antitheft159 commited on
Commit
29b0628
·
verified ·
1 Parent(s): aabdd71

Upload 676_252_1434_72.py

Browse files
Files changed (1) hide show
  1. 676_252_1434_72.py +57 -0
676_252_1434_72.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """676_252_1434_72
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1FniZJX1OfI1PltPCXhpw50znN1aYMFcP
8
+ """
9
+
10
+ import numpy as np
11
+ import pandas as pd
12
+
13
+ import os
14
+ for dirname, _, filenames in os.walk('/content/world_bank_data_2025.csv'):
15
+ for filename in filenames:
16
+ print(os.path.join(dirname, filename))
17
+
18
+ import pandas as pd
19
+ import seaborn as sns
20
+ import matplotlib.pyplot as plt
21
+
22
+ df = pd.read_csv('/content/world_bank_data_2025.csv')
23
+ df.head()
24
+
25
+ print("Shape of dataset:", df.shape)
26
+ print("COlumns:\n", df.columns.tolist())
27
+ print("\nMissing values:\n", df.isnull().sum())
28
+ df.dtypes
29
+
30
+ indicators = df.columns.difference(['country_name', 'country_id', 'year'])
31
+ df_clean = df.dropna(subset=indicators, how='all')
32
+
33
+ top_countries = df_clean.groupby('country_name')['GDP (Current USD)'].mean().nlargest(10).index
34
+ gdp_plot = df_clean[df_clean['country_name'].isin(top_countries)]
35
+
36
+ plt.figure(figsize=(12, 6))
37
+ sns.lineplot(data=gdp_plot, x='year', y='GDP (Current USD)', hue='country_name')
38
+ plt.title('GDP Trends (Top 10 Countries by Avg GDP)')
39
+ plt.ylabel('GDP in USD')
40
+ plt.xticks(rotation=45)
41
+ plt.grid(True)
42
+ plt.tight_layout()
43
+ plt.show()
44
+
45
+ numeric_df = df_clean.select_dtypes(include=['number']).drop(columns=['year'])
46
+ plt.figure(figsize=(10, 8))
47
+ sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt='.2f')
48
+ plt.title('Correlation Between Economic Indicators')
49
+ plt.show()
50
+
51
+ inflation_2020 = df_clean[df_clean['year'] == 2020]
52
+ plt.figure(figsize=(12, 5))
53
+ sns.histplot(inflation_2020['Inflation (CPI %)'].dropna(), bins=30, kde=True, color='orange')
54
+ plt.title('Inflation Rate Distribution - 2020')
55
+ plt.xlabel('Inflation (CPI %)')
56
+ plt.grid(True)
57
+ plt.show()