# -*- coding: utf-8 -*- """676_252_1434_72 Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1FniZJX1OfI1PltPCXhpw50znN1aYMFcP """ import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/content/world_bank_data_2025.csv'): for filename in filenames: print(os.path.join(dirname, filename)) import pandas as pd import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('/content/world_bank_data_2025.csv') df.head() print("Shape of dataset:", df.shape) print("COlumns:\n", df.columns.tolist()) print("\nMissing values:\n", df.isnull().sum()) df.dtypes indicators = df.columns.difference(['country_name', 'country_id', 'year']) df_clean = df.dropna(subset=indicators, how='all') top_countries = df_clean.groupby('country_name')['GDP (Current USD)'].mean().nlargest(10).index gdp_plot = df_clean[df_clean['country_name'].isin(top_countries)] plt.figure(figsize=(12, 6)) sns.lineplot(data=gdp_plot, x='year', y='GDP (Current USD)', hue='country_name') plt.title('GDP Trends (Top 10 Countries by Avg GDP)') plt.ylabel('GDP in USD') plt.xticks(rotation=45) plt.grid(True) plt.tight_layout() plt.show() numeric_df = df_clean.select_dtypes(include=['number']).drop(columns=['year']) plt.figure(figsize=(10, 8)) sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt='.2f') plt.title('Correlation Between Economic Indicators') plt.show() inflation_2020 = df_clean[df_clean['year'] == 2020] plt.figure(figsize=(12, 5)) sns.histplot(inflation_2020['Inflation (CPI %)'].dropna(), bins=30, kde=True, color='orange') plt.title('Inflation Rate Distribution - 2020') plt.xlabel('Inflation (CPI %)') plt.grid(True) plt.show()