F1 Low F1 Medium Validation Loss Precision Recall
0.036 3.7736 1000 0.9849 0.9850 0.9799 0.9973 0.9779 0.0388 0.9852 0.9853
0.0149 7.5472 2000 0.9815 0.9817 0.9741 0.9989 0.9720 0.0651 0.9818 0.9816

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
30
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support