xlm-roberta-quality-classifier
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.9815
- F1: 0.9817
- F1 High: 0.9741
- F1 Low: 0.9989
- F1 Medium: 0.9720
- Loss: 0.0651
- Precision: 0.9818
- Recall: 0.9816
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.0000000000000003e-06
- train_batch_size: 96
- eval_batch_size: 256
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 192
- total_eval_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Accuracy | F1 | F1 High | F1 Low | F1 Medium | Validation Loss | Precision | Recall |
|---|---|---|---|---|---|---|---|---|---|---|
| 0.036 | 3.7736 | 1000 | 0.9849 | 0.9850 | 0.9799 | 0.9973 | 0.9779 | 0.0388 | 0.9852 | 0.9853 |
| 0.0149 | 7.5472 | 2000 | 0.9815 | 0.9817 | 0.9741 | 0.9989 | 0.9720 | 0.0651 | 0.9818 | 0.9816 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 30