init
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- chat_template.jinja +7 -0
- config.json +573 -0
- generation_config.json +4 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +0 -0
- preprocessor_config.json +31 -0
- special_tokens_map.json +38 -0
- spk_dict.pt +3 -0
- tokenizer.json +3 -0
- tokenizer_config.json +226 -0
- trainer_state.json +2449 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -28,6 +28,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
28 |
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
32 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
33 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|AUDIO|>": 151646,
|
5 |
+
"<|IMAGE|>": 151655,
|
6 |
+
"<|VIDEO|>": 151656,
|
7 |
+
"<|audio_bos|>": 151647,
|
8 |
+
"<|audio_eos|>": 151648,
|
9 |
+
"<|box_end|>": 151649,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|quad_end|>": 151651,
|
19 |
+
"<|quad_start|>": 151650,
|
20 |
+
"<|repo_name|>": 151663,
|
21 |
+
"<|vision_bos|>": 151652,
|
22 |
+
"<|vision_eos|>": 151653,
|
23 |
+
"<|vision_pad|>": 151654
|
24 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{% set audio_count = namespace(value=0) %}{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
|
2 |
+
You are a helpful assistant.<|im_end|>
|
3 |
+
{% endif %}<|im_start|>{{ message['role'] }}
|
4 |
+
{% if message['content'] is string %}{{ message['content'] }}<|im_end|>
|
5 |
+
{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_bos|><|IMAGE|><|vision_eos|>{% elif content['type'] == 'audio' or 'audio' in content or 'audio_url' in content %}{% set audio_count.value = audio_count.value + 1 %}{% if add_audio_id %}Audio {{ audio_count.value }}: {% endif %}<|audio_bos|><|AUDIO|><|audio_eos|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_bos|><|VIDEO|><|vision_eos|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
|
6 |
+
{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
|
7 |
+
{% endif %}
|
config.json
ADDED
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2_5OmniForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"enable_audio_output": true,
|
6 |
+
"enable_talker": true,
|
7 |
+
"model_type": "qwen2_5_omni",
|
8 |
+
"talker_config": {
|
9 |
+
"_attn_implementation_autoset": true,
|
10 |
+
"_name_or_path": "Qwen2.5-Omni-7B/talker",
|
11 |
+
"architectures": [
|
12 |
+
"Qwen2OmniTalkerForConditionalGeneration"
|
13 |
+
],
|
14 |
+
"attention_dropout": 0.0,
|
15 |
+
"audio_end_token_id": 151648,
|
16 |
+
"audio_start_token_id": 151647,
|
17 |
+
"audio_token_index": 151646,
|
18 |
+
"embedding_size": 3584,
|
19 |
+
"head_dim": 128,
|
20 |
+
"hidden_act": "silu",
|
21 |
+
"hidden_size": 896,
|
22 |
+
"image_token_index": 151655,
|
23 |
+
"init_std": 0.02,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 18944,
|
26 |
+
"max_position_embeddings": 32768,
|
27 |
+
"max_window_layers": 28,
|
28 |
+
"model_type": "qwen2_5_omni_talker",
|
29 |
+
"num_attention_heads": 12,
|
30 |
+
"num_hidden_layers": 24,
|
31 |
+
"num_key_value_heads": 4,
|
32 |
+
"position_id_per_seconds": 25,
|
33 |
+
"rms_norm_eps": 1e-06,
|
34 |
+
"rope_scaling": {
|
35 |
+
"mrope_section": [
|
36 |
+
16,
|
37 |
+
24,
|
38 |
+
24
|
39 |
+
],
|
40 |
+
"rope_type": "default",
|
41 |
+
"type": "default"
|
42 |
+
},
|
43 |
+
"rope_theta": 1000000.0,
|
44 |
+
"seconds_per_chunk": 2,
|
45 |
+
"sliding_window": 32768,
|
46 |
+
"spatial_merge_size": 2,
|
47 |
+
"torch_dtype": "float32",
|
48 |
+
"tts_codec_end_token_id": 8294,
|
49 |
+
"tts_codec_mask_token_id": 8296,
|
50 |
+
"tts_codec_pad_token_id": 8292,
|
51 |
+
"tts_codec_start_token_id": 8293,
|
52 |
+
"tts_text_end_token_id": 151861,
|
53 |
+
"tts_text_pad_token_id": 151859,
|
54 |
+
"tts_text_start_token_id": 151860,
|
55 |
+
"use_cache": true,
|
56 |
+
"use_sliding_window": false,
|
57 |
+
"video_token_index": 151656,
|
58 |
+
"vision_end_token_id": 151653,
|
59 |
+
"vision_start_token_id": 151652,
|
60 |
+
"vocab_size": 8448
|
61 |
+
},
|
62 |
+
"thinker_config": {
|
63 |
+
"_attn_implementation_autoset": true,
|
64 |
+
"_name_or_path": "Qwen2.5-Omni-7B/thinker",
|
65 |
+
"architectures": [
|
66 |
+
"Qwen2OmniNaViTThinkerForConditionalGeneration"
|
67 |
+
],
|
68 |
+
"audio_config": {
|
69 |
+
"_attn_implementation_autoset": true,
|
70 |
+
"_name_or_path": "",
|
71 |
+
"activation_dropout": 0.0,
|
72 |
+
"activation_function": "gelu",
|
73 |
+
"add_cross_attention": false,
|
74 |
+
"architectures": null,
|
75 |
+
"attention_dropout": 0.0,
|
76 |
+
"bad_words_ids": null,
|
77 |
+
"begin_suppress_tokens": null,
|
78 |
+
"bos_token_id": null,
|
79 |
+
"chunk_size_feed_forward": 0,
|
80 |
+
"cross_attention_hidden_size": null,
|
81 |
+
"d_model": 1280,
|
82 |
+
"decoder_start_token_id": null,
|
83 |
+
"diversity_penalty": 0.0,
|
84 |
+
"do_sample": false,
|
85 |
+
"dropout": 0.0,
|
86 |
+
"early_stopping": false,
|
87 |
+
"encoder_attention_heads": 20,
|
88 |
+
"encoder_ffn_dim": 5120,
|
89 |
+
"encoder_layerdrop": 0.0,
|
90 |
+
"encoder_layers": 32,
|
91 |
+
"encoder_no_repeat_ngram_size": 0,
|
92 |
+
"eos_token_id": null,
|
93 |
+
"exponential_decay_length_penalty": null,
|
94 |
+
"finetuning_task": null,
|
95 |
+
"forced_bos_token_id": null,
|
96 |
+
"forced_eos_token_id": null,
|
97 |
+
"id2label": {
|
98 |
+
"0": "LABEL_0",
|
99 |
+
"1": "LABEL_1"
|
100 |
+
},
|
101 |
+
"init_std": 0.02,
|
102 |
+
"initializer_range": 0.02,
|
103 |
+
"is_decoder": false,
|
104 |
+
"is_encoder_decoder": false,
|
105 |
+
"label2id": {
|
106 |
+
"LABEL_0": 0,
|
107 |
+
"LABEL_1": 1
|
108 |
+
},
|
109 |
+
"length_penalty": 1.0,
|
110 |
+
"max_length": 20,
|
111 |
+
"max_source_positions": 1500,
|
112 |
+
"min_length": 0,
|
113 |
+
"model_type": "qwen2_5_omni_audio_encoder",
|
114 |
+
"n_window": 100,
|
115 |
+
"no_repeat_ngram_size": 0,
|
116 |
+
"num_beam_groups": 1,
|
117 |
+
"num_beams": 1,
|
118 |
+
"num_hidden_layers": 32,
|
119 |
+
"num_mel_bins": 128,
|
120 |
+
"num_return_sequences": 1,
|
121 |
+
"output_attentions": false,
|
122 |
+
"output_dim": 3584,
|
123 |
+
"output_hidden_states": false,
|
124 |
+
"output_scores": false,
|
125 |
+
"pad_token_id": null,
|
126 |
+
"prefix": null,
|
127 |
+
"problem_type": null,
|
128 |
+
"pruned_heads": {},
|
129 |
+
"remove_invalid_values": false,
|
130 |
+
"repetition_penalty": 1.0,
|
131 |
+
"return_dict": true,
|
132 |
+
"return_dict_in_generate": false,
|
133 |
+
"scale_embedding": false,
|
134 |
+
"sep_token_id": null,
|
135 |
+
"suppress_tokens": null,
|
136 |
+
"task_specific_params": null,
|
137 |
+
"temperature": 1.0,
|
138 |
+
"tf_legacy_loss": false,
|
139 |
+
"tie_encoder_decoder": false,
|
140 |
+
"tie_word_embeddings": true,
|
141 |
+
"tokenizer_class": null,
|
142 |
+
"top_k": 50,
|
143 |
+
"top_p": 1.0,
|
144 |
+
"torch_dtype": null,
|
145 |
+
"torchscript": false,
|
146 |
+
"typical_p": 1.0,
|
147 |
+
"use_bfloat16": false
|
148 |
+
},
|
149 |
+
"audio_end_token_id": 151648,
|
150 |
+
"audio_start_token_id": 151647,
|
151 |
+
"audio_token_index": 151646,
|
152 |
+
"bos_token_id": 151644,
|
153 |
+
"eos_token_id": 151645,
|
154 |
+
"ignore_index": -100,
|
155 |
+
"image_token_index": 151655,
|
156 |
+
"init_std": 0.02,
|
157 |
+
"initializer_range": 0.02,
|
158 |
+
"model_type": "qwen2_5_omni_thinker",
|
159 |
+
"pad_token_id": 151643,
|
160 |
+
"position_id_per_seconds": 25,
|
161 |
+
"seconds_per_chunk": 2,
|
162 |
+
"text_config": {
|
163 |
+
"_attn_implementation_autoset": false,
|
164 |
+
"_name_or_path": "",
|
165 |
+
"add_cross_attention": false,
|
166 |
+
"architectures": null,
|
167 |
+
"attention_dropout": 0.0,
|
168 |
+
"bad_words_ids": null,
|
169 |
+
"begin_suppress_tokens": null,
|
170 |
+
"bos_token_id": null,
|
171 |
+
"chunk_size_feed_forward": 0,
|
172 |
+
"cross_attention_hidden_size": null,
|
173 |
+
"decoder_start_token_id": null,
|
174 |
+
"diversity_penalty": 0.0,
|
175 |
+
"do_sample": false,
|
176 |
+
"early_stopping": false,
|
177 |
+
"encoder_no_repeat_ngram_size": 0,
|
178 |
+
"eos_token_id": null,
|
179 |
+
"exponential_decay_length_penalty": null,
|
180 |
+
"finetuning_task": null,
|
181 |
+
"forced_bos_token_id": null,
|
182 |
+
"forced_eos_token_id": null,
|
183 |
+
"hidden_act": "silu",
|
184 |
+
"hidden_size": 3584,
|
185 |
+
"id2label": {
|
186 |
+
"0": "LABEL_0",
|
187 |
+
"1": "LABEL_1"
|
188 |
+
},
|
189 |
+
"init_std": 0.02,
|
190 |
+
"initializer_range": 0.02,
|
191 |
+
"intermediate_size": 18944,
|
192 |
+
"is_decoder": false,
|
193 |
+
"is_encoder_decoder": false,
|
194 |
+
"label2id": {
|
195 |
+
"LABEL_0": 0,
|
196 |
+
"LABEL_1": 1
|
197 |
+
},
|
198 |
+
"length_penalty": 1.0,
|
199 |
+
"max_length": 20,
|
200 |
+
"max_position_embeddings": 32768,
|
201 |
+
"max_window_layers": 28,
|
202 |
+
"min_length": 0,
|
203 |
+
"model_type": "qwen2_5_omni_text",
|
204 |
+
"no_repeat_ngram_size": 0,
|
205 |
+
"num_attention_heads": 28,
|
206 |
+
"num_beam_groups": 1,
|
207 |
+
"num_beams": 1,
|
208 |
+
"num_hidden_layers": 28,
|
209 |
+
"num_key_value_heads": 4,
|
210 |
+
"num_return_sequences": 1,
|
211 |
+
"output_attentions": false,
|
212 |
+
"output_hidden_states": false,
|
213 |
+
"output_scores": false,
|
214 |
+
"pad_token_id": null,
|
215 |
+
"prefix": null,
|
216 |
+
"problem_type": null,
|
217 |
+
"pruned_heads": {},
|
218 |
+
"remove_invalid_values": false,
|
219 |
+
"repetition_penalty": 1.0,
|
220 |
+
"return_dict": true,
|
221 |
+
"return_dict_in_generate": false,
|
222 |
+
"rms_norm_eps": 1e-06,
|
223 |
+
"rope_scaling": {
|
224 |
+
"mrope_section": [
|
225 |
+
16,
|
226 |
+
24,
|
227 |
+
24
|
228 |
+
],
|
229 |
+
"rope_type": "default",
|
230 |
+
"type": "default"
|
231 |
+
},
|
232 |
+
"rope_theta": 1000000.0,
|
233 |
+
"sep_token_id": null,
|
234 |
+
"sliding_window": 32768,
|
235 |
+
"suppress_tokens": null,
|
236 |
+
"task_specific_params": null,
|
237 |
+
"temperature": 1.0,
|
238 |
+
"tf_legacy_loss": false,
|
239 |
+
"tie_encoder_decoder": false,
|
240 |
+
"tie_word_embeddings": false,
|
241 |
+
"tokenizer_class": null,
|
242 |
+
"top_k": 50,
|
243 |
+
"top_p": 1.0,
|
244 |
+
"torch_dtype": null,
|
245 |
+
"torchscript": false,
|
246 |
+
"typical_p": 1.0,
|
247 |
+
"use_bfloat16": false,
|
248 |
+
"use_cache": true,
|
249 |
+
"use_sliding_window": false,
|
250 |
+
"vocab_size": 152064
|
251 |
+
},
|
252 |
+
"torch_dtype": "float32",
|
253 |
+
"user_token_id": 872,
|
254 |
+
"video_token_index": 151656,
|
255 |
+
"vision_config": {
|
256 |
+
"_attn_implementation_autoset": true,
|
257 |
+
"_name_or_path": "",
|
258 |
+
"add_cross_attention": false,
|
259 |
+
"architectures": null,
|
260 |
+
"bad_words_ids": null,
|
261 |
+
"begin_suppress_tokens": null,
|
262 |
+
"bos_token_id": null,
|
263 |
+
"chunk_size_feed_forward": 0,
|
264 |
+
"cross_attention_hidden_size": null,
|
265 |
+
"decoder_start_token_id": null,
|
266 |
+
"depth": 32,
|
267 |
+
"diversity_penalty": 0.0,
|
268 |
+
"do_sample": false,
|
269 |
+
"early_stopping": false,
|
270 |
+
"embed_dim": 1280,
|
271 |
+
"encoder_no_repeat_ngram_size": 0,
|
272 |
+
"eos_token_id": null,
|
273 |
+
"exponential_decay_length_penalty": null,
|
274 |
+
"finetuning_task": null,
|
275 |
+
"forced_bos_token_id": null,
|
276 |
+
"forced_eos_token_id": null,
|
277 |
+
"fullatt_block_indexes": [
|
278 |
+
7,
|
279 |
+
15,
|
280 |
+
23,
|
281 |
+
31
|
282 |
+
],
|
283 |
+
"hidden_act": "silu",
|
284 |
+
"hidden_size": 1280,
|
285 |
+
"id2label": {
|
286 |
+
"0": "LABEL_0",
|
287 |
+
"1": "LABEL_1"
|
288 |
+
},
|
289 |
+
"in_channels": 3,
|
290 |
+
"in_chans": 3,
|
291 |
+
"init_std": 0.02,
|
292 |
+
"initializer_range": 0.02,
|
293 |
+
"intermediate_size": 3420,
|
294 |
+
"is_decoder": false,
|
295 |
+
"is_encoder_decoder": false,
|
296 |
+
"label2id": {
|
297 |
+
"LABEL_0": 0,
|
298 |
+
"LABEL_1": 1
|
299 |
+
},
|
300 |
+
"length_penalty": 1.0,
|
301 |
+
"max_length": 20,
|
302 |
+
"min_length": 0,
|
303 |
+
"model_type": "qwen2_5_omni_vision_encoder",
|
304 |
+
"no_repeat_ngram_size": 0,
|
305 |
+
"num_beam_groups": 1,
|
306 |
+
"num_beams": 1,
|
307 |
+
"num_heads": 16,
|
308 |
+
"num_return_sequences": 1,
|
309 |
+
"out_hidden_size": 3584,
|
310 |
+
"output_attentions": false,
|
311 |
+
"output_hidden_states": false,
|
312 |
+
"output_scores": false,
|
313 |
+
"pad_token_id": null,
|
314 |
+
"patch_size": 14,
|
315 |
+
"prefix": null,
|
316 |
+
"problem_type": null,
|
317 |
+
"pruned_heads": {},
|
318 |
+
"remove_invalid_values": false,
|
319 |
+
"repetition_penalty": 1.0,
|
320 |
+
"return_dict": true,
|
321 |
+
"return_dict_in_generate": false,
|
322 |
+
"sep_token_id": null,
|
323 |
+
"spatial_merge_size": 2,
|
324 |
+
"spatial_patch_size": 14,
|
325 |
+
"suppress_tokens": null,
|
326 |
+
"task_specific_params": null,
|
327 |
+
"temperature": 1.0,
|
328 |
+
"temporal_patch_size": 2,
|
329 |
+
"tf_legacy_loss": false,
|
330 |
+
"tie_encoder_decoder": false,
|
331 |
+
"tie_word_embeddings": true,
|
332 |
+
"tokenizer_class": null,
|
333 |
+
"tokens_per_second": 25,
|
334 |
+
"top_k": 50,
|
335 |
+
"top_p": 1.0,
|
336 |
+
"torch_dtype": null,
|
337 |
+
"torchscript": false,
|
338 |
+
"typical_p": 1.0,
|
339 |
+
"use_bfloat16": false,
|
340 |
+
"window_size": 112
|
341 |
+
},
|
342 |
+
"vision_end_token_id": 151653,
|
343 |
+
"vision_start_token_id": 151652,
|
344 |
+
"vision_token_id": 151654
|
345 |
+
},
|
346 |
+
"token2wav_config": {
|
347 |
+
"_attn_implementation_autoset": true,
|
348 |
+
"bigvgan_config": {
|
349 |
+
"_attn_implementation_autoset": true,
|
350 |
+
"_name_or_path": "",
|
351 |
+
"add_cross_attention": false,
|
352 |
+
"architectures": null,
|
353 |
+
"bad_words_ids": null,
|
354 |
+
"begin_suppress_tokens": null,
|
355 |
+
"bos_token_id": null,
|
356 |
+
"chunk_size_feed_forward": 0,
|
357 |
+
"cross_attention_hidden_size": null,
|
358 |
+
"decoder_start_token_id": null,
|
359 |
+
"diversity_penalty": 0.0,
|
360 |
+
"do_sample": false,
|
361 |
+
"early_stopping": false,
|
362 |
+
"encoder_no_repeat_ngram_size": 0,
|
363 |
+
"eos_token_id": null,
|
364 |
+
"exponential_decay_length_penalty": null,
|
365 |
+
"finetuning_task": null,
|
366 |
+
"forced_bos_token_id": null,
|
367 |
+
"forced_eos_token_id": null,
|
368 |
+
"id2label": {
|
369 |
+
"0": "LABEL_0",
|
370 |
+
"1": "LABEL_1"
|
371 |
+
},
|
372 |
+
"is_decoder": false,
|
373 |
+
"is_encoder_decoder": false,
|
374 |
+
"label2id": {
|
375 |
+
"LABEL_0": 0,
|
376 |
+
"LABEL_1": 1
|
377 |
+
},
|
378 |
+
"length_penalty": 1.0,
|
379 |
+
"max_length": 20,
|
380 |
+
"mel_dim": 80,
|
381 |
+
"min_length": 0,
|
382 |
+
"model_type": "qwen2_5_omni_bigvgan",
|
383 |
+
"no_repeat_ngram_size": 0,
|
384 |
+
"num_beam_groups": 1,
|
385 |
+
"num_beams": 1,
|
386 |
+
"num_return_sequences": 1,
|
387 |
+
"output_attentions": false,
|
388 |
+
"output_hidden_states": false,
|
389 |
+
"output_scores": false,
|
390 |
+
"pad_token_id": null,
|
391 |
+
"prefix": null,
|
392 |
+
"problem_type": null,
|
393 |
+
"pruned_heads": {},
|
394 |
+
"remove_invalid_values": false,
|
395 |
+
"repetition_penalty": 1.0,
|
396 |
+
"resblock_dilation_sizes": [
|
397 |
+
[
|
398 |
+
1,
|
399 |
+
3,
|
400 |
+
5
|
401 |
+
],
|
402 |
+
[
|
403 |
+
1,
|
404 |
+
3,
|
405 |
+
5
|
406 |
+
],
|
407 |
+
[
|
408 |
+
1,
|
409 |
+
3,
|
410 |
+
5
|
411 |
+
]
|
412 |
+
],
|
413 |
+
"resblock_kernel_sizes": [
|
414 |
+
3,
|
415 |
+
7,
|
416 |
+
11
|
417 |
+
],
|
418 |
+
"return_dict": true,
|
419 |
+
"return_dict_in_generate": false,
|
420 |
+
"sep_token_id": null,
|
421 |
+
"suppress_tokens": null,
|
422 |
+
"task_specific_params": null,
|
423 |
+
"temperature": 1.0,
|
424 |
+
"tf_legacy_loss": false,
|
425 |
+
"tie_encoder_decoder": false,
|
426 |
+
"tie_word_embeddings": true,
|
427 |
+
"tokenizer_class": null,
|
428 |
+
"top_k": 50,
|
429 |
+
"top_p": 1.0,
|
430 |
+
"torch_dtype": null,
|
431 |
+
"torchscript": false,
|
432 |
+
"typical_p": 1.0,
|
433 |
+
"upsample_initial_channel": 1536,
|
434 |
+
"upsample_kernel_sizes": [
|
435 |
+
11,
|
436 |
+
7,
|
437 |
+
4,
|
438 |
+
4,
|
439 |
+
4,
|
440 |
+
4
|
441 |
+
],
|
442 |
+
"upsample_rates": [
|
443 |
+
5,
|
444 |
+
3,
|
445 |
+
2,
|
446 |
+
2,
|
447 |
+
2,
|
448 |
+
2
|
449 |
+
],
|
450 |
+
"use_bfloat16": false,
|
451 |
+
"use_bias_at_final": false
|
452 |
+
},
|
453 |
+
"dit_config": {
|
454 |
+
"_attn_implementation_autoset": true,
|
455 |
+
"_name_or_path": "",
|
456 |
+
"add_cross_attention": false,
|
457 |
+
"architectures": null,
|
458 |
+
"bad_words_ids": null,
|
459 |
+
"begin_suppress_tokens": null,
|
460 |
+
"block_size": 24,
|
461 |
+
"bos_token_id": null,
|
462 |
+
"chunk_size_feed_forward": 0,
|
463 |
+
"cross_attention_hidden_size": null,
|
464 |
+
"decoder_start_token_id": null,
|
465 |
+
"depth": 22,
|
466 |
+
"dim": 1024,
|
467 |
+
"diversity_penalty": 0.0,
|
468 |
+
"do_sample": false,
|
469 |
+
"dropout": 0.1,
|
470 |
+
"early_stopping": false,
|
471 |
+
"emb_dim": 512,
|
472 |
+
"enc_attention_channels": 64,
|
473 |
+
"enc_channels": [
|
474 |
+
256,
|
475 |
+
256,
|
476 |
+
256,
|
477 |
+
256,
|
478 |
+
768
|
479 |
+
],
|
480 |
+
"enc_dilations": [
|
481 |
+
1,
|
482 |
+
2,
|
483 |
+
3,
|
484 |
+
4,
|
485 |
+
1
|
486 |
+
],
|
487 |
+
"enc_dim": 128,
|
488 |
+
"enc_emb_dim": 192,
|
489 |
+
"enc_global_context": true,
|
490 |
+
"enc_kernel_sizes": [
|
491 |
+
5,
|
492 |
+
3,
|
493 |
+
3,
|
494 |
+
3,
|
495 |
+
1
|
496 |
+
],
|
497 |
+
"enc_lin_neurons": 192,
|
498 |
+
"enc_res2net_scale": 2,
|
499 |
+
"enc_se_channels": 64,
|
500 |
+
"encoder_no_repeat_ngram_size": 0,
|
501 |
+
"eos_token_id": null,
|
502 |
+
"exponential_decay_length_penalty": null,
|
503 |
+
"ff_mult": 2,
|
504 |
+
"finetuning_task": null,
|
505 |
+
"forced_bos_token_id": null,
|
506 |
+
"forced_eos_token_id": null,
|
507 |
+
"head_dim": 64,
|
508 |
+
"heads": 16,
|
509 |
+
"hidden_size": 1024,
|
510 |
+
"id2label": {
|
511 |
+
"0": "LABEL_0",
|
512 |
+
"1": "LABEL_1"
|
513 |
+
},
|
514 |
+
"is_decoder": false,
|
515 |
+
"is_encoder_decoder": false,
|
516 |
+
"label2id": {
|
517 |
+
"LABEL_0": 0,
|
518 |
+
"LABEL_1": 1
|
519 |
+
},
|
520 |
+
"length_penalty": 1.0,
|
521 |
+
"look_ahead_layers": [
|
522 |
+
10
|
523 |
+
],
|
524 |
+
"look_backward_layers": [
|
525 |
+
0,
|
526 |
+
20
|
527 |
+
],
|
528 |
+
"max_length": 20,
|
529 |
+
"max_position_embeddings": 32768,
|
530 |
+
"mel_dim": 80,
|
531 |
+
"min_length": 0,
|
532 |
+
"model_type": "qwen2_5_omni_dit",
|
533 |
+
"no_repeat_ngram_size": 0,
|
534 |
+
"num_attention_heads": 16,
|
535 |
+
"num_beam_groups": 1,
|
536 |
+
"num_beams": 1,
|
537 |
+
"num_embeds": 8193,
|
538 |
+
"num_hidden_layers": 22,
|
539 |
+
"num_return_sequences": 1,
|
540 |
+
"output_attentions": false,
|
541 |
+
"output_hidden_states": false,
|
542 |
+
"output_scores": false,
|
543 |
+
"pad_token_id": null,
|
544 |
+
"prefix": null,
|
545 |
+
"problem_type": null,
|
546 |
+
"pruned_heads": {},
|
547 |
+
"remove_invalid_values": false,
|
548 |
+
"repeats": 2,
|
549 |
+
"repetition_penalty": 1.0,
|
550 |
+
"return_dict": true,
|
551 |
+
"return_dict_in_generate": false,
|
552 |
+
"rope_theta": 10000.0,
|
553 |
+
"sep_token_id": null,
|
554 |
+
"suppress_tokens": null,
|
555 |
+
"task_specific_params": null,
|
556 |
+
"temperature": 1.0,
|
557 |
+
"tf_legacy_loss": false,
|
558 |
+
"tie_encoder_decoder": false,
|
559 |
+
"tie_word_embeddings": true,
|
560 |
+
"tokenizer_class": null,
|
561 |
+
"top_k": 50,
|
562 |
+
"top_p": 1.0,
|
563 |
+
"torch_dtype": "float32",
|
564 |
+
"torchscript": false,
|
565 |
+
"typical_p": 1.0,
|
566 |
+
"use_bfloat16": false
|
567 |
+
},
|
568 |
+
"model_type": "qwen2_5_omni_token2wav",
|
569 |
+
"torch_dtype": "float32"
|
570 |
+
},
|
571 |
+
"torch_dtype": "bfloat16",
|
572 |
+
"transformers_version": "4.52.0.dev0"
|
573 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.52.0.dev0"
|
4 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa2866bd0f5b18079e4fbf6470659cc975fc73b6025afef81bd863658e130e68
|
3 |
+
size 4985055536
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf3ecae31a5699f2146af5d9cb4c59947a8395a4bc7f8e2b179b53f7567a5212
|
3 |
+
size 4991496832
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7675269df75c670fa6a63f71a091570028a2d969e4f1602f8d12abb0575c68be
|
3 |
+
size 4991496936
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c975b68f6fbb37fdb31f59e5c4bb2415be9a57f02fa5b8e6ec0acf7fc152b1cb
|
3 |
+
size 2895740064
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chunk_length": 300,
|
3 |
+
"dither": 0.0,
|
4 |
+
"feature_extractor_type": "WhisperFeatureExtractor",
|
5 |
+
"feature_size": 128,
|
6 |
+
"hop_length": 160,
|
7 |
+
"image_mean": [
|
8 |
+
0.48145466,
|
9 |
+
0.4578275,
|
10 |
+
0.40821073
|
11 |
+
],
|
12 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
13 |
+
"image_std": [
|
14 |
+
0.26862954,
|
15 |
+
0.26130258,
|
16 |
+
0.27577711
|
17 |
+
],
|
18 |
+
"max_pixels": 12845056,
|
19 |
+
"merge_size": 2,
|
20 |
+
"min_pixels": 3136,
|
21 |
+
"n_fft": 400,
|
22 |
+
"n_samples": 4800000,
|
23 |
+
"nb_max_frames": 30000,
|
24 |
+
"padding_side": "right",
|
25 |
+
"padding_value": 0.0,
|
26 |
+
"patch_size": 14,
|
27 |
+
"processor_class": "Qwen2_5OmniProcessor",
|
28 |
+
"return_attention_mask": true,
|
29 |
+
"sampling_rate": 16000,
|
30 |
+
"temporal_patch_size": 2
|
31 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|AUDIO|>",
|
6 |
+
"<|audio_bos|>",
|
7 |
+
"<|audio_eos|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_bos|>",
|
12 |
+
"<|vision_eos|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|IMAGE|>",
|
15 |
+
"<|VIDEO|>"
|
16 |
+
],
|
17 |
+
"audio_bos_token": "<|audio_bos|>",
|
18 |
+
"audio_eos_token": "<|audio_eos|>",
|
19 |
+
"audio_token": "<|AUDIO|>",
|
20 |
+
"eos_token": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"image_token": "<|IMAGE|>",
|
28 |
+
"pad_token": {
|
29 |
+
"content": "<|endoftext|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
},
|
35 |
+
"video_token": "<|VIDEO|>",
|
36 |
+
"vision_bos_token": "<|vision_bos|>",
|
37 |
+
"vision_eos_token": "<|vision_eos|>"
|
38 |
+
}
|
spk_dict.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a05609b28f5d42b7b748f0f07592545c8f1f6885b9ae8fff64baf56e86b2a18
|
3 |
+
size 259544
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9711e245647e88538786834977dc8afb51172e879ee661352c587cf01efd6b0
|
3 |
+
size 11422037
|
tokenizer_config.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|AUDIO|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|audio_bos|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|audio_eos|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_bos|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_eos|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|IMAGE|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|VIDEO|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"151657": {
|
117 |
+
"content": "<tool_call>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"151658": {
|
125 |
+
"content": "</tool_call>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"151659": {
|
133 |
+
"content": "<|fim_prefix|>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"151660": {
|
141 |
+
"content": "<|fim_middle|>",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": false,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"151661": {
|
149 |
+
"content": "<|fim_suffix|>",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": false,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"151662": {
|
157 |
+
"content": "<|fim_pad|>",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": false,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"151663": {
|
165 |
+
"content": "<|repo_name|>",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"151664": {
|
173 |
+
"content": "<|file_sep|>",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": false,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
}
|
180 |
+
},
|
181 |
+
"additional_special_tokens": [
|
182 |
+
"<|im_start|>",
|
183 |
+
"<|im_end|>",
|
184 |
+
"<|AUDIO|>",
|
185 |
+
"<|audio_bos|>",
|
186 |
+
"<|audio_eos|>",
|
187 |
+
"<|box_end|>",
|
188 |
+
"<|quad_start|>",
|
189 |
+
"<|quad_end|>",
|
190 |
+
"<|vision_bos|>",
|
191 |
+
"<|vision_eos|>",
|
192 |
+
"<|vision_pad|>",
|
193 |
+
"<|IMAGE|>",
|
194 |
+
"<|VIDEO|>"
|
195 |
+
],
|
196 |
+
"audio_bos_token": "<|audio_bos|>",
|
197 |
+
"audio_eos_token": "<|audio_eos|>",
|
198 |
+
"audio_token": "<|AUDIO|>",
|
199 |
+
"bos_token": null,
|
200 |
+
"clean_up_tokenization_spaces": false,
|
201 |
+
"eos_token": "<|im_end|>",
|
202 |
+
"errors": "replace",
|
203 |
+
"extra_special_tokens": {
|
204 |
+
"audio_bos_token": "<|audio_bos|>",
|
205 |
+
"audio_eos_token": "<|audio_eos|>",
|
206 |
+
"audio_token": "<|AUDIO|>",
|
207 |
+
"image_token": "<|IMAGE|>",
|
208 |
+
"video_token": "<|VIDEO|>",
|
209 |
+
"vision_bos_token": "<|vision_bos|>",
|
210 |
+
"vision_eos_token": "<|vision_eos|>"
|
211 |
+
},
|
212 |
+
"image_token": "<|IMAGE|>",
|
213 |
+
"max_length": null,
|
214 |
+
"model_max_length": 32768,
|
215 |
+
"pad_to_multiple_of": null,
|
216 |
+
"pad_token": "<|endoftext|>",
|
217 |
+
"pad_token_type_id": 0,
|
218 |
+
"padding_side": "left",
|
219 |
+
"processor_class": "Qwen2_5OmniProcessor",
|
220 |
+
"split_special_tokens": false,
|
221 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
222 |
+
"unk_token": null,
|
223 |
+
"video_token": "<|VIDEO|>",
|
224 |
+
"vision_bos_token": "<|vision_bos|>",
|
225 |
+
"vision_eos_token": "<|vision_eos|>"
|
226 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 1.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 161,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"advantages": 0.0,
|
14 |
+
"completion_length": 77.421875,
|
15 |
+
"epoch": 0.006211180124223602,
|
16 |
+
"grad_norm": 4.007043838500977,
|
17 |
+
"kl": 0.0,
|
18 |
+
"learning_rate": 9.937888198757763e-07,
|
19 |
+
"loss": -0.0,
|
20 |
+
"reward": 1.46875,
|
21 |
+
"reward_mean": 1.46875,
|
22 |
+
"reward_std": 0.23356688022613525,
|
23 |
+
"rewards/accuracy_reward": 0.46875,
|
24 |
+
"rewards/format_reward": 1.0,
|
25 |
+
"step": 1
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"advantages": 1.30385160446167e-08,
|
29 |
+
"completion_length": 78.921875,
|
30 |
+
"epoch": 0.012422360248447204,
|
31 |
+
"grad_norm": 7.15122652053833,
|
32 |
+
"kl": 0.00041961669921875,
|
33 |
+
"learning_rate": 9.875776397515528e-07,
|
34 |
+
"loss": 0.0,
|
35 |
+
"reward": 1.53125,
|
36 |
+
"reward_mean": 1.53125,
|
37 |
+
"reward_std": 0.2845909595489502,
|
38 |
+
"rewards/accuracy_reward": 0.53125,
|
39 |
+
"rewards/format_reward": 1.0,
|
40 |
+
"step": 2
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"advantages": 0.0,
|
44 |
+
"completion_length": 78.671875,
|
45 |
+
"epoch": 0.018633540372670808,
|
46 |
+
"grad_norm": 2.9171459674835205,
|
47 |
+
"kl": 0.000392913818359375,
|
48 |
+
"learning_rate": 9.813664596273291e-07,
|
49 |
+
"loss": 0.0,
|
50 |
+
"reward": 1.6875,
|
51 |
+
"reward_mean": 1.6875,
|
52 |
+
"reward_std": 0.1552036553621292,
|
53 |
+
"rewards/accuracy_reward": 0.6875,
|
54 |
+
"rewards/format_reward": 1.0,
|
55 |
+
"step": 3
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"advantages": -1.862645149230957e-09,
|
59 |
+
"completion_length": 77.78125,
|
60 |
+
"epoch": 0.024844720496894408,
|
61 |
+
"grad_norm": 5.474589824676514,
|
62 |
+
"kl": 0.000759124755859375,
|
63 |
+
"learning_rate": 9.751552795031055e-07,
|
64 |
+
"loss": 0.0001,
|
65 |
+
"reward": 1.71875,
|
66 |
+
"reward_mean": 1.71875,
|
67 |
+
"reward_std": 0.213067427277565,
|
68 |
+
"rewards/accuracy_reward": 0.71875,
|
69 |
+
"rewards/format_reward": 1.0,
|
70 |
+
"step": 4
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"advantages": -2.7939677238464355e-09,
|
74 |
+
"completion_length": 90.8125,
|
75 |
+
"epoch": 0.031055900621118012,
|
76 |
+
"grad_norm": 5.2480363845825195,
|
77 |
+
"kl": 0.001495361328125,
|
78 |
+
"learning_rate": 9.68944099378882e-07,
|
79 |
+
"loss": 0.0001,
|
80 |
+
"reward": 1.53125,
|
81 |
+
"reward_mean": 1.53125,
|
82 |
+
"reward_std": 0.17570313811302185,
|
83 |
+
"rewards/accuracy_reward": 0.53125,
|
84 |
+
"rewards/format_reward": 1.0,
|
85 |
+
"step": 5
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"advantages": 6.51925802230835e-09,
|
89 |
+
"completion_length": 81.203125,
|
90 |
+
"epoch": 0.037267080745341616,
|
91 |
+
"grad_norm": 8.329508781433105,
|
92 |
+
"kl": 0.006256103515625,
|
93 |
+
"learning_rate": 9.627329192546583e-07,
|
94 |
+
"loss": 0.0006,
|
95 |
+
"reward": 1.375,
|
96 |
+
"reward_mean": 1.375,
|
97 |
+
"reward_std": 0.26409146189689636,
|
98 |
+
"rewards/accuracy_reward": 0.375,
|
99 |
+
"rewards/format_reward": 1.0,
|
100 |
+
"step": 6
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"advantages": -3.725290298461914e-09,
|
104 |
+
"completion_length": 84.265625,
|
105 |
+
"epoch": 0.043478260869565216,
|
106 |
+
"grad_norm": 9.400680541992188,
|
107 |
+
"kl": 0.0106201171875,
|
108 |
+
"learning_rate": 9.565217391304349e-07,
|
109 |
+
"loss": 0.0011,
|
110 |
+
"reward": 1.65625,
|
111 |
+
"reward_mean": 1.65625,
|
112 |
+
"reward_std": 0.2404065877199173,
|
113 |
+
"rewards/accuracy_reward": 0.65625,
|
114 |
+
"rewards/format_reward": 1.0,
|
115 |
+
"step": 7
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"advantages": -2.7939677238464355e-09,
|
119 |
+
"completion_length": 84.109375,
|
120 |
+
"epoch": 0.049689440993788817,
|
121 |
+
"grad_norm": 6.011223316192627,
|
122 |
+
"kl": 0.0057373046875,
|
123 |
+
"learning_rate": 9.503105590062112e-07,
|
124 |
+
"loss": 0.0006,
|
125 |
+
"reward": 1.4375,
|
126 |
+
"reward_mean": 1.4375,
|
127 |
+
"reward_std": 0.22461533546447754,
|
128 |
+
"rewards/accuracy_reward": 0.453125,
|
129 |
+
"rewards/format_reward": 0.984375,
|
130 |
+
"step": 8
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"advantages": -3.725290298461914e-09,
|
134 |
+
"completion_length": 87.046875,
|
135 |
+
"epoch": 0.055900621118012424,
|
136 |
+
"grad_norm": 4.103212356567383,
|
137 |
+
"kl": 0.00244140625,
|
138 |
+
"learning_rate": 9.440993788819875e-07,
|
139 |
+
"loss": 0.0002,
|
140 |
+
"reward": 1.71875,
|
141 |
+
"reward_mean": 1.71875,
|
142 |
+
"reward_std": 0.0578637570142746,
|
143 |
+
"rewards/accuracy_reward": 0.71875,
|
144 |
+
"rewards/format_reward": 1.0,
|
145 |
+
"step": 9
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"advantages": -7.450580596923828e-09,
|
149 |
+
"completion_length": 76.15625,
|
150 |
+
"epoch": 0.062111801242236024,
|
151 |
+
"grad_norm": 7.4132466316223145,
|
152 |
+
"kl": 0.01287841796875,
|
153 |
+
"learning_rate": 9.37888198757764e-07,
|
154 |
+
"loss": 0.0013,
|
155 |
+
"reward": 1.4375,
|
156 |
+
"reward_mean": 1.4375,
|
157 |
+
"reward_std": 0.3335031569004059,
|
158 |
+
"rewards/accuracy_reward": 0.4375,
|
159 |
+
"rewards/format_reward": 1.0,
|
160 |
+
"step": 10
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"advantages": 3.725290298461914e-09,
|
164 |
+
"completion_length": 76.75,
|
165 |
+
"epoch": 0.06832298136645963,
|
166 |
+
"grad_norm": 4.6751017570495605,
|
167 |
+
"kl": 0.0130615234375,
|
168 |
+
"learning_rate": 9.316770186335403e-07,
|
169 |
+
"loss": 0.0013,
|
170 |
+
"reward": 1.28125,
|
171 |
+
"reward_mean": 1.28125,
|
172 |
+
"reward_std": 0.0578637570142746,
|
173 |
+
"rewards/accuracy_reward": 0.28125,
|
174 |
+
"rewards/format_reward": 1.0,
|
175 |
+
"step": 11
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"advantages": -1.862645149230957e-09,
|
179 |
+
"completion_length": 76.390625,
|
180 |
+
"epoch": 0.07453416149068323,
|
181 |
+
"grad_norm": 7.682182788848877,
|
182 |
+
"kl": 0.018310546875,
|
183 |
+
"learning_rate": 9.254658385093167e-07,
|
184 |
+
"loss": 0.0018,
|
185 |
+
"reward": 1.734375,
|
186 |
+
"reward_mean": 1.734375,
|
187 |
+
"reward_std": 0.15992169082164764,
|
188 |
+
"rewards/accuracy_reward": 0.734375,
|
189 |
+
"rewards/format_reward": 1.0,
|
190 |
+
"step": 12
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"advantages": -2.7939677238464355e-09,
|
194 |
+
"completion_length": 85.234375,
|
195 |
+
"epoch": 0.08074534161490683,
|
196 |
+
"grad_norm": 4.814305305480957,
|
197 |
+
"kl": 0.00396728515625,
|
198 |
+
"learning_rate": 9.19254658385093e-07,
|
199 |
+
"loss": 0.0004,
|
200 |
+
"reward": 1.8125,
|
201 |
+
"reward_mean": 1.8125,
|
202 |
+
"reward_std": 0.22461533546447754,
|
203 |
+
"rewards/accuracy_reward": 0.8125,
|
204 |
+
"rewards/format_reward": 1.0,
|
205 |
+
"step": 13
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"advantages": -1.862645149230957e-09,
|
209 |
+
"completion_length": 86.3125,
|
210 |
+
"epoch": 0.08695652173913043,
|
211 |
+
"grad_norm": 189.3062744140625,
|
212 |
+
"kl": 0.033203125,
|
213 |
+
"learning_rate": 9.130434782608695e-07,
|
214 |
+
"loss": 0.0033,
|
215 |
+
"reward": 1.609375,
|
216 |
+
"reward_mean": 1.609375,
|
217 |
+
"reward_std": 0.19044628739356995,
|
218 |
+
"rewards/accuracy_reward": 0.609375,
|
219 |
+
"rewards/format_reward": 1.0,
|
220 |
+
"step": 14
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"advantages": 2.7939677238464355e-09,
|
224 |
+
"completion_length": 69.8125,
|
225 |
+
"epoch": 0.09316770186335403,
|
226 |
+
"grad_norm": 3.5520412921905518,
|
227 |
+
"kl": 0.01129150390625,
|
228 |
+
"learning_rate": 9.06832298136646e-07,
|
229 |
+
"loss": 0.0011,
|
230 |
+
"reward": 1.78125,
|
231 |
+
"reward_mean": 1.78125,
|
232 |
+
"reward_std": 0.10888782143592834,
|
233 |
+
"rewards/accuracy_reward": 0.78125,
|
234 |
+
"rewards/format_reward": 1.0,
|
235 |
+
"step": 15
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"advantages": -9.313225746154785e-10,
|
239 |
+
"completion_length": 76.296875,
|
240 |
+
"epoch": 0.09937888198757763,
|
241 |
+
"grad_norm": 3.526542901992798,
|
242 |
+
"kl": 0.00909423828125,
|
243 |
+
"learning_rate": 9.006211180124223e-07,
|
244 |
+
"loss": 0.0009,
|
245 |
+
"reward": 1.609375,
|
246 |
+
"reward_mean": 1.609375,
|
247 |
+
"reward_std": 0.12255740165710449,
|
248 |
+
"rewards/accuracy_reward": 0.609375,
|
249 |
+
"rewards/format_reward": 1.0,
|
250 |
+
"step": 16
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"advantages": 1.862645149230957e-09,
|
254 |
+
"completion_length": 86.3125,
|
255 |
+
"epoch": 0.10559006211180125,
|
256 |
+
"grad_norm": 5.98048210144043,
|
257 |
+
"kl": 0.0057373046875,
|
258 |
+
"learning_rate": 8.944099378881988e-07,
|
259 |
+
"loss": 0.0006,
|
260 |
+
"reward": 1.71875,
|
261 |
+
"reward_mean": 1.71875,
|
262 |
+
"reward_std": 0.2041158676147461,
|
263 |
+
"rewards/accuracy_reward": 0.71875,
|
264 |
+
"rewards/format_reward": 1.0,
|
265 |
+
"step": 17
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"advantages": 0.0,
|
269 |
+
"completion_length": 82.921875,
|
270 |
+
"epoch": 0.11180124223602485,
|
271 |
+
"grad_norm": 2.0705599784851074,
|
272 |
+
"kl": 0.00592041015625,
|
273 |
+
"learning_rate": 8.881987577639751e-07,
|
274 |
+
"loss": 0.0006,
|
275 |
+
"reward": 1.5625,
|
276 |
+
"reward_mean": 1.5625,
|
277 |
+
"reward_std": 0.06681530922651291,
|
278 |
+
"rewards/accuracy_reward": 0.578125,
|
279 |
+
"rewards/format_reward": 0.984375,
|
280 |
+
"step": 18
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"advantages": -2.7939677238464355e-09,
|
284 |
+
"completion_length": 81.40625,
|
285 |
+
"epoch": 0.11801242236024845,
|
286 |
+
"grad_norm": 9.266715049743652,
|
287 |
+
"kl": 0.0079345703125,
|
288 |
+
"learning_rate": 8.819875776397515e-07,
|
289 |
+
"loss": 0.0008,
|
290 |
+
"reward": 1.546875,
|
291 |
+
"reward_mean": 1.546875,
|
292 |
+
"reward_std": 0.2109457552433014,
|
293 |
+
"rewards/accuracy_reward": 0.5625,
|
294 |
+
"rewards/format_reward": 0.984375,
|
295 |
+
"step": 19
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"advantages": -3.725290298461914e-09,
|
299 |
+
"completion_length": 80.203125,
|
300 |
+
"epoch": 0.12422360248447205,
|
301 |
+
"grad_norm": 10.367863655090332,
|
302 |
+
"kl": 0.0072021484375,
|
303 |
+
"learning_rate": 8.757763975155279e-07,
|
304 |
+
"loss": 0.0007,
|
305 |
+
"reward": 1.40625,
|
306 |
+
"reward_mean": 1.40625,
|
307 |
+
"reward_std": 0.2404065728187561,
|
308 |
+
"rewards/accuracy_reward": 0.40625,
|
309 |
+
"rewards/format_reward": 1.0,
|
310 |
+
"step": 20
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"advantages": 1.862645149230957e-09,
|
314 |
+
"completion_length": 75.734375,
|
315 |
+
"epoch": 0.13043478260869565,
|
316 |
+
"grad_norm": 2.6553478240966797,
|
317 |
+
"kl": 0.00592041015625,
|
318 |
+
"learning_rate": 8.695652173913043e-07,
|
319 |
+
"loss": 0.0006,
|
320 |
+
"reward": 1.578125,
|
321 |
+
"reward_mean": 1.578125,
|
322 |
+
"reward_std": 0.10205793380737305,
|
323 |
+
"rewards/accuracy_reward": 0.578125,
|
324 |
+
"rewards/format_reward": 1.0,
|
325 |
+
"step": 21
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"advantages": 3.725290298461914e-09,
|
329 |
+
"completion_length": 85.8125,
|
330 |
+
"epoch": 0.13664596273291926,
|
331 |
+
"grad_norm": 3.458266496658325,
|
332 |
+
"kl": 0.00604248046875,
|
333 |
+
"learning_rate": 8.633540372670807e-07,
|
334 |
+
"loss": 0.0006,
|
335 |
+
"reward": 1.515625,
|
336 |
+
"reward_mean": 1.515625,
|
337 |
+
"reward_std": 0.15981829166412354,
|
338 |
+
"rewards/accuracy_reward": 0.53125,
|
339 |
+
"rewards/format_reward": 0.984375,
|
340 |
+
"step": 22
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"advantages": -2.7939677238464355e-09,
|
344 |
+
"completion_length": 79.328125,
|
345 |
+
"epoch": 0.14285714285714285,
|
346 |
+
"grad_norm": 3.2002384662628174,
|
347 |
+
"kl": 0.00543212890625,
|
348 |
+
"learning_rate": 8.57142857142857e-07,
|
349 |
+
"loss": 0.0005,
|
350 |
+
"reward": 1.671875,
|
351 |
+
"reward_mean": 1.671875,
|
352 |
+
"reward_std": 0.2109457552433014,
|
353 |
+
"rewards/accuracy_reward": 0.671875,
|
354 |
+
"rewards/format_reward": 1.0,
|
355 |
+
"step": 23
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"advantages": -1.862645149230957e-09,
|
359 |
+
"completion_length": 75.375,
|
360 |
+
"epoch": 0.14906832298136646,
|
361 |
+
"grad_norm": 5.946903705596924,
|
362 |
+
"kl": 0.0087890625,
|
363 |
+
"learning_rate": 8.509316770186336e-07,
|
364 |
+
"loss": 0.0009,
|
365 |
+
"reward": 1.484375,
|
366 |
+
"reward_mean": 1.484375,
|
367 |
+
"reward_std": 0.19044628739356995,
|
368 |
+
"rewards/accuracy_reward": 0.5,
|
369 |
+
"rewards/format_reward": 0.984375,
|
370 |
+
"step": 24
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"advantages": -9.313225746154785e-10,
|
374 |
+
"completion_length": 68.8125,
|
375 |
+
"epoch": 0.15527950310559005,
|
376 |
+
"grad_norm": 4.977855682373047,
|
377 |
+
"kl": 0.008544921875,
|
378 |
+
"learning_rate": 8.447204968944099e-07,
|
379 |
+
"loss": 0.0009,
|
380 |
+
"reward": 1.734375,
|
381 |
+
"reward_mean": 1.734375,
|
382 |
+
"reward_std": 0.12255740165710449,
|
383 |
+
"rewards/accuracy_reward": 0.734375,
|
384 |
+
"rewards/format_reward": 1.0,
|
385 |
+
"step": 25
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"advantages": -8.381903171539307e-09,
|
389 |
+
"completion_length": 83.59375,
|
390 |
+
"epoch": 0.16149068322981366,
|
391 |
+
"grad_norm": 4.409206390380859,
|
392 |
+
"kl": 0.01239013671875,
|
393 |
+
"learning_rate": 8.385093167701863e-07,
|
394 |
+
"loss": 0.0012,
|
395 |
+
"reward": 1.609375,
|
396 |
+
"reward_mean": 1.609375,
|
397 |
+
"reward_std": 0.2198973000049591,
|
398 |
+
"rewards/accuracy_reward": 0.609375,
|
399 |
+
"rewards/format_reward": 1.0,
|
400 |
+
"step": 26
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"advantages": 1.862645149230957e-09,
|
404 |
+
"completion_length": 78.109375,
|
405 |
+
"epoch": 0.16770186335403728,
|
406 |
+
"grad_norm": 3.1185989379882812,
|
407 |
+
"kl": 0.006072998046875,
|
408 |
+
"learning_rate": 8.322981366459628e-07,
|
409 |
+
"loss": 0.0006,
|
410 |
+
"reward": 1.65625,
|
411 |
+
"reward_mean": 1.65625,
|
412 |
+
"reward_std": 0.10888782143592834,
|
413 |
+
"rewards/accuracy_reward": 0.671875,
|
414 |
+
"rewards/format_reward": 0.984375,
|
415 |
+
"step": 27
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"advantages": 4.6566128730773926e-09,
|
419 |
+
"completion_length": 72.0625,
|
420 |
+
"epoch": 0.17391304347826086,
|
421 |
+
"grad_norm": 4.9565935134887695,
|
422 |
+
"kl": 0.010009765625,
|
423 |
+
"learning_rate": 8.260869565217391e-07,
|
424 |
+
"loss": 0.001,
|
425 |
+
"reward": 1.34375,
|
426 |
+
"reward_mean": 1.34375,
|
427 |
+
"reward_std": 0.16675157845020294,
|
428 |
+
"rewards/accuracy_reward": 0.34375,
|
429 |
+
"rewards/format_reward": 1.0,
|
430 |
+
"step": 28
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"advantages": -4.6566128730773926e-09,
|
434 |
+
"completion_length": 84.953125,
|
435 |
+
"epoch": 0.18012422360248448,
|
436 |
+
"grad_norm": 4.35609769821167,
|
437 |
+
"kl": 0.011962890625,
|
438 |
+
"learning_rate": 8.198757763975155e-07,
|
439 |
+
"loss": 0.0012,
|
440 |
+
"reward": 1.46875,
|
441 |
+
"reward_mean": 1.46875,
|
442 |
+
"reward_std": 0.25513991713523865,
|
443 |
+
"rewards/accuracy_reward": 0.484375,
|
444 |
+
"rewards/format_reward": 0.984375,
|
445 |
+
"step": 29
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"advantages": -9.313225746154785e-10,
|
449 |
+
"completion_length": 85.34375,
|
450 |
+
"epoch": 0.18633540372670807,
|
451 |
+
"grad_norm": 5.767938137054443,
|
452 |
+
"kl": 0.009033203125,
|
453 |
+
"learning_rate": 8.136645962732918e-07,
|
454 |
+
"loss": 0.0009,
|
455 |
+
"reward": 1.609375,
|
456 |
+
"reward_mean": 1.609375,
|
457 |
+
"reward_std": 0.1530819982290268,
|
458 |
+
"rewards/accuracy_reward": 0.609375,
|
459 |
+
"rewards/format_reward": 1.0,
|
460 |
+
"step": 30
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"advantages": -5.587935447692871e-09,
|
464 |
+
"completion_length": 83.5625,
|
465 |
+
"epoch": 0.19254658385093168,
|
466 |
+
"grad_norm": 49.12059783935547,
|
467 |
+
"kl": 0.0091552734375,
|
468 |
+
"learning_rate": 8.074534161490683e-07,
|
469 |
+
"loss": 0.0009,
|
470 |
+
"reward": 1.578125,
|
471 |
+
"reward_mean": 1.578125,
|
472 |
+
"reward_std": 0.10205793380737305,
|
473 |
+
"rewards/accuracy_reward": 0.578125,
|
474 |
+
"rewards/format_reward": 1.0,
|
475 |
+
"step": 31
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"advantages": 4.6566128730773926e-09,
|
479 |
+
"completion_length": 77.734375,
|
480 |
+
"epoch": 0.19875776397515527,
|
481 |
+
"grad_norm": 1.4828208684921265,
|
482 |
+
"kl": 0.00970458984375,
|
483 |
+
"learning_rate": 8.012422360248446e-07,
|
484 |
+
"loss": 0.001,
|
485 |
+
"reward": 1.421875,
|
486 |
+
"reward_mean": 1.421875,
|
487 |
+
"reward_std": 0.0646936446428299,
|
488 |
+
"rewards/accuracy_reward": 0.421875,
|
489 |
+
"rewards/format_reward": 1.0,
|
490 |
+
"step": 32
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"advantages": 1.862645149230957e-09,
|
494 |
+
"completion_length": 78.453125,
|
495 |
+
"epoch": 0.20496894409937888,
|
496 |
+
"grad_norm": 7.876468658447266,
|
497 |
+
"kl": 0.020263671875,
|
498 |
+
"learning_rate": 7.95031055900621e-07,
|
499 |
+
"loss": 0.002,
|
500 |
+
"reward": 1.734375,
|
501 |
+
"reward_mean": 1.734375,
|
502 |
+
"reward_std": 0.2109457552433014,
|
503 |
+
"rewards/accuracy_reward": 0.734375,
|
504 |
+
"rewards/format_reward": 1.0,
|
505 |
+
"step": 33
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"advantages": -3.725290298461914e-09,
|
509 |
+
"completion_length": 80.5,
|
510 |
+
"epoch": 0.2111801242236025,
|
511 |
+
"grad_norm": 3.8213541507720947,
|
512 |
+
"kl": 0.01361083984375,
|
513 |
+
"learning_rate": 7.888198757763976e-07,
|
514 |
+
"loss": 0.0014,
|
515 |
+
"reward": 1.46875,
|
516 |
+
"reward_mean": 1.46875,
|
517 |
+
"reward_std": 0.0578637570142746,
|
518 |
+
"rewards/accuracy_reward": 0.46875,
|
519 |
+
"rewards/format_reward": 1.0,
|
520 |
+
"step": 34
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"advantages": -6.51925802230835e-09,
|
524 |
+
"completion_length": 89.5625,
|
525 |
+
"epoch": 0.21739130434782608,
|
526 |
+
"grad_norm": 3.453101634979248,
|
527 |
+
"kl": 0.01470947265625,
|
528 |
+
"learning_rate": 7.826086956521739e-07,
|
529 |
+
"loss": 0.0015,
|
530 |
+
"reward": 1.75,
|
531 |
+
"reward_mean": 1.75,
|
532 |
+
"reward_std": 0.17570312321186066,
|
533 |
+
"rewards/accuracy_reward": 0.75,
|
534 |
+
"rewards/format_reward": 1.0,
|
535 |
+
"step": 35
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"advantages": 0.0,
|
539 |
+
"completion_length": 90.28125,
|
540 |
+
"epoch": 0.2236024844720497,
|
541 |
+
"grad_norm": 2.642101526260376,
|
542 |
+
"kl": 0.0107421875,
|
543 |
+
"learning_rate": 7.763975155279503e-07,
|
544 |
+
"loss": 0.0011,
|
545 |
+
"reward": 1.5625,
|
546 |
+
"reward_mean": 1.5625,
|
547 |
+
"reward_std": 0.06681530922651291,
|
548 |
+
"rewards/accuracy_reward": 0.5625,
|
549 |
+
"rewards/format_reward": 1.0,
|
550 |
+
"step": 36
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"advantages": -3.725290298461914e-09,
|
554 |
+
"completion_length": 80.3125,
|
555 |
+
"epoch": 0.22981366459627328,
|
556 |
+
"grad_norm": 3.5424673557281494,
|
557 |
+
"kl": 0.01239013671875,
|
558 |
+
"learning_rate": 7.701863354037266e-07,
|
559 |
+
"loss": 0.0012,
|
560 |
+
"reward": 1.71875,
|
561 |
+
"reward_mean": 1.71875,
|
562 |
+
"reward_std": 0.0578637570142746,
|
563 |
+
"rewards/accuracy_reward": 0.71875,
|
564 |
+
"rewards/format_reward": 1.0,
|
565 |
+
"step": 37
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"advantages": 0.0,
|
569 |
+
"completion_length": 84.140625,
|
570 |
+
"epoch": 0.2360248447204969,
|
571 |
+
"grad_norm": 0.38800248503685,
|
572 |
+
"kl": 0.01275634765625,
|
573 |
+
"learning_rate": 7.639751552795031e-07,
|
574 |
+
"loss": 0.0013,
|
575 |
+
"reward": 1.375,
|
576 |
+
"reward_mean": 1.375,
|
577 |
+
"reward_std": 0.0,
|
578 |
+
"rewards/accuracy_reward": 0.390625,
|
579 |
+
"rewards/format_reward": 0.984375,
|
580 |
+
"step": 38
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"advantages": 1.862645149230957e-09,
|
584 |
+
"completion_length": 89.109375,
|
585 |
+
"epoch": 0.2422360248447205,
|
586 |
+
"grad_norm": 2.645474433898926,
|
587 |
+
"kl": 0.01397705078125,
|
588 |
+
"learning_rate": 7.577639751552795e-07,
|
589 |
+
"loss": 0.0014,
|
590 |
+
"reward": 1.515625,
|
591 |
+
"reward_mean": 1.515625,
|
592 |
+
"reward_std": 0.04419417306780815,
|
593 |
+
"rewards/accuracy_reward": 0.515625,
|
594 |
+
"rewards/format_reward": 1.0,
|
595 |
+
"step": 39
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"advantages": -3.725290298461914e-09,
|
599 |
+
"completion_length": 72.296875,
|
600 |
+
"epoch": 0.2484472049689441,
|
601 |
+
"grad_norm": 8.574762344360352,
|
602 |
+
"kl": 0.0159912109375,
|
603 |
+
"learning_rate": 7.515527950310558e-07,
|
604 |
+
"loss": 0.0016,
|
605 |
+
"reward": 1.671875,
|
606 |
+
"reward_mean": 1.671875,
|
607 |
+
"reward_std": 0.23144522309303284,
|
608 |
+
"rewards/accuracy_reward": 0.671875,
|
609 |
+
"rewards/format_reward": 1.0,
|
610 |
+
"step": 40
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"advantages": 7.450580596923828e-09,
|
614 |
+
"completion_length": 86.046875,
|
615 |
+
"epoch": 0.2546583850931677,
|
616 |
+
"grad_norm": 36.26329040527344,
|
617 |
+
"kl": 0.0147705078125,
|
618 |
+
"learning_rate": 7.453416149068323e-07,
|
619 |
+
"loss": 0.0015,
|
620 |
+
"reward": 1.65625,
|
621 |
+
"reward_mean": 1.65625,
|
622 |
+
"reward_std": 0.23356688022613525,
|
623 |
+
"rewards/accuracy_reward": 0.65625,
|
624 |
+
"rewards/format_reward": 1.0,
|
625 |
+
"step": 41
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"advantages": -3.725290298461914e-09,
|
629 |
+
"completion_length": 77.0625,
|
630 |
+
"epoch": 0.2608695652173913,
|
631 |
+
"grad_norm": 10.992830276489258,
|
632 |
+
"kl": 0.0113525390625,
|
633 |
+
"learning_rate": 7.391304347826086e-07,
|
634 |
+
"loss": 0.0011,
|
635 |
+
"reward": 1.703125,
|
636 |
+
"reward_mean": 1.703125,
|
637 |
+
"reward_std": 0.24464011192321777,
|
638 |
+
"rewards/accuracy_reward": 0.703125,
|
639 |
+
"rewards/format_reward": 1.0,
|
640 |
+
"step": 42
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"advantages": -1.862645149230957e-09,
|
644 |
+
"completion_length": 86.53125,
|
645 |
+
"epoch": 0.2670807453416149,
|
646 |
+
"grad_norm": 6.251725673675537,
|
647 |
+
"kl": 0.009033203125,
|
648 |
+
"learning_rate": 7.329192546583851e-07,
|
649 |
+
"loss": 0.0009,
|
650 |
+
"reward": 1.609375,
|
651 |
+
"reward_mean": 1.609375,
|
652 |
+
"reward_std": 0.23144522309303284,
|
653 |
+
"rewards/accuracy_reward": 0.609375,
|
654 |
+
"rewards/format_reward": 1.0,
|
655 |
+
"step": 43
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"advantages": -4.6566128730773926e-09,
|
659 |
+
"completion_length": 86.4375,
|
660 |
+
"epoch": 0.2732919254658385,
|
661 |
+
"grad_norm": 3.8048486709594727,
|
662 |
+
"kl": 0.01385498046875,
|
663 |
+
"learning_rate": 7.267080745341615e-07,
|
664 |
+
"loss": 0.0014,
|
665 |
+
"reward": 1.765625,
|
666 |
+
"reward_mean": 1.765625,
|
667 |
+
"reward_std": 0.17358146607875824,
|
668 |
+
"rewards/accuracy_reward": 0.765625,
|
669 |
+
"rewards/format_reward": 1.0,
|
670 |
+
"step": 44
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"advantages": -1.862645149230957e-09,
|
674 |
+
"completion_length": 84.21875,
|
675 |
+
"epoch": 0.2795031055900621,
|
676 |
+
"grad_norm": 2.5062499046325684,
|
677 |
+
"kl": 0.00811767578125,
|
678 |
+
"learning_rate": 7.204968944099379e-07,
|
679 |
+
"loss": 0.0008,
|
680 |
+
"reward": 1.796875,
|
681 |
+
"reward_mean": 1.796875,
|
682 |
+
"reward_std": 0.11100947856903076,
|
683 |
+
"rewards/accuracy_reward": 0.8125,
|
684 |
+
"rewards/format_reward": 0.984375,
|
685 |
+
"step": 45
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"advantages": 3.725290298461914e-09,
|
689 |
+
"completion_length": 77.9375,
|
690 |
+
"epoch": 0.2857142857142857,
|
691 |
+
"grad_norm": 3.8415560722351074,
|
692 |
+
"kl": 0.01165771484375,
|
693 |
+
"learning_rate": 7.142857142857143e-07,
|
694 |
+
"loss": 0.0012,
|
695 |
+
"reward": 1.53125,
|
696 |
+
"reward_mean": 1.53125,
|
697 |
+
"reward_std": 0.1462521106004715,
|
698 |
+
"rewards/accuracy_reward": 0.53125,
|
699 |
+
"rewards/format_reward": 1.0,
|
700 |
+
"step": 46
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"advantages": 1.862645149230957e-09,
|
704 |
+
"completion_length": 82.6875,
|
705 |
+
"epoch": 0.2919254658385093,
|
706 |
+
"grad_norm": 2.903069496154785,
|
707 |
+
"kl": 0.012451171875,
|
708 |
+
"learning_rate": 7.080745341614906e-07,
|
709 |
+
"loss": 0.0012,
|
710 |
+
"reward": 1.578125,
|
711 |
+
"reward_mean": 1.578125,
|
712 |
+
"reward_std": 0.11100947856903076,
|
713 |
+
"rewards/accuracy_reward": 0.59375,
|
714 |
+
"rewards/format_reward": 0.984375,
|
715 |
+
"step": 47
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"advantages": -2.7939677238464355e-09,
|
719 |
+
"completion_length": 75.578125,
|
720 |
+
"epoch": 0.2981366459627329,
|
721 |
+
"grad_norm": 11.884781837463379,
|
722 |
+
"kl": 0.0125732421875,
|
723 |
+
"learning_rate": 7.018633540372671e-07,
|
724 |
+
"loss": 0.0013,
|
725 |
+
"reward": 1.65625,
|
726 |
+
"reward_mean": 1.65625,
|
727 |
+
"reward_std": 0.17570312321186066,
|
728 |
+
"rewards/accuracy_reward": 0.65625,
|
729 |
+
"rewards/format_reward": 1.0,
|
730 |
+
"step": 48
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"advantages": -1.862645149230957e-09,
|
734 |
+
"completion_length": 73.34375,
|
735 |
+
"epoch": 0.30434782608695654,
|
736 |
+
"grad_norm": 2.234876871109009,
|
737 |
+
"kl": 0.0084228515625,
|
738 |
+
"learning_rate": 6.956521739130434e-07,
|
739 |
+
"loss": 0.0008,
|
740 |
+
"reward": 1.484375,
|
741 |
+
"reward_mean": 1.484375,
|
742 |
+
"reward_std": 0.04419417306780815,
|
743 |
+
"rewards/accuracy_reward": 0.484375,
|
744 |
+
"rewards/format_reward": 1.0,
|
745 |
+
"step": 49
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"advantages": 1.862645149230957e-09,
|
749 |
+
"completion_length": 81.8125,
|
750 |
+
"epoch": 0.3105590062111801,
|
751 |
+
"grad_norm": 4.401739597320557,
|
752 |
+
"kl": 0.007232666015625,
|
753 |
+
"learning_rate": 6.894409937888198e-07,
|
754 |
+
"loss": 0.0007,
|
755 |
+
"reward": 1.765625,
|
756 |
+
"reward_mean": 1.765625,
|
757 |
+
"reward_std": 0.17782479524612427,
|
758 |
+
"rewards/accuracy_reward": 0.765625,
|
759 |
+
"rewards/format_reward": 1.0,
|
760 |
+
"step": 50
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"advantages": 0.0,
|
764 |
+
"completion_length": 84.015625,
|
765 |
+
"epoch": 0.3167701863354037,
|
766 |
+
"grad_norm": 0.28293830156326294,
|
767 |
+
"kl": 0.0062255859375,
|
768 |
+
"learning_rate": 6.832298136645962e-07,
|
769 |
+
"loss": 0.0006,
|
770 |
+
"reward": 2.0,
|
771 |
+
"reward_mean": 2.0,
|
772 |
+
"reward_std": 0.0,
|
773 |
+
"rewards/accuracy_reward": 1.0,
|
774 |
+
"rewards/format_reward": 1.0,
|
775 |
+
"step": 51
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"advantages": 0.0,
|
779 |
+
"completion_length": 79.125,
|
780 |
+
"epoch": 0.32298136645962733,
|
781 |
+
"grad_norm": 2.2039246559143066,
|
782 |
+
"kl": 0.0106201171875,
|
783 |
+
"learning_rate": 6.770186335403726e-07,
|
784 |
+
"loss": 0.0011,
|
785 |
+
"reward": 1.75,
|
786 |
+
"reward_mean": 1.75,
|
787 |
+
"reward_std": 0.0883883461356163,
|
788 |
+
"rewards/accuracy_reward": 0.75,
|
789 |
+
"rewards/format_reward": 1.0,
|
790 |
+
"step": 52
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"advantages": 9.313225746154785e-10,
|
794 |
+
"completion_length": 76.0625,
|
795 |
+
"epoch": 0.32919254658385094,
|
796 |
+
"grad_norm": 4.176709175109863,
|
797 |
+
"kl": 0.01123046875,
|
798 |
+
"learning_rate": 6.708074534161491e-07,
|
799 |
+
"loss": 0.0011,
|
800 |
+
"reward": 1.640625,
|
801 |
+
"reward_mean": 1.640625,
|
802 |
+
"reward_std": 0.1530819982290268,
|
803 |
+
"rewards/accuracy_reward": 0.640625,
|
804 |
+
"rewards/format_reward": 1.0,
|
805 |
+
"step": 53
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"advantages": -3.725290298461914e-09,
|
809 |
+
"completion_length": 81.125,
|
810 |
+
"epoch": 0.33540372670807456,
|
811 |
+
"grad_norm": 30.12848663330078,
|
812 |
+
"kl": 0.099609375,
|
813 |
+
"learning_rate": 6.645962732919254e-07,
|
814 |
+
"loss": 0.01,
|
815 |
+
"reward": 1.71875,
|
816 |
+
"reward_mean": 1.71875,
|
817 |
+
"reward_std": 0.1462520956993103,
|
818 |
+
"rewards/accuracy_reward": 0.71875,
|
819 |
+
"rewards/format_reward": 1.0,
|
820 |
+
"step": 54
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"advantages": -1.862645149230957e-09,
|
824 |
+
"completion_length": 80.609375,
|
825 |
+
"epoch": 0.3416149068322981,
|
826 |
+
"grad_norm": 12.808406829833984,
|
827 |
+
"kl": 0.01416015625,
|
828 |
+
"learning_rate": 6.583850931677019e-07,
|
829 |
+
"loss": 0.0014,
|
830 |
+
"reward": 1.6875,
|
831 |
+
"reward_mean": 1.6875,
|
832 |
+
"reward_std": 0.2238783985376358,
|
833 |
+
"rewards/accuracy_reward": 0.703125,
|
834 |
+
"rewards/format_reward": 0.984375,
|
835 |
+
"step": 55
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"advantages": -5.587935447692871e-09,
|
839 |
+
"completion_length": 76.15625,
|
840 |
+
"epoch": 0.34782608695652173,
|
841 |
+
"grad_norm": 5.750046253204346,
|
842 |
+
"kl": 0.01019287109375,
|
843 |
+
"learning_rate": 6.521739130434782e-07,
|
844 |
+
"loss": 0.001,
|
845 |
+
"reward": 1.5,
|
846 |
+
"reward_mean": 1.5,
|
847 |
+
"reward_std": 0.2041158676147461,
|
848 |
+
"rewards/accuracy_reward": 0.515625,
|
849 |
+
"rewards/format_reward": 0.984375,
|
850 |
+
"step": 56
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"advantages": -3.725290298461914e-09,
|
854 |
+
"completion_length": 76.765625,
|
855 |
+
"epoch": 0.35403726708074534,
|
856 |
+
"grad_norm": 4.7853102684021,
|
857 |
+
"kl": 0.010986328125,
|
858 |
+
"learning_rate": 6.459627329192546e-07,
|
859 |
+
"loss": 0.0011,
|
860 |
+
"reward": 1.328125,
|
861 |
+
"reward_mean": 1.328125,
|
862 |
+
"reward_std": 0.19044628739356995,
|
863 |
+
"rewards/accuracy_reward": 0.34375,
|
864 |
+
"rewards/format_reward": 0.984375,
|
865 |
+
"step": 57
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"advantages": 4.6566128730773926e-09,
|
869 |
+
"completion_length": 88.796875,
|
870 |
+
"epoch": 0.36024844720496896,
|
871 |
+
"grad_norm": 1.7344197034835815,
|
872 |
+
"kl": 0.00982666015625,
|
873 |
+
"learning_rate": 6.39751552795031e-07,
|
874 |
+
"loss": 0.001,
|
875 |
+
"reward": 1.671875,
|
876 |
+
"reward_mean": 1.671875,
|
877 |
+
"reward_std": 0.0646936446428299,
|
878 |
+
"rewards/accuracy_reward": 0.671875,
|
879 |
+
"rewards/format_reward": 1.0,
|
880 |
+
"step": 58
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"advantages": -9.313225746154785e-09,
|
884 |
+
"completion_length": 84.28125,
|
885 |
+
"epoch": 0.36645962732919257,
|
886 |
+
"grad_norm": 3.1260499954223633,
|
887 |
+
"kl": 0.01416015625,
|
888 |
+
"learning_rate": 6.335403726708074e-07,
|
889 |
+
"loss": 0.0014,
|
890 |
+
"reward": 1.6875,
|
891 |
+
"reward_mean": 1.6875,
|
892 |
+
"reward_std": 0.1828794628381729,
|
893 |
+
"rewards/accuracy_reward": 0.703125,
|
894 |
+
"rewards/format_reward": 0.984375,
|
895 |
+
"step": 59
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"advantages": -3.725290298461914e-09,
|
899 |
+
"completion_length": 77.21875,
|
900 |
+
"epoch": 0.37267080745341613,
|
901 |
+
"grad_norm": 1.7963190078735352,
|
902 |
+
"kl": 0.0089111328125,
|
903 |
+
"learning_rate": 6.273291925465838e-07,
|
904 |
+
"loss": 0.0009,
|
905 |
+
"reward": 1.84375,
|
906 |
+
"reward_mean": 1.84375,
|
907 |
+
"reward_std": 0.0578637570142746,
|
908 |
+
"rewards/accuracy_reward": 0.84375,
|
909 |
+
"rewards/format_reward": 1.0,
|
910 |
+
"step": 60
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"advantages": 0.0,
|
914 |
+
"completion_length": 82.25,
|
915 |
+
"epoch": 0.37888198757763975,
|
916 |
+
"grad_norm": 2.5049538612365723,
|
917 |
+
"kl": 0.00787353515625,
|
918 |
+
"learning_rate": 6.211180124223601e-07,
|
919 |
+
"loss": 0.0008,
|
920 |
+
"reward": 1.625,
|
921 |
+
"reward_mean": 1.625,
|
922 |
+
"reward_std": 0.0883883461356163,
|
923 |
+
"rewards/accuracy_reward": 0.625,
|
924 |
+
"rewards/format_reward": 1.0,
|
925 |
+
"step": 61
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"advantages": -1.210719347000122e-08,
|
929 |
+
"completion_length": 80.375,
|
930 |
+
"epoch": 0.38509316770186336,
|
931 |
+
"grad_norm": 5.739541530609131,
|
932 |
+
"kl": 0.01312255859375,
|
933 |
+
"learning_rate": 6.149068322981367e-07,
|
934 |
+
"loss": 0.0013,
|
935 |
+
"reward": 1.75,
|
936 |
+
"reward_mean": 1.75,
|
937 |
+
"reward_std": 0.2177756428718567,
|
938 |
+
"rewards/accuracy_reward": 0.75,
|
939 |
+
"rewards/format_reward": 1.0,
|
940 |
+
"step": 62
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"advantages": 1.862645149230957e-09,
|
944 |
+
"completion_length": 84.296875,
|
945 |
+
"epoch": 0.391304347826087,
|
946 |
+
"grad_norm": 4.335031032562256,
|
947 |
+
"kl": 0.01116943359375,
|
948 |
+
"learning_rate": 6.08695652173913e-07,
|
949 |
+
"loss": 0.0011,
|
950 |
+
"reward": 1.90625,
|
951 |
+
"reward_mean": 1.90625,
|
952 |
+
"reward_std": 0.2041158676147461,
|
953 |
+
"rewards/accuracy_reward": 0.90625,
|
954 |
+
"rewards/format_reward": 1.0,
|
955 |
+
"step": 63
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"advantages": 1.862645149230957e-09,
|
959 |
+
"completion_length": 86.828125,
|
960 |
+
"epoch": 0.39751552795031053,
|
961 |
+
"grad_norm": 4.443232536315918,
|
962 |
+
"kl": 0.01336669921875,
|
963 |
+
"learning_rate": 6.024844720496894e-07,
|
964 |
+
"loss": 0.0013,
|
965 |
+
"reward": 1.703125,
|
966 |
+
"reward_mean": 1.703125,
|
967 |
+
"reward_std": 0.19939783215522766,
|
968 |
+
"rewards/accuracy_reward": 0.703125,
|
969 |
+
"rewards/format_reward": 1.0,
|
970 |
+
"step": 64
|
971 |
+
},
|
972 |
+
{
|
973 |
+
"advantages": 5.587935447692871e-09,
|
974 |
+
"completion_length": 75.71875,
|
975 |
+
"epoch": 0.40372670807453415,
|
976 |
+
"grad_norm": 7.092515468597412,
|
977 |
+
"kl": 0.01251220703125,
|
978 |
+
"learning_rate": 5.962732919254659e-07,
|
979 |
+
"loss": 0.0013,
|
980 |
+
"reward": 1.65625,
|
981 |
+
"reward_mean": 1.65625,
|
982 |
+
"reward_std": 0.23827511072158813,
|
983 |
+
"rewards/accuracy_reward": 0.65625,
|
984 |
+
"rewards/format_reward": 1.0,
|
985 |
+
"step": 65
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"advantages": 4.6566128730773926e-09,
|
989 |
+
"completion_length": 82.140625,
|
990 |
+
"epoch": 0.40993788819875776,
|
991 |
+
"grad_norm": 4.468729496002197,
|
992 |
+
"kl": 0.0211181640625,
|
993 |
+
"learning_rate": 5.900621118012422e-07,
|
994 |
+
"loss": 0.0021,
|
995 |
+
"reward": 1.796875,
|
996 |
+
"reward_mean": 1.796875,
|
997 |
+
"reward_std": 0.0646936446428299,
|
998 |
+
"rewards/accuracy_reward": 0.796875,
|
999 |
+
"rewards/format_reward": 1.0,
|
1000 |
+
"step": 66
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"advantages": 4.6566128730773926e-09,
|
1004 |
+
"completion_length": 74.890625,
|
1005 |
+
"epoch": 0.4161490683229814,
|
1006 |
+
"grad_norm": 9.289567947387695,
|
1007 |
+
"kl": 0.01611328125,
|
1008 |
+
"learning_rate": 5.838509316770186e-07,
|
1009 |
+
"loss": 0.0016,
|
1010 |
+
"reward": 1.421875,
|
1011 |
+
"reward_mean": 1.421875,
|
1012 |
+
"reward_std": 0.1983242630958557,
|
1013 |
+
"rewards/accuracy_reward": 0.421875,
|
1014 |
+
"rewards/format_reward": 1.0,
|
1015 |
+
"step": 67
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"advantages": 0.0,
|
1019 |
+
"completion_length": 77.625,
|
1020 |
+
"epoch": 0.422360248447205,
|
1021 |
+
"grad_norm": 0.4326918125152588,
|
1022 |
+
"kl": 0.0140380859375,
|
1023 |
+
"learning_rate": 5.77639751552795e-07,
|
1024 |
+
"loss": 0.0014,
|
1025 |
+
"reward": 1.875,
|
1026 |
+
"reward_mean": 1.875,
|
1027 |
+
"reward_std": 0.0,
|
1028 |
+
"rewards/accuracy_reward": 0.875,
|
1029 |
+
"rewards/format_reward": 1.0,
|
1030 |
+
"step": 68
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"advantages": -9.313225746154785e-10,
|
1034 |
+
"completion_length": 81.71875,
|
1035 |
+
"epoch": 0.42857142857142855,
|
1036 |
+
"grad_norm": 5.539842128753662,
|
1037 |
+
"kl": 0.04296875,
|
1038 |
+
"learning_rate": 5.714285714285714e-07,
|
1039 |
+
"loss": 0.0043,
|
1040 |
+
"reward": 1.4375,
|
1041 |
+
"reward_mean": 1.4375,
|
1042 |
+
"reward_std": 0.34352827072143555,
|
1043 |
+
"rewards/accuracy_reward": 0.453125,
|
1044 |
+
"rewards/format_reward": 0.984375,
|
1045 |
+
"step": 69
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"advantages": 0.0,
|
1049 |
+
"completion_length": 90.703125,
|
1050 |
+
"epoch": 0.43478260869565216,
|
1051 |
+
"grad_norm": 0.46686819195747375,
|
1052 |
+
"kl": 0.0074462890625,
|
1053 |
+
"learning_rate": 5.652173913043477e-07,
|
1054 |
+
"loss": 0.0007,
|
1055 |
+
"reward": 1.875,
|
1056 |
+
"reward_mean": 1.875,
|
1057 |
+
"reward_std": 0.0,
|
1058 |
+
"rewards/accuracy_reward": 0.875,
|
1059 |
+
"rewards/format_reward": 1.0,
|
1060 |
+
"step": 70
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"advantages": 1.862645149230957e-09,
|
1064 |
+
"completion_length": 83.578125,
|
1065 |
+
"epoch": 0.4409937888198758,
|
1066 |
+
"grad_norm": 8.54028606414795,
|
1067 |
+
"kl": 0.00897216796875,
|
1068 |
+
"learning_rate": 5.590062111801241e-07,
|
1069 |
+
"loss": 0.0009,
|
1070 |
+
"reward": 1.765625,
|
1071 |
+
"reward_mean": 1.765625,
|
1072 |
+
"reward_std": 0.04419417306780815,
|
1073 |
+
"rewards/accuracy_reward": 0.765625,
|
1074 |
+
"rewards/format_reward": 1.0,
|
1075 |
+
"step": 71
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"advantages": 7.450580596923828e-09,
|
1079 |
+
"completion_length": 84.25,
|
1080 |
+
"epoch": 0.4472049689440994,
|
1081 |
+
"grad_norm": 12.895256996154785,
|
1082 |
+
"kl": 0.00579833984375,
|
1083 |
+
"learning_rate": 5.527950310559007e-07,
|
1084 |
+
"loss": 0.0006,
|
1085 |
+
"reward": 1.453125,
|
1086 |
+
"reward_mean": 1.453125,
|
1087 |
+
"reward_std": 0.12255740165710449,
|
1088 |
+
"rewards/accuracy_reward": 0.453125,
|
1089 |
+
"rewards/format_reward": 1.0,
|
1090 |
+
"step": 72
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"advantages": -9.313225746154785e-09,
|
1094 |
+
"completion_length": 77.15625,
|
1095 |
+
"epoch": 0.453416149068323,
|
1096 |
+
"grad_norm": 5.548634052276611,
|
1097 |
+
"kl": 0.0123291015625,
|
1098 |
+
"learning_rate": 5.46583850931677e-07,
|
1099 |
+
"loss": 0.0012,
|
1100 |
+
"reward": 1.796875,
|
1101 |
+
"reward_mean": 1.796875,
|
1102 |
+
"reward_std": 0.31983357667922974,
|
1103 |
+
"rewards/accuracy_reward": 0.796875,
|
1104 |
+
"rewards/format_reward": 1.0,
|
1105 |
+
"step": 73
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"advantages": -1.0244548320770264e-08,
|
1109 |
+
"completion_length": 84.75,
|
1110 |
+
"epoch": 0.45962732919254656,
|
1111 |
+
"grad_norm": 3.4154112339019775,
|
1112 |
+
"kl": 0.018798828125,
|
1113 |
+
"learning_rate": 5.403726708074534e-07,
|
1114 |
+
"loss": 0.0019,
|
1115 |
+
"reward": 1.78125,
|
1116 |
+
"reward_mean": 1.78125,
|
1117 |
+
"reward_std": 0.19727616012096405,
|
1118 |
+
"rewards/accuracy_reward": 0.78125,
|
1119 |
+
"rewards/format_reward": 1.0,
|
1120 |
+
"step": 74
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"advantages": -4.6566128730773926e-09,
|
1124 |
+
"completion_length": 83.015625,
|
1125 |
+
"epoch": 0.4658385093167702,
|
1126 |
+
"grad_norm": 3.4328691959381104,
|
1127 |
+
"kl": 0.01275634765625,
|
1128 |
+
"learning_rate": 5.341614906832298e-07,
|
1129 |
+
"loss": 0.0013,
|
1130 |
+
"reward": 1.53125,
|
1131 |
+
"reward_mean": 1.53125,
|
1132 |
+
"reward_std": 0.23356688022613525,
|
1133 |
+
"rewards/accuracy_reward": 0.53125,
|
1134 |
+
"rewards/format_reward": 1.0,
|
1135 |
+
"step": 75
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"advantages": -1.862645149230957e-09,
|
1139 |
+
"completion_length": 78.609375,
|
1140 |
+
"epoch": 0.4720496894409938,
|
1141 |
+
"grad_norm": 3.627190113067627,
|
1142 |
+
"kl": 0.0142822265625,
|
1143 |
+
"learning_rate": 5.279503105590062e-07,
|
1144 |
+
"loss": 0.0014,
|
1145 |
+
"reward": 1.9375,
|
1146 |
+
"reward_mean": 1.9375,
|
1147 |
+
"reward_std": 0.1462521106004715,
|
1148 |
+
"rewards/accuracy_reward": 0.9375,
|
1149 |
+
"rewards/format_reward": 1.0,
|
1150 |
+
"step": 76
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"advantages": -3.725290298461914e-09,
|
1154 |
+
"completion_length": 80.46875,
|
1155 |
+
"epoch": 0.4782608695652174,
|
1156 |
+
"grad_norm": 10.168981552124023,
|
1157 |
+
"kl": 0.01251220703125,
|
1158 |
+
"learning_rate": 5.217391304347825e-07,
|
1159 |
+
"loss": 0.0013,
|
1160 |
+
"reward": 1.515625,
|
1161 |
+
"reward_mean": 1.515625,
|
1162 |
+
"reward_std": 0.2109457552433014,
|
1163 |
+
"rewards/accuracy_reward": 0.515625,
|
1164 |
+
"rewards/format_reward": 1.0,
|
1165 |
+
"step": 77
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"advantages": 0.0,
|
1169 |
+
"completion_length": 83.421875,
|
1170 |
+
"epoch": 0.484472049689441,
|
1171 |
+
"grad_norm": 20.923242568969727,
|
1172 |
+
"kl": 0.0113525390625,
|
1173 |
+
"learning_rate": 5.15527950310559e-07,
|
1174 |
+
"loss": 0.0011,
|
1175 |
+
"reward": 1.828125,
|
1176 |
+
"reward_mean": 1.828125,
|
1177 |
+
"reward_std": 0.19044628739356995,
|
1178 |
+
"rewards/accuracy_reward": 0.828125,
|
1179 |
+
"rewards/format_reward": 1.0,
|
1180 |
+
"step": 78
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"advantages": 2.7939677238464355e-09,
|
1184 |
+
"completion_length": 75.109375,
|
1185 |
+
"epoch": 0.4906832298136646,
|
1186 |
+
"grad_norm": 3.643770933151245,
|
1187 |
+
"kl": 0.00811767578125,
|
1188 |
+
"learning_rate": 5.093167701863354e-07,
|
1189 |
+
"loss": 0.0008,
|
1190 |
+
"reward": 1.78125,
|
1191 |
+
"reward_mean": 1.78125,
|
1192 |
+
"reward_std": 0.10888782143592834,
|
1193 |
+
"rewards/accuracy_reward": 0.78125,
|
1194 |
+
"rewards/format_reward": 1.0,
|
1195 |
+
"step": 79
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"advantages": 1.862645149230957e-09,
|
1199 |
+
"completion_length": 81.65625,
|
1200 |
+
"epoch": 0.4968944099378882,
|
1201 |
+
"grad_norm": 4.883938312530518,
|
1202 |
+
"kl": 0.015625,
|
1203 |
+
"learning_rate": 5.031055900621117e-07,
|
1204 |
+
"loss": 0.0016,
|
1205 |
+
"reward": 1.25,
|
1206 |
+
"reward_mean": 1.25,
|
1207 |
+
"reward_std": 0.2130674123764038,
|
1208 |
+
"rewards/accuracy_reward": 0.25,
|
1209 |
+
"rewards/format_reward": 1.0,
|
1210 |
+
"step": 80
|
1211 |
+
},
|
1212 |
+
{
|
1213 |
+
"advantages": -3.725290298461914e-09,
|
1214 |
+
"completion_length": 82.515625,
|
1215 |
+
"epoch": 0.5031055900621118,
|
1216 |
+
"grad_norm": 1.3860398530960083,
|
1217 |
+
"kl": 0.00799560546875,
|
1218 |
+
"learning_rate": 4.968944099378881e-07,
|
1219 |
+
"loss": 0.0008,
|
1220 |
+
"reward": 1.71875,
|
1221 |
+
"reward_mean": 1.71875,
|
1222 |
+
"reward_std": 0.0578637570142746,
|
1223 |
+
"rewards/accuracy_reward": 0.71875,
|
1224 |
+
"rewards/format_reward": 1.0,
|
1225 |
+
"step": 81
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"advantages": 9.313225746154785e-10,
|
1229 |
+
"completion_length": 77.6875,
|
1230 |
+
"epoch": 0.5093167701863354,
|
1231 |
+
"grad_norm": 3.7328872680664062,
|
1232 |
+
"kl": 0.0181884765625,
|
1233 |
+
"learning_rate": 4.906832298136646e-07,
|
1234 |
+
"loss": 0.0018,
|
1235 |
+
"reward": 1.75,
|
1236 |
+
"reward_mean": 1.75,
|
1237 |
+
"reward_std": 0.16675157845020294,
|
1238 |
+
"rewards/accuracy_reward": 0.75,
|
1239 |
+
"rewards/format_reward": 1.0,
|
1240 |
+
"step": 82
|
1241 |
+
},
|
1242 |
+
{
|
1243 |
+
"advantages": 3.725290298461914e-09,
|
1244 |
+
"completion_length": 76.4375,
|
1245 |
+
"epoch": 0.515527950310559,
|
1246 |
+
"grad_norm": 3.6228644847869873,
|
1247 |
+
"kl": 0.01446533203125,
|
1248 |
+
"learning_rate": 4.84472049689441e-07,
|
1249 |
+
"loss": 0.0014,
|
1250 |
+
"reward": 1.46875,
|
1251 |
+
"reward_mean": 1.46875,
|
1252 |
+
"reward_std": 0.1246790662407875,
|
1253 |
+
"rewards/accuracy_reward": 0.46875,
|
1254 |
+
"rewards/format_reward": 1.0,
|
1255 |
+
"step": 83
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"advantages": -1.862645149230957e-09,
|
1259 |
+
"completion_length": 79.140625,
|
1260 |
+
"epoch": 0.5217391304347826,
|
1261 |
+
"grad_norm": 5.579171180725098,
|
1262 |
+
"kl": 0.0159912109375,
|
1263 |
+
"learning_rate": 4.782608695652174e-07,
|
1264 |
+
"loss": 0.0016,
|
1265 |
+
"reward": 1.65625,
|
1266 |
+
"reward_mean": 1.65625,
|
1267 |
+
"reward_std": 0.23356688022613525,
|
1268 |
+
"rewards/accuracy_reward": 0.671875,
|
1269 |
+
"rewards/format_reward": 0.984375,
|
1270 |
+
"step": 84
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"advantages": -5.587935447692871e-09,
|
1274 |
+
"completion_length": 80.0,
|
1275 |
+
"epoch": 0.5279503105590062,
|
1276 |
+
"grad_norm": 9.611387252807617,
|
1277 |
+
"kl": 0.01080322265625,
|
1278 |
+
"learning_rate": 4.7204968944099376e-07,
|
1279 |
+
"loss": 0.0011,
|
1280 |
+
"reward": 1.828125,
|
1281 |
+
"reward_mean": 1.828125,
|
1282 |
+
"reward_std": 0.13258251547813416,
|
1283 |
+
"rewards/accuracy_reward": 0.828125,
|
1284 |
+
"rewards/format_reward": 1.0,
|
1285 |
+
"step": 85
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"advantages": -1.862645149230957e-09,
|
1289 |
+
"completion_length": 85.5,
|
1290 |
+
"epoch": 0.5341614906832298,
|
1291 |
+
"grad_norm": 4.1448540687561035,
|
1292 |
+
"kl": 0.01007080078125,
|
1293 |
+
"learning_rate": 4.6583850931677014e-07,
|
1294 |
+
"loss": 0.001,
|
1295 |
+
"reward": 1.859375,
|
1296 |
+
"reward_mean": 1.859375,
|
1297 |
+
"reward_std": 0.17358146607875824,
|
1298 |
+
"rewards/accuracy_reward": 0.859375,
|
1299 |
+
"rewards/format_reward": 1.0,
|
1300 |
+
"step": 86
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"advantages": 1.862645149230957e-09,
|
1304 |
+
"completion_length": 75.5,
|
1305 |
+
"epoch": 0.5403726708074534,
|
1306 |
+
"grad_norm": 5.654483795166016,
|
1307 |
+
"kl": 0.01123046875,
|
1308 |
+
"learning_rate": 4.596273291925465e-07,
|
1309 |
+
"loss": 0.0011,
|
1310 |
+
"reward": 1.796875,
|
1311 |
+
"reward_mean": 1.796875,
|
1312 |
+
"reward_std": 0.1530819982290268,
|
1313 |
+
"rewards/accuracy_reward": 0.796875,
|
1314 |
+
"rewards/format_reward": 1.0,
|
1315 |
+
"step": 87
|
1316 |
+
},
|
1317 |
+
{
|
1318 |
+
"advantages": -3.725290298461914e-09,
|
1319 |
+
"completion_length": 72.671875,
|
1320 |
+
"epoch": 0.546583850931677,
|
1321 |
+
"grad_norm": 2.2370052337646484,
|
1322 |
+
"kl": 0.0137939453125,
|
1323 |
+
"learning_rate": 4.53416149068323e-07,
|
1324 |
+
"loss": 0.0014,
|
1325 |
+
"reward": 1.46875,
|
1326 |
+
"reward_mean": 1.46875,
|
1327 |
+
"reward_std": 0.0883883461356163,
|
1328 |
+
"rewards/accuracy_reward": 0.46875,
|
1329 |
+
"rewards/format_reward": 1.0,
|
1330 |
+
"step": 88
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"advantages": 0.0,
|
1334 |
+
"completion_length": 81.84375,
|
1335 |
+
"epoch": 0.5527950310559007,
|
1336 |
+
"grad_norm": 1.389394760131836,
|
1337 |
+
"kl": 0.00836181640625,
|
1338 |
+
"learning_rate": 4.472049689440994e-07,
|
1339 |
+
"loss": 0.0008,
|
1340 |
+
"reward": 1.75,
|
1341 |
+
"reward_mean": 1.75,
|
1342 |
+
"reward_std": 0.06681530922651291,
|
1343 |
+
"rewards/accuracy_reward": 0.765625,
|
1344 |
+
"rewards/format_reward": 0.984375,
|
1345 |
+
"step": 89
|
1346 |
+
},
|
1347 |
+
{
|
1348 |
+
"advantages": 0.0,
|
1349 |
+
"completion_length": 74.59375,
|
1350 |
+
"epoch": 0.5590062111801242,
|
1351 |
+
"grad_norm": 2.353760242462158,
|
1352 |
+
"kl": 0.00811767578125,
|
1353 |
+
"learning_rate": 4.4099378881987576e-07,
|
1354 |
+
"loss": 0.0008,
|
1355 |
+
"reward": 1.6875,
|
1356 |
+
"reward_mean": 1.6875,
|
1357 |
+
"reward_std": 0.06681530922651291,
|
1358 |
+
"rewards/accuracy_reward": 0.6875,
|
1359 |
+
"rewards/format_reward": 1.0,
|
1360 |
+
"step": 90
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"advantages": 0.0,
|
1364 |
+
"completion_length": 85.28125,
|
1365 |
+
"epoch": 0.5652173913043478,
|
1366 |
+
"grad_norm": 1.5767848491668701,
|
1367 |
+
"kl": 0.009765625,
|
1368 |
+
"learning_rate": 4.3478260869565214e-07,
|
1369 |
+
"loss": 0.001,
|
1370 |
+
"reward": 1.75,
|
1371 |
+
"reward_mean": 1.75,
|
1372 |
+
"reward_std": 0.0,
|
1373 |
+
"rewards/accuracy_reward": 0.75,
|
1374 |
+
"rewards/format_reward": 1.0,
|
1375 |
+
"step": 91
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"advantages": -8.381903171539307e-09,
|
1379 |
+
"completion_length": 81.859375,
|
1380 |
+
"epoch": 0.5714285714285714,
|
1381 |
+
"grad_norm": 3.835320234298706,
|
1382 |
+
"kl": 0.0181884765625,
|
1383 |
+
"learning_rate": 4.285714285714285e-07,
|
1384 |
+
"loss": 0.0018,
|
1385 |
+
"reward": 1.671875,
|
1386 |
+
"reward_mean": 1.671875,
|
1387 |
+
"reward_std": 0.1530819982290268,
|
1388 |
+
"rewards/accuracy_reward": 0.6875,
|
1389 |
+
"rewards/format_reward": 0.984375,
|
1390 |
+
"step": 92
|
1391 |
+
},
|
1392 |
+
{
|
1393 |
+
"advantages": 3.725290298461914e-09,
|
1394 |
+
"completion_length": 83.671875,
|
1395 |
+
"epoch": 0.577639751552795,
|
1396 |
+
"grad_norm": 9.30271053314209,
|
1397 |
+
"kl": 0.017822265625,
|
1398 |
+
"learning_rate": 4.2236024844720495e-07,
|
1399 |
+
"loss": 0.0018,
|
1400 |
+
"reward": 1.796875,
|
1401 |
+
"reward_mean": 1.796875,
|
1402 |
+
"reward_std": 0.23144522309303284,
|
1403 |
+
"rewards/accuracy_reward": 0.796875,
|
1404 |
+
"rewards/format_reward": 1.0,
|
1405 |
+
"step": 93
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"advantages": -4.6566128730773926e-09,
|
1409 |
+
"completion_length": 77.53125,
|
1410 |
+
"epoch": 0.5838509316770186,
|
1411 |
+
"grad_norm": 6.170975685119629,
|
1412 |
+
"kl": 0.009521484375,
|
1413 |
+
"learning_rate": 4.161490683229814e-07,
|
1414 |
+
"loss": 0.001,
|
1415 |
+
"reward": 1.65625,
|
1416 |
+
"reward_mean": 1.65625,
|
1417 |
+
"reward_std": 0.16675157845020294,
|
1418 |
+
"rewards/accuracy_reward": 0.65625,
|
1419 |
+
"rewards/format_reward": 1.0,
|
1420 |
+
"step": 94
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"advantages": -1.862645149230957e-09,
|
1424 |
+
"completion_length": 85.640625,
|
1425 |
+
"epoch": 0.5900621118012422,
|
1426 |
+
"grad_norm": 4.217593669891357,
|
1427 |
+
"kl": 0.01409912109375,
|
1428 |
+
"learning_rate": 4.0993788819875776e-07,
|
1429 |
+
"loss": 0.0014,
|
1430 |
+
"reward": 1.734375,
|
1431 |
+
"reward_mean": 1.734375,
|
1432 |
+
"reward_std": 0.15992169082164764,
|
1433 |
+
"rewards/accuracy_reward": 0.75,
|
1434 |
+
"rewards/format_reward": 0.984375,
|
1435 |
+
"step": 95
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"advantages": 0.0,
|
1439 |
+
"completion_length": 77.296875,
|
1440 |
+
"epoch": 0.5962732919254659,
|
1441 |
+
"grad_norm": 6.138365268707275,
|
1442 |
+
"kl": 0.0106201171875,
|
1443 |
+
"learning_rate": 4.0372670807453413e-07,
|
1444 |
+
"loss": 0.0011,
|
1445 |
+
"reward": 1.375,
|
1446 |
+
"reward_mean": 1.375,
|
1447 |
+
"reward_std": 0.06681530922651291,
|
1448 |
+
"rewards/accuracy_reward": 0.390625,
|
1449 |
+
"rewards/format_reward": 0.984375,
|
1450 |
+
"step": 96
|
1451 |
+
},
|
1452 |
+
{
|
1453 |
+
"advantages": 1.862645149230957e-09,
|
1454 |
+
"completion_length": 76.484375,
|
1455 |
+
"epoch": 0.6024844720496895,
|
1456 |
+
"grad_norm": 1.2896429300308228,
|
1457 |
+
"kl": 0.00970458984375,
|
1458 |
+
"learning_rate": 3.975155279503105e-07,
|
1459 |
+
"loss": 0.001,
|
1460 |
+
"reward": 1.71875,
|
1461 |
+
"reward_mean": 1.71875,
|
1462 |
+
"reward_std": 0.0883883461356163,
|
1463 |
+
"rewards/accuracy_reward": 0.734375,
|
1464 |
+
"rewards/format_reward": 0.984375,
|
1465 |
+
"step": 97
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"advantages": -3.725290298461914e-09,
|
1469 |
+
"completion_length": 81.71875,
|
1470 |
+
"epoch": 0.6086956521739131,
|
1471 |
+
"grad_norm": 6.941093444824219,
|
1472 |
+
"kl": 0.01165771484375,
|
1473 |
+
"learning_rate": 3.9130434782608694e-07,
|
1474 |
+
"loss": 0.0012,
|
1475 |
+
"reward": 1.71875,
|
1476 |
+
"reward_mean": 1.71875,
|
1477 |
+
"reward_std": 0.0578637570142746,
|
1478 |
+
"rewards/accuracy_reward": 0.71875,
|
1479 |
+
"rewards/format_reward": 1.0,
|
1480 |
+
"step": 98
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"advantages": -3.725290298461914e-09,
|
1484 |
+
"completion_length": 81.390625,
|
1485 |
+
"epoch": 0.6149068322981367,
|
1486 |
+
"grad_norm": 3.163457155227661,
|
1487 |
+
"kl": 0.00787353515625,
|
1488 |
+
"learning_rate": 3.850931677018633e-07,
|
1489 |
+
"loss": 0.0008,
|
1490 |
+
"reward": 1.96875,
|
1491 |
+
"reward_mean": 1.96875,
|
1492 |
+
"reward_std": 0.0883883461356163,
|
1493 |
+
"rewards/accuracy_reward": 0.96875,
|
1494 |
+
"rewards/format_reward": 1.0,
|
1495 |
+
"step": 99
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"advantages": 4.6566128730773926e-09,
|
1499 |
+
"completion_length": 79.1875,
|
1500 |
+
"epoch": 0.6211180124223602,
|
1501 |
+
"grad_norm": 4.2669830322265625,
|
1502 |
+
"kl": 0.0108642578125,
|
1503 |
+
"learning_rate": 3.7888198757763975e-07,
|
1504 |
+
"loss": 0.0011,
|
1505 |
+
"reward": 1.671875,
|
1506 |
+
"reward_mean": 1.671875,
|
1507 |
+
"reward_std": 0.0646936446428299,
|
1508 |
+
"rewards/accuracy_reward": 0.671875,
|
1509 |
+
"rewards/format_reward": 1.0,
|
1510 |
+
"step": 100
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"advantages": -1.862645149230957e-09,
|
1514 |
+
"completion_length": 77.578125,
|
1515 |
+
"epoch": 0.6273291925465838,
|
1516 |
+
"grad_norm": 6.153615474700928,
|
1517 |
+
"kl": 0.0101318359375,
|
1518 |
+
"learning_rate": 3.7267080745341613e-07,
|
1519 |
+
"loss": 0.001,
|
1520 |
+
"reward": 1.359375,
|
1521 |
+
"reward_mean": 1.359375,
|
1522 |
+
"reward_std": 0.04419417306780815,
|
1523 |
+
"rewards/accuracy_reward": 0.359375,
|
1524 |
+
"rewards/format_reward": 1.0,
|
1525 |
+
"step": 101
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"advantages": -1.862645149230957e-09,
|
1529 |
+
"completion_length": 81.53125,
|
1530 |
+
"epoch": 0.6335403726708074,
|
1531 |
+
"grad_norm": 4.077609539031982,
|
1532 |
+
"kl": 0.0181884765625,
|
1533 |
+
"learning_rate": 3.6645962732919256e-07,
|
1534 |
+
"loss": 0.0018,
|
1535 |
+
"reward": 1.84375,
|
1536 |
+
"reward_mean": 1.84375,
|
1537 |
+
"reward_std": 0.2177756428718567,
|
1538 |
+
"rewards/accuracy_reward": 0.84375,
|
1539 |
+
"rewards/format_reward": 1.0,
|
1540 |
+
"step": 102
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"advantages": -3.725290298461914e-09,
|
1544 |
+
"completion_length": 80.375,
|
1545 |
+
"epoch": 0.639751552795031,
|
1546 |
+
"grad_norm": 3.084027051925659,
|
1547 |
+
"kl": 0.01007080078125,
|
1548 |
+
"learning_rate": 3.6024844720496894e-07,
|
1549 |
+
"loss": 0.001,
|
1550 |
+
"reward": 1.53125,
|
1551 |
+
"reward_mean": 1.53125,
|
1552 |
+
"reward_std": 0.1462521106004715,
|
1553 |
+
"rewards/accuracy_reward": 0.53125,
|
1554 |
+
"rewards/format_reward": 1.0,
|
1555 |
+
"step": 103
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"advantages": -3.725290298461914e-09,
|
1559 |
+
"completion_length": 83.953125,
|
1560 |
+
"epoch": 0.6459627329192547,
|
1561 |
+
"grad_norm": 2.0512335300445557,
|
1562 |
+
"kl": 0.007476806640625,
|
1563 |
+
"learning_rate": 3.540372670807453e-07,
|
1564 |
+
"loss": 0.0007,
|
1565 |
+
"reward": 1.453125,
|
1566 |
+
"reward_mean": 1.453125,
|
1567 |
+
"reward_std": 0.0646936446428299,
|
1568 |
+
"rewards/accuracy_reward": 0.453125,
|
1569 |
+
"rewards/format_reward": 1.0,
|
1570 |
+
"step": 104
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"advantages": 0.0,
|
1574 |
+
"completion_length": 82.5625,
|
1575 |
+
"epoch": 0.6521739130434783,
|
1576 |
+
"grad_norm": 0.5302374362945557,
|
1577 |
+
"kl": 0.00982666015625,
|
1578 |
+
"learning_rate": 3.478260869565217e-07,
|
1579 |
+
"loss": 0.001,
|
1580 |
+
"reward": 1.75,
|
1581 |
+
"reward_mean": 1.75,
|
1582 |
+
"reward_std": 0.0,
|
1583 |
+
"rewards/accuracy_reward": 0.75,
|
1584 |
+
"rewards/format_reward": 1.0,
|
1585 |
+
"step": 105
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"advantages": -4.6566128730773926e-09,
|
1589 |
+
"completion_length": 75.953125,
|
1590 |
+
"epoch": 0.6583850931677019,
|
1591 |
+
"grad_norm": 6.2678751945495605,
|
1592 |
+
"kl": 0.0111083984375,
|
1593 |
+
"learning_rate": 3.416149068322981e-07,
|
1594 |
+
"loss": 0.0011,
|
1595 |
+
"reward": 1.890625,
|
1596 |
+
"reward_mean": 1.890625,
|
1597 |
+
"reward_std": 0.1315089464187622,
|
1598 |
+
"rewards/accuracy_reward": 0.890625,
|
1599 |
+
"rewards/format_reward": 1.0,
|
1600 |
+
"step": 106
|
1601 |
+
},
|
1602 |
+
{
|
1603 |
+
"advantages": -3.725290298461914e-09,
|
1604 |
+
"completion_length": 78.328125,
|
1605 |
+
"epoch": 0.6645962732919255,
|
1606 |
+
"grad_norm": 1.7859537601470947,
|
1607 |
+
"kl": 0.00946044921875,
|
1608 |
+
"learning_rate": 3.3540372670807456e-07,
|
1609 |
+
"loss": 0.0009,
|
1610 |
+
"reward": 1.71875,
|
1611 |
+
"reward_mean": 1.71875,
|
1612 |
+
"reward_std": 0.0883883461356163,
|
1613 |
+
"rewards/accuracy_reward": 0.71875,
|
1614 |
+
"rewards/format_reward": 1.0,
|
1615 |
+
"step": 107
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"advantages": -3.725290298461914e-09,
|
1619 |
+
"completion_length": 91.8125,
|
1620 |
+
"epoch": 0.6708074534161491,
|
1621 |
+
"grad_norm": 2.7167623043060303,
|
1622 |
+
"kl": 0.0081787109375,
|
1623 |
+
"learning_rate": 3.2919254658385094e-07,
|
1624 |
+
"loss": 0.0008,
|
1625 |
+
"reward": 1.65625,
|
1626 |
+
"reward_mean": 1.65625,
|
1627 |
+
"reward_std": 0.0883883461356163,
|
1628 |
+
"rewards/accuracy_reward": 0.671875,
|
1629 |
+
"rewards/format_reward": 0.984375,
|
1630 |
+
"step": 108
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"advantages": 0.0,
|
1634 |
+
"completion_length": 76.984375,
|
1635 |
+
"epoch": 0.6770186335403726,
|
1636 |
+
"grad_norm": 5.3628058433532715,
|
1637 |
+
"kl": 0.009033203125,
|
1638 |
+
"learning_rate": 3.229813664596273e-07,
|
1639 |
+
"loss": 0.0009,
|
1640 |
+
"reward": 1.515625,
|
1641 |
+
"reward_mean": 1.515625,
|
1642 |
+
"reward_std": 0.19044628739356995,
|
1643 |
+
"rewards/accuracy_reward": 0.515625,
|
1644 |
+
"rewards/format_reward": 1.0,
|
1645 |
+
"step": 109
|
1646 |
+
},
|
1647 |
+
{
|
1648 |
+
"advantages": -1.862645149230957e-09,
|
1649 |
+
"completion_length": 73.5,
|
1650 |
+
"epoch": 0.6832298136645962,
|
1651 |
+
"grad_norm": 3.2727582454681396,
|
1652 |
+
"kl": 0.0108642578125,
|
1653 |
+
"learning_rate": 3.167701863354037e-07,
|
1654 |
+
"loss": 0.0011,
|
1655 |
+
"reward": 1.609375,
|
1656 |
+
"reward_mean": 1.609375,
|
1657 |
+
"reward_std": 0.04419417306780815,
|
1658 |
+
"rewards/accuracy_reward": 0.609375,
|
1659 |
+
"rewards/format_reward": 1.0,
|
1660 |
+
"step": 110
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"advantages": 0.0,
|
1664 |
+
"completion_length": 75.75,
|
1665 |
+
"epoch": 0.6894409937888198,
|
1666 |
+
"grad_norm": 11.552366256713867,
|
1667 |
+
"kl": 0.0145263671875,
|
1668 |
+
"learning_rate": 3.105590062111801e-07,
|
1669 |
+
"loss": 0.0015,
|
1670 |
+
"reward": 1.75,
|
1671 |
+
"reward_mean": 1.75,
|
1672 |
+
"reward_std": 0.1157275140285492,
|
1673 |
+
"rewards/accuracy_reward": 0.75,
|
1674 |
+
"rewards/format_reward": 1.0,
|
1675 |
+
"step": 111
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"advantages": 3.725290298461914e-09,
|
1679 |
+
"completion_length": 85.734375,
|
1680 |
+
"epoch": 0.6956521739130435,
|
1681 |
+
"grad_norm": 6.025736331939697,
|
1682 |
+
"kl": 0.01556396484375,
|
1683 |
+
"learning_rate": 3.043478260869565e-07,
|
1684 |
+
"loss": 0.0016,
|
1685 |
+
"reward": 1.59375,
|
1686 |
+
"reward_mean": 1.59375,
|
1687 |
+
"reward_std": 0.1552036553621292,
|
1688 |
+
"rewards/accuracy_reward": 0.59375,
|
1689 |
+
"rewards/format_reward": 1.0,
|
1690 |
+
"step": 112
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"advantages": -3.725290298461914e-09,
|
1694 |
+
"completion_length": 82.734375,
|
1695 |
+
"epoch": 0.7018633540372671,
|
1696 |
+
"grad_norm": 15.336418151855469,
|
1697 |
+
"kl": 0.057373046875,
|
1698 |
+
"learning_rate": 2.9813664596273294e-07,
|
1699 |
+
"loss": 0.0057,
|
1700 |
+
"reward": 1.84375,
|
1701 |
+
"reward_mean": 1.84375,
|
1702 |
+
"reward_std": 0.0883883461356163,
|
1703 |
+
"rewards/accuracy_reward": 0.84375,
|
1704 |
+
"rewards/format_reward": 1.0,
|
1705 |
+
"step": 113
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"advantages": -3.725290298461914e-09,
|
1709 |
+
"completion_length": 78.953125,
|
1710 |
+
"epoch": 0.7080745341614907,
|
1711 |
+
"grad_norm": 65.76184844970703,
|
1712 |
+
"kl": 0.01385498046875,
|
1713 |
+
"learning_rate": 2.919254658385093e-07,
|
1714 |
+
"loss": 0.0014,
|
1715 |
+
"reward": 1.90625,
|
1716 |
+
"reward_mean": 1.90625,
|
1717 |
+
"reward_std": 0.1552036553621292,
|
1718 |
+
"rewards/accuracy_reward": 0.90625,
|
1719 |
+
"rewards/format_reward": 1.0,
|
1720 |
+
"step": 114
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"advantages": -1.862645149230957e-09,
|
1724 |
+
"completion_length": 79.765625,
|
1725 |
+
"epoch": 0.7142857142857143,
|
1726 |
+
"grad_norm": 3.660456657409668,
|
1727 |
+
"kl": 0.0194091796875,
|
1728 |
+
"learning_rate": 2.857142857142857e-07,
|
1729 |
+
"loss": 0.0019,
|
1730 |
+
"reward": 1.59375,
|
1731 |
+
"reward_mean": 1.59375,
|
1732 |
+
"reward_std": 0.10888782143592834,
|
1733 |
+
"rewards/accuracy_reward": 0.59375,
|
1734 |
+
"rewards/format_reward": 1.0,
|
1735 |
+
"step": 115
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"advantages": -5.587935447692871e-09,
|
1739 |
+
"completion_length": 76.34375,
|
1740 |
+
"epoch": 0.7204968944099379,
|
1741 |
+
"grad_norm": 4.989613056182861,
|
1742 |
+
"kl": 0.00787353515625,
|
1743 |
+
"learning_rate": 2.7950310559006207e-07,
|
1744 |
+
"loss": 0.0008,
|
1745 |
+
"reward": 1.828125,
|
1746 |
+
"reward_mean": 1.828125,
|
1747 |
+
"reward_std": 0.13258251547813416,
|
1748 |
+
"rewards/accuracy_reward": 0.84375,
|
1749 |
+
"rewards/format_reward": 0.984375,
|
1750 |
+
"step": 116
|
1751 |
+
},
|
1752 |
+
{
|
1753 |
+
"advantages": -9.313225746154785e-10,
|
1754 |
+
"completion_length": 77.859375,
|
1755 |
+
"epoch": 0.7267080745341615,
|
1756 |
+
"grad_norm": 2.4932050704956055,
|
1757 |
+
"kl": 0.0081787109375,
|
1758 |
+
"learning_rate": 2.732919254658385e-07,
|
1759 |
+
"loss": 0.0008,
|
1760 |
+
"reward": 1.859375,
|
1761 |
+
"reward_mean": 1.859375,
|
1762 |
+
"reward_std": 0.12255740165710449,
|
1763 |
+
"rewards/accuracy_reward": 0.859375,
|
1764 |
+
"rewards/format_reward": 1.0,
|
1765 |
+
"step": 117
|
1766 |
+
},
|
1767 |
+
{
|
1768 |
+
"advantages": 1.862645149230957e-09,
|
1769 |
+
"completion_length": 84.5,
|
1770 |
+
"epoch": 0.7329192546583851,
|
1771 |
+
"grad_norm": 5.0420732498168945,
|
1772 |
+
"kl": 0.01226806640625,
|
1773 |
+
"learning_rate": 2.670807453416149e-07,
|
1774 |
+
"loss": 0.0012,
|
1775 |
+
"reward": 1.640625,
|
1776 |
+
"reward_mean": 1.640625,
|
1777 |
+
"reward_std": 0.23144522309303284,
|
1778 |
+
"rewards/accuracy_reward": 0.640625,
|
1779 |
+
"rewards/format_reward": 1.0,
|
1780 |
+
"step": 118
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"advantages": -1.862645149230957e-09,
|
1784 |
+
"completion_length": 79.703125,
|
1785 |
+
"epoch": 0.7391304347826086,
|
1786 |
+
"grad_norm": 3.599855899810791,
|
1787 |
+
"kl": 0.0086669921875,
|
1788 |
+
"learning_rate": 2.6086956521739126e-07,
|
1789 |
+
"loss": 0.0009,
|
1790 |
+
"reward": 1.484375,
|
1791 |
+
"reward_mean": 1.484375,
|
1792 |
+
"reward_std": 0.13258251547813416,
|
1793 |
+
"rewards/accuracy_reward": 0.484375,
|
1794 |
+
"rewards/format_reward": 1.0,
|
1795 |
+
"step": 119
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"advantages": -5.587935447692871e-09,
|
1799 |
+
"completion_length": 79.1875,
|
1800 |
+
"epoch": 0.7453416149068323,
|
1801 |
+
"grad_norm": 3.320706605911255,
|
1802 |
+
"kl": 0.0133056640625,
|
1803 |
+
"learning_rate": 2.546583850931677e-07,
|
1804 |
+
"loss": 0.0013,
|
1805 |
+
"reward": 1.828125,
|
1806 |
+
"reward_mean": 1.828125,
|
1807 |
+
"reward_std": 0.10205793380737305,
|
1808 |
+
"rewards/accuracy_reward": 0.828125,
|
1809 |
+
"rewards/format_reward": 1.0,
|
1810 |
+
"step": 120
|
1811 |
+
},
|
1812 |
+
{
|
1813 |
+
"advantages": -8.381903171539307e-09,
|
1814 |
+
"completion_length": 95.203125,
|
1815 |
+
"epoch": 0.7515527950310559,
|
1816 |
+
"grad_norm": 2.8366851806640625,
|
1817 |
+
"kl": 0.0064697265625,
|
1818 |
+
"learning_rate": 2.4844720496894407e-07,
|
1819 |
+
"loss": 0.0006,
|
1820 |
+
"reward": 1.671875,
|
1821 |
+
"reward_mean": 1.671875,
|
1822 |
+
"reward_std": 0.1530819833278656,
|
1823 |
+
"rewards/accuracy_reward": 0.671875,
|
1824 |
+
"rewards/format_reward": 1.0,
|
1825 |
+
"step": 121
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"advantages": 1.862645149230957e-09,
|
1829 |
+
"completion_length": 78.765625,
|
1830 |
+
"epoch": 0.7577639751552795,
|
1831 |
+
"grad_norm": 3.376732587814331,
|
1832 |
+
"kl": 0.00860595703125,
|
1833 |
+
"learning_rate": 2.422360248447205e-07,
|
1834 |
+
"loss": 0.0009,
|
1835 |
+
"reward": 1.640625,
|
1836 |
+
"reward_mean": 1.640625,
|
1837 |
+
"reward_std": 0.10205793380737305,
|
1838 |
+
"rewards/accuracy_reward": 0.640625,
|
1839 |
+
"rewards/format_reward": 1.0,
|
1840 |
+
"step": 122
|
1841 |
+
},
|
1842 |
+
{
|
1843 |
+
"advantages": 1.862645149230957e-09,
|
1844 |
+
"completion_length": 79.453125,
|
1845 |
+
"epoch": 0.7639751552795031,
|
1846 |
+
"grad_norm": 3.5682129859924316,
|
1847 |
+
"kl": 0.018798828125,
|
1848 |
+
"learning_rate": 2.3602484472049688e-07,
|
1849 |
+
"loss": 0.0019,
|
1850 |
+
"reward": 1.671875,
|
1851 |
+
"reward_mean": 1.671875,
|
1852 |
+
"reward_std": 0.1804211586713791,
|
1853 |
+
"rewards/accuracy_reward": 0.671875,
|
1854 |
+
"rewards/format_reward": 1.0,
|
1855 |
+
"step": 123
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"advantages": 4.6566128730773926e-09,
|
1859 |
+
"completion_length": 74.96875,
|
1860 |
+
"epoch": 0.7701863354037267,
|
1861 |
+
"grad_norm": 2.6698434352874756,
|
1862 |
+
"kl": 0.006256103515625,
|
1863 |
+
"learning_rate": 2.2981366459627326e-07,
|
1864 |
+
"loss": 0.0006,
|
1865 |
+
"reward": 1.546875,
|
1866 |
+
"reward_mean": 1.546875,
|
1867 |
+
"reward_std": 0.0646936446428299,
|
1868 |
+
"rewards/accuracy_reward": 0.546875,
|
1869 |
+
"rewards/format_reward": 1.0,
|
1870 |
+
"step": 124
|
1871 |
+
},
|
1872 |
+
{
|
1873 |
+
"advantages": 0.0,
|
1874 |
+
"completion_length": 78.421875,
|
1875 |
+
"epoch": 0.7763975155279503,
|
1876 |
+
"grad_norm": 3.1063811779022217,
|
1877 |
+
"kl": 0.01214599609375,
|
1878 |
+
"learning_rate": 2.236024844720497e-07,
|
1879 |
+
"loss": 0.0012,
|
1880 |
+
"reward": 1.765625,
|
1881 |
+
"reward_mean": 1.765625,
|
1882 |
+
"reward_std": 0.12255740165710449,
|
1883 |
+
"rewards/accuracy_reward": 0.765625,
|
1884 |
+
"rewards/format_reward": 1.0,
|
1885 |
+
"step": 125
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"advantages": 1.862645149230957e-09,
|
1889 |
+
"completion_length": 86.703125,
|
1890 |
+
"epoch": 0.782608695652174,
|
1891 |
+
"grad_norm": 2.7392446994781494,
|
1892 |
+
"kl": 0.00634765625,
|
1893 |
+
"learning_rate": 2.1739130434782607e-07,
|
1894 |
+
"loss": 0.0006,
|
1895 |
+
"reward": 1.640625,
|
1896 |
+
"reward_mean": 1.640625,
|
1897 |
+
"reward_std": 0.04419417306780815,
|
1898 |
+
"rewards/accuracy_reward": 0.640625,
|
1899 |
+
"rewards/format_reward": 1.0,
|
1900 |
+
"step": 126
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"advantages": 7.450580596923828e-09,
|
1904 |
+
"completion_length": 83.546875,
|
1905 |
+
"epoch": 0.7888198757763976,
|
1906 |
+
"grad_norm": 9.345684051513672,
|
1907 |
+
"kl": 0.008056640625,
|
1908 |
+
"learning_rate": 2.1118012422360247e-07,
|
1909 |
+
"loss": 0.0008,
|
1910 |
+
"reward": 1.296875,
|
1911 |
+
"reward_mean": 1.296875,
|
1912 |
+
"reward_std": 0.19044628739356995,
|
1913 |
+
"rewards/accuracy_reward": 0.296875,
|
1914 |
+
"rewards/format_reward": 1.0,
|
1915 |
+
"step": 127
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"advantages": 0.0,
|
1919 |
+
"completion_length": 85.84375,
|
1920 |
+
"epoch": 0.7950310559006211,
|
1921 |
+
"grad_norm": 0.22835175693035126,
|
1922 |
+
"kl": 0.0084228515625,
|
1923 |
+
"learning_rate": 2.0496894409937888e-07,
|
1924 |
+
"loss": 0.0008,
|
1925 |
+
"reward": 1.75,
|
1926 |
+
"reward_mean": 1.75,
|
1927 |
+
"reward_std": 0.0,
|
1928 |
+
"rewards/accuracy_reward": 0.75,
|
1929 |
+
"rewards/format_reward": 1.0,
|
1930 |
+
"step": 128
|
1931 |
+
},
|
1932 |
+
{
|
1933 |
+
"advantages": 0.0,
|
1934 |
+
"completion_length": 81.828125,
|
1935 |
+
"epoch": 0.8012422360248447,
|
1936 |
+
"grad_norm": 2.44989275932312,
|
1937 |
+
"kl": 0.007171630859375,
|
1938 |
+
"learning_rate": 1.9875776397515526e-07,
|
1939 |
+
"loss": 0.0007,
|
1940 |
+
"reward": 1.5,
|
1941 |
+
"reward_mean": 1.5,
|
1942 |
+
"reward_std": 0.0883883461356163,
|
1943 |
+
"rewards/accuracy_reward": 0.5,
|
1944 |
+
"rewards/format_reward": 1.0,
|
1945 |
+
"step": 129
|
1946 |
+
},
|
1947 |
+
{
|
1948 |
+
"advantages": 9.313225746154785e-10,
|
1949 |
+
"completion_length": 83.296875,
|
1950 |
+
"epoch": 0.8074534161490683,
|
1951 |
+
"grad_norm": 26.60379409790039,
|
1952 |
+
"kl": 0.01031494140625,
|
1953 |
+
"learning_rate": 1.9254658385093166e-07,
|
1954 |
+
"loss": 0.001,
|
1955 |
+
"reward": 1.640625,
|
1956 |
+
"reward_mean": 1.640625,
|
1957 |
+
"reward_std": 0.1530819982290268,
|
1958 |
+
"rewards/accuracy_reward": 0.640625,
|
1959 |
+
"rewards/format_reward": 1.0,
|
1960 |
+
"step": 130
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"advantages": -3.725290298461914e-09,
|
1964 |
+
"completion_length": 75.296875,
|
1965 |
+
"epoch": 0.8136645962732919,
|
1966 |
+
"grad_norm": 2.649775981903076,
|
1967 |
+
"kl": 0.00787353515625,
|
1968 |
+
"learning_rate": 1.8633540372670807e-07,
|
1969 |
+
"loss": 0.0008,
|
1970 |
+
"reward": 1.71875,
|
1971 |
+
"reward_mean": 1.71875,
|
1972 |
+
"reward_std": 0.0883883461356163,
|
1973 |
+
"rewards/accuracy_reward": 0.71875,
|
1974 |
+
"rewards/format_reward": 1.0,
|
1975 |
+
"step": 131
|
1976 |
+
},
|
1977 |
+
{
|
1978 |
+
"advantages": -7.450580596923828e-09,
|
1979 |
+
"completion_length": 72.921875,
|
1980 |
+
"epoch": 0.8198757763975155,
|
1981 |
+
"grad_norm": 6.021523952484131,
|
1982 |
+
"kl": 0.017333984375,
|
1983 |
+
"learning_rate": 1.8012422360248447e-07,
|
1984 |
+
"loss": 0.0017,
|
1985 |
+
"reward": 1.546875,
|
1986 |
+
"reward_mean": 1.546875,
|
1987 |
+
"reward_std": 0.17358146607875824,
|
1988 |
+
"rewards/accuracy_reward": 0.546875,
|
1989 |
+
"rewards/format_reward": 1.0,
|
1990 |
+
"step": 132
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"advantages": 1.862645149230957e-09,
|
1994 |
+
"completion_length": 80.203125,
|
1995 |
+
"epoch": 0.8260869565217391,
|
1996 |
+
"grad_norm": 5.850553035736084,
|
1997 |
+
"kl": 0.0118408203125,
|
1998 |
+
"learning_rate": 1.7391304347826085e-07,
|
1999 |
+
"loss": 0.0012,
|
2000 |
+
"reward": 1.671875,
|
2001 |
+
"reward_mean": 1.671875,
|
2002 |
+
"reward_std": 0.25726157426834106,
|
2003 |
+
"rewards/accuracy_reward": 0.671875,
|
2004 |
+
"rewards/format_reward": 1.0,
|
2005 |
+
"step": 133
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"advantages": -5.587935447692871e-09,
|
2009 |
+
"completion_length": 90.234375,
|
2010 |
+
"epoch": 0.8322981366459627,
|
2011 |
+
"grad_norm": 9.700899124145508,
|
2012 |
+
"kl": 0.01422119140625,
|
2013 |
+
"learning_rate": 1.6770186335403728e-07,
|
2014 |
+
"loss": 0.0014,
|
2015 |
+
"reward": 1.78125,
|
2016 |
+
"reward_mean": 1.78125,
|
2017 |
+
"reward_std": 0.2651650309562683,
|
2018 |
+
"rewards/accuracy_reward": 0.828125,
|
2019 |
+
"rewards/format_reward": 0.953125,
|
2020 |
+
"step": 134
|
2021 |
+
},
|
2022 |
+
{
|
2023 |
+
"advantages": 3.725290298461914e-09,
|
2024 |
+
"completion_length": 81.90625,
|
2025 |
+
"epoch": 0.8385093167701864,
|
2026 |
+
"grad_norm": 2.9975473880767822,
|
2027 |
+
"kl": 0.00909423828125,
|
2028 |
+
"learning_rate": 1.6149068322981366e-07,
|
2029 |
+
"loss": 0.0009,
|
2030 |
+
"reward": 1.6875,
|
2031 |
+
"reward_mean": 1.6875,
|
2032 |
+
"reward_std": 0.1552036553621292,
|
2033 |
+
"rewards/accuracy_reward": 0.6875,
|
2034 |
+
"rewards/format_reward": 1.0,
|
2035 |
+
"step": 135
|
2036 |
+
},
|
2037 |
+
{
|
2038 |
+
"advantages": -3.725290298461914e-09,
|
2039 |
+
"completion_length": 79.3125,
|
2040 |
+
"epoch": 0.84472049689441,
|
2041 |
+
"grad_norm": 4.324582099914551,
|
2042 |
+
"kl": 0.01165771484375,
|
2043 |
+
"learning_rate": 1.5527950310559004e-07,
|
2044 |
+
"loss": 0.0012,
|
2045 |
+
"reward": 1.84375,
|
2046 |
+
"reward_mean": 1.84375,
|
2047 |
+
"reward_std": 0.2177756428718567,
|
2048 |
+
"rewards/accuracy_reward": 0.859375,
|
2049 |
+
"rewards/format_reward": 0.984375,
|
2050 |
+
"step": 136
|
2051 |
+
},
|
2052 |
+
{
|
2053 |
+
"advantages": 7.450580596923828e-09,
|
2054 |
+
"completion_length": 80.265625,
|
2055 |
+
"epoch": 0.8509316770186336,
|
2056 |
+
"grad_norm": 3.8911736011505127,
|
2057 |
+
"kl": 0.009521484375,
|
2058 |
+
"learning_rate": 1.4906832298136647e-07,
|
2059 |
+
"loss": 0.001,
|
2060 |
+
"reward": 1.5625,
|
2061 |
+
"reward_mean": 1.5625,
|
2062 |
+
"reward_std": 0.1552036553621292,
|
2063 |
+
"rewards/accuracy_reward": 0.5625,
|
2064 |
+
"rewards/format_reward": 1.0,
|
2065 |
+
"step": 137
|
2066 |
+
},
|
2067 |
+
{
|
2068 |
+
"advantages": 0.0,
|
2069 |
+
"completion_length": 78.40625,
|
2070 |
+
"epoch": 0.8571428571428571,
|
2071 |
+
"grad_norm": 2.864941120147705,
|
2072 |
+
"kl": 0.01129150390625,
|
2073 |
+
"learning_rate": 1.4285714285714285e-07,
|
2074 |
+
"loss": 0.0011,
|
2075 |
+
"reward": 1.765625,
|
2076 |
+
"reward_mean": 1.765625,
|
2077 |
+
"reward_std": 0.10205793380737305,
|
2078 |
+
"rewards/accuracy_reward": 0.765625,
|
2079 |
+
"rewards/format_reward": 1.0,
|
2080 |
+
"step": 138
|
2081 |
+
},
|
2082 |
+
{
|
2083 |
+
"advantages": 3.725290298461914e-09,
|
2084 |
+
"completion_length": 80.21875,
|
2085 |
+
"epoch": 0.8633540372670807,
|
2086 |
+
"grad_norm": 5.788990497589111,
|
2087 |
+
"kl": 0.00799560546875,
|
2088 |
+
"learning_rate": 1.3664596273291925e-07,
|
2089 |
+
"loss": 0.0008,
|
2090 |
+
"reward": 1.5625,
|
2091 |
+
"reward_mean": 1.5625,
|
2092 |
+
"reward_std": 0.1552036553621292,
|
2093 |
+
"rewards/accuracy_reward": 0.5625,
|
2094 |
+
"rewards/format_reward": 1.0,
|
2095 |
+
"step": 139
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"advantages": -1.862645149230957e-09,
|
2099 |
+
"completion_length": 92.90625,
|
2100 |
+
"epoch": 0.8695652173913043,
|
2101 |
+
"grad_norm": 4.130926609039307,
|
2102 |
+
"kl": 0.0111083984375,
|
2103 |
+
"learning_rate": 1.3043478260869563e-07,
|
2104 |
+
"loss": 0.0011,
|
2105 |
+
"reward": 1.859375,
|
2106 |
+
"reward_mean": 1.859375,
|
2107 |
+
"reward_std": 0.2198973000049591,
|
2108 |
+
"rewards/accuracy_reward": 0.859375,
|
2109 |
+
"rewards/format_reward": 1.0,
|
2110 |
+
"step": 140
|
2111 |
+
},
|
2112 |
+
{
|
2113 |
+
"advantages": -3.725290298461914e-09,
|
2114 |
+
"completion_length": 79.109375,
|
2115 |
+
"epoch": 0.8757763975155279,
|
2116 |
+
"grad_norm": 3.025212287902832,
|
2117 |
+
"kl": 0.01324462890625,
|
2118 |
+
"learning_rate": 1.2422360248447204e-07,
|
2119 |
+
"loss": 0.0013,
|
2120 |
+
"reward": 1.46875,
|
2121 |
+
"reward_mean": 1.46875,
|
2122 |
+
"reward_std": 0.1767766922712326,
|
2123 |
+
"rewards/accuracy_reward": 0.484375,
|
2124 |
+
"rewards/format_reward": 0.984375,
|
2125 |
+
"step": 141
|
2126 |
+
},
|
2127 |
+
{
|
2128 |
+
"advantages": 3.725290298461914e-09,
|
2129 |
+
"completion_length": 78.25,
|
2130 |
+
"epoch": 0.8819875776397516,
|
2131 |
+
"grad_norm": 6.828762531280518,
|
2132 |
+
"kl": 0.01177978515625,
|
2133 |
+
"learning_rate": 1.1801242236024844e-07,
|
2134 |
+
"loss": 0.0012,
|
2135 |
+
"reward": 1.40625,
|
2136 |
+
"reward_mean": 1.40625,
|
2137 |
+
"reward_std": 0.1462520956993103,
|
2138 |
+
"rewards/accuracy_reward": 0.40625,
|
2139 |
+
"rewards/format_reward": 1.0,
|
2140 |
+
"step": 142
|
2141 |
+
},
|
2142 |
+
{
|
2143 |
+
"advantages": 0.0,
|
2144 |
+
"completion_length": 73.625,
|
2145 |
+
"epoch": 0.8881987577639752,
|
2146 |
+
"grad_norm": 3.4486515522003174,
|
2147 |
+
"kl": 0.00762939453125,
|
2148 |
+
"learning_rate": 1.1180124223602484e-07,
|
2149 |
+
"loss": 0.0008,
|
2150 |
+
"reward": 1.65625,
|
2151 |
+
"reward_mean": 1.65625,
|
2152 |
+
"reward_std": 0.1552036553621292,
|
2153 |
+
"rewards/accuracy_reward": 0.65625,
|
2154 |
+
"rewards/format_reward": 1.0,
|
2155 |
+
"step": 143
|
2156 |
+
},
|
2157 |
+
{
|
2158 |
+
"advantages": -3.725290298461914e-09,
|
2159 |
+
"completion_length": 80.359375,
|
2160 |
+
"epoch": 0.8944099378881988,
|
2161 |
+
"grad_norm": 8.272978782653809,
|
2162 |
+
"kl": 0.00628662109375,
|
2163 |
+
"learning_rate": 1.0559006211180124e-07,
|
2164 |
+
"loss": 0.0006,
|
2165 |
+
"reward": 1.71875,
|
2166 |
+
"reward_mean": 1.71875,
|
2167 |
+
"reward_std": 0.0883883461356163,
|
2168 |
+
"rewards/accuracy_reward": 0.734375,
|
2169 |
+
"rewards/format_reward": 0.984375,
|
2170 |
+
"step": 144
|
2171 |
+
},
|
2172 |
+
{
|
2173 |
+
"advantages": -7.450580596923828e-09,
|
2174 |
+
"completion_length": 81.1875,
|
2175 |
+
"epoch": 0.9006211180124224,
|
2176 |
+
"grad_norm": 4.848587512969971,
|
2177 |
+
"kl": 0.017578125,
|
2178 |
+
"learning_rate": 9.937888198757763e-08,
|
2179 |
+
"loss": 0.0018,
|
2180 |
+
"reward": 1.5625,
|
2181 |
+
"reward_mean": 1.5625,
|
2182 |
+
"reward_std": 0.2041158676147461,
|
2183 |
+
"rewards/accuracy_reward": 0.5625,
|
2184 |
+
"rewards/format_reward": 1.0,
|
2185 |
+
"step": 145
|
2186 |
+
},
|
2187 |
+
{
|
2188 |
+
"advantages": 0.0,
|
2189 |
+
"completion_length": 79.984375,
|
2190 |
+
"epoch": 0.906832298136646,
|
2191 |
+
"grad_norm": 0.3604845702648163,
|
2192 |
+
"kl": 0.00958251953125,
|
2193 |
+
"learning_rate": 9.316770186335403e-08,
|
2194 |
+
"loss": 0.001,
|
2195 |
+
"reward": 1.75,
|
2196 |
+
"reward_mean": 1.75,
|
2197 |
+
"reward_std": 0.0,
|
2198 |
+
"rewards/accuracy_reward": 0.75,
|
2199 |
+
"rewards/format_reward": 1.0,
|
2200 |
+
"step": 146
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"advantages": 5.587935447692871e-09,
|
2204 |
+
"completion_length": 76.5625,
|
2205 |
+
"epoch": 0.9130434782608695,
|
2206 |
+
"grad_norm": 10.680438995361328,
|
2207 |
+
"kl": 0.01116943359375,
|
2208 |
+
"learning_rate": 8.695652173913042e-08,
|
2209 |
+
"loss": 0.0011,
|
2210 |
+
"reward": 1.671875,
|
2211 |
+
"reward_mean": 1.671875,
|
2212 |
+
"reward_std": 0.19939783215522766,
|
2213 |
+
"rewards/accuracy_reward": 0.671875,
|
2214 |
+
"rewards/format_reward": 1.0,
|
2215 |
+
"step": 147
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"advantages": -3.725290298461914e-09,
|
2219 |
+
"completion_length": 76.984375,
|
2220 |
+
"epoch": 0.9192546583850931,
|
2221 |
+
"grad_norm": 2.091907024383545,
|
2222 |
+
"kl": 0.010498046875,
|
2223 |
+
"learning_rate": 8.074534161490683e-08,
|
2224 |
+
"loss": 0.0011,
|
2225 |
+
"reward": 1.640625,
|
2226 |
+
"reward_mean": 1.640625,
|
2227 |
+
"reward_std": 0.08010874688625336,
|
2228 |
+
"rewards/accuracy_reward": 0.65625,
|
2229 |
+
"rewards/format_reward": 0.984375,
|
2230 |
+
"step": 148
|
2231 |
+
},
|
2232 |
+
{
|
2233 |
+
"advantages": 0.0,
|
2234 |
+
"completion_length": 76.203125,
|
2235 |
+
"epoch": 0.9254658385093167,
|
2236 |
+
"grad_norm": 0.20045147836208344,
|
2237 |
+
"kl": 0.0078125,
|
2238 |
+
"learning_rate": 7.453416149068323e-08,
|
2239 |
+
"loss": 0.0008,
|
2240 |
+
"reward": 1.75,
|
2241 |
+
"reward_mean": 1.75,
|
2242 |
+
"reward_std": 0.0,
|
2243 |
+
"rewards/accuracy_reward": 0.75,
|
2244 |
+
"rewards/format_reward": 1.0,
|
2245 |
+
"step": 149
|
2246 |
+
},
|
2247 |
+
{
|
2248 |
+
"advantages": 0.0,
|
2249 |
+
"completion_length": 84.140625,
|
2250 |
+
"epoch": 0.9316770186335404,
|
2251 |
+
"grad_norm": 3.21720814704895,
|
2252 |
+
"kl": 0.008544921875,
|
2253 |
+
"learning_rate": 6.832298136645963e-08,
|
2254 |
+
"loss": 0.0009,
|
2255 |
+
"reward": 1.6875,
|
2256 |
+
"reward_mean": 1.6875,
|
2257 |
+
"reward_std": 0.06681530922651291,
|
2258 |
+
"rewards/accuracy_reward": 0.6875,
|
2259 |
+
"rewards/format_reward": 1.0,
|
2260 |
+
"step": 150
|
2261 |
+
},
|
2262 |
+
{
|
2263 |
+
"advantages": -1.862645149230957e-09,
|
2264 |
+
"completion_length": 82.734375,
|
2265 |
+
"epoch": 0.937888198757764,
|
2266 |
+
"grad_norm": 7.955801963806152,
|
2267 |
+
"kl": 0.01263427734375,
|
2268 |
+
"learning_rate": 6.211180124223602e-08,
|
2269 |
+
"loss": 0.0013,
|
2270 |
+
"reward": 1.734375,
|
2271 |
+
"reward_mean": 1.734375,
|
2272 |
+
"reward_std": 0.10205793380737305,
|
2273 |
+
"rewards/accuracy_reward": 0.734375,
|
2274 |
+
"rewards/format_reward": 1.0,
|
2275 |
+
"step": 151
|
2276 |
+
},
|
2277 |
+
{
|
2278 |
+
"advantages": 3.725290298461914e-09,
|
2279 |
+
"completion_length": 72.96875,
|
2280 |
+
"epoch": 0.9440993788819876,
|
2281 |
+
"grad_norm": 3.563530921936035,
|
2282 |
+
"kl": 0.0093994140625,
|
2283 |
+
"learning_rate": 5.590062111801242e-08,
|
2284 |
+
"loss": 0.0009,
|
2285 |
+
"reward": 1.90625,
|
2286 |
+
"reward_mean": 1.90625,
|
2287 |
+
"reward_std": 0.0578637570142746,
|
2288 |
+
"rewards/accuracy_reward": 0.90625,
|
2289 |
+
"rewards/format_reward": 1.0,
|
2290 |
+
"step": 152
|
2291 |
+
},
|
2292 |
+
{
|
2293 |
+
"advantages": -9.313225746154785e-09,
|
2294 |
+
"completion_length": 83.125,
|
2295 |
+
"epoch": 0.9503105590062112,
|
2296 |
+
"grad_norm": 9.811988830566406,
|
2297 |
+
"kl": 0.0184326171875,
|
2298 |
+
"learning_rate": 4.9689440993788814e-08,
|
2299 |
+
"loss": 0.0019,
|
2300 |
+
"reward": 1.796875,
|
2301 |
+
"reward_mean": 1.796875,
|
2302 |
+
"reward_std": 0.15992169082164764,
|
2303 |
+
"rewards/accuracy_reward": 0.796875,
|
2304 |
+
"rewards/format_reward": 1.0,
|
2305 |
+
"step": 153
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"advantages": -1.0244548320770264e-08,
|
2309 |
+
"completion_length": 83.515625,
|
2310 |
+
"epoch": 0.9565217391304348,
|
2311 |
+
"grad_norm": 3.8269639015197754,
|
2312 |
+
"kl": 0.0133056640625,
|
2313 |
+
"learning_rate": 4.347826086956521e-08,
|
2314 |
+
"loss": 0.0013,
|
2315 |
+
"reward": 1.78125,
|
2316 |
+
"reward_mean": 1.78125,
|
2317 |
+
"reward_std": 0.16675157845020294,
|
2318 |
+
"rewards/accuracy_reward": 0.78125,
|
2319 |
+
"rewards/format_reward": 1.0,
|
2320 |
+
"step": 154
|
2321 |
+
},
|
2322 |
+
{
|
2323 |
+
"advantages": -7.450580596923828e-09,
|
2324 |
+
"completion_length": 85.671875,
|
2325 |
+
"epoch": 0.9627329192546584,
|
2326 |
+
"grad_norm": 3.470165252685547,
|
2327 |
+
"kl": 0.01300048828125,
|
2328 |
+
"learning_rate": 3.726708074534162e-08,
|
2329 |
+
"loss": 0.0013,
|
2330 |
+
"reward": 1.5625,
|
2331 |
+
"reward_mean": 1.5625,
|
2332 |
+
"reward_std": 0.1462520956993103,
|
2333 |
+
"rewards/accuracy_reward": 0.5625,
|
2334 |
+
"rewards/format_reward": 1.0,
|
2335 |
+
"step": 155
|
2336 |
+
},
|
2337 |
+
{
|
2338 |
+
"advantages": -9.313225746154785e-10,
|
2339 |
+
"completion_length": 84.203125,
|
2340 |
+
"epoch": 0.968944099378882,
|
2341 |
+
"grad_norm": 2.550407648086548,
|
2342 |
+
"kl": 0.00946044921875,
|
2343 |
+
"learning_rate": 3.105590062111801e-08,
|
2344 |
+
"loss": 0.0009,
|
2345 |
+
"reward": 1.625,
|
2346 |
+
"reward_mean": 1.625,
|
2347 |
+
"reward_std": 0.16675157845020294,
|
2348 |
+
"rewards/accuracy_reward": 0.640625,
|
2349 |
+
"rewards/format_reward": 0.984375,
|
2350 |
+
"step": 156
|
2351 |
+
},
|
2352 |
+
{
|
2353 |
+
"advantages": 3.725290298461914e-09,
|
2354 |
+
"completion_length": 76.296875,
|
2355 |
+
"epoch": 0.9751552795031055,
|
2356 |
+
"grad_norm": 3.396425247192383,
|
2357 |
+
"kl": 0.00714111328125,
|
2358 |
+
"learning_rate": 2.4844720496894407e-08,
|
2359 |
+
"loss": 0.0007,
|
2360 |
+
"reward": 1.546875,
|
2361 |
+
"reward_mean": 1.546875,
|
2362 |
+
"reward_std": 0.15992169082164764,
|
2363 |
+
"rewards/accuracy_reward": 0.546875,
|
2364 |
+
"rewards/format_reward": 1.0,
|
2365 |
+
"step": 157
|
2366 |
+
},
|
2367 |
+
{
|
2368 |
+
"advantages": -2.7939677238464355e-09,
|
2369 |
+
"completion_length": 73.859375,
|
2370 |
+
"epoch": 0.9813664596273292,
|
2371 |
+
"grad_norm": 3.776041030883789,
|
2372 |
+
"kl": 0.00921630859375,
|
2373 |
+
"learning_rate": 1.863354037267081e-08,
|
2374 |
+
"loss": 0.0009,
|
2375 |
+
"reward": 1.59375,
|
2376 |
+
"reward_mean": 1.59375,
|
2377 |
+
"reward_std": 0.10888782143592834,
|
2378 |
+
"rewards/accuracy_reward": 0.59375,
|
2379 |
+
"rewards/format_reward": 1.0,
|
2380 |
+
"step": 158
|
2381 |
+
},
|
2382 |
+
{
|
2383 |
+
"advantages": 1.862645149230957e-09,
|
2384 |
+
"completion_length": 77.953125,
|
2385 |
+
"epoch": 0.9875776397515528,
|
2386 |
+
"grad_norm": 3.304471254348755,
|
2387 |
+
"kl": 0.01263427734375,
|
2388 |
+
"learning_rate": 1.2422360248447204e-08,
|
2389 |
+
"loss": 0.0013,
|
2390 |
+
"reward": 1.796875,
|
2391 |
+
"reward_mean": 1.796875,
|
2392 |
+
"reward_std": 0.11100947856903076,
|
2393 |
+
"rewards/accuracy_reward": 0.796875,
|
2394 |
+
"rewards/format_reward": 1.0,
|
2395 |
+
"step": 159
|
2396 |
+
},
|
2397 |
+
{
|
2398 |
+
"advantages": 0.0,
|
2399 |
+
"completion_length": 79.25,
|
2400 |
+
"epoch": 0.9937888198757764,
|
2401 |
+
"grad_norm": 5.823967456817627,
|
2402 |
+
"kl": 0.00897216796875,
|
2403 |
+
"learning_rate": 6.211180124223602e-09,
|
2404 |
+
"loss": 0.0009,
|
2405 |
+
"reward": 1.5,
|
2406 |
+
"reward_mean": 1.5,
|
2407 |
+
"reward_std": 0.0883883461356163,
|
2408 |
+
"rewards/accuracy_reward": 0.5,
|
2409 |
+
"rewards/format_reward": 1.0,
|
2410 |
+
"step": 160
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"advantages": -0.5890890955924988,
|
2414 |
+
"completion_length": 89.33333587646484,
|
2415 |
+
"epoch": 1.0,
|
2416 |
+
"grad_norm": 2.0931286811828613,
|
2417 |
+
"kl": 0.00677490234375,
|
2418 |
+
"learning_rate": 0.0,
|
2419 |
+
"loss": 0.001,
|
2420 |
+
"reward": 1.6666667461395264,
|
2421 |
+
"reward_mean": 1.875,
|
2422 |
+
"reward_std": 0.3535533845424652,
|
2423 |
+
"rewards/accuracy_reward": 0.6666666865348816,
|
2424 |
+
"rewards/format_reward": 1.0,
|
2425 |
+
"step": 161
|
2426 |
+
}
|
2427 |
+
],
|
2428 |
+
"logging_steps": 1.0,
|
2429 |
+
"max_steps": 161,
|
2430 |
+
"num_input_tokens_seen": 0,
|
2431 |
+
"num_train_epochs": 1,
|
2432 |
+
"save_steps": 10,
|
2433 |
+
"stateful_callbacks": {
|
2434 |
+
"TrainerControl": {
|
2435 |
+
"args": {
|
2436 |
+
"should_epoch_stop": false,
|
2437 |
+
"should_evaluate": false,
|
2438 |
+
"should_log": false,
|
2439 |
+
"should_save": true,
|
2440 |
+
"should_training_stop": true
|
2441 |
+
},
|
2442 |
+
"attributes": {}
|
2443 |
+
}
|
2444 |
+
},
|
2445 |
+
"total_flos": 0.0,
|
2446 |
+
"train_batch_size": 1,
|
2447 |
+
"trial_name": null,
|
2448 |
+
"trial_params": null
|
2449 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ff22b61060846c443ccf16d8054c34f49711075b591a288d7706ce0f75243ee
|
3 |
+
size 8056
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|