|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FrequencyMaskingNet(nn.Module): | 
					
						
						|  | def __init__(self, input_size=1, hidden_size=64, output_size=1): | 
					
						
						|  | super(FrequencyMaskingNet, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.fc1 = nn.Linear(input_size, hidden_size) | 
					
						
						|  | self.fc2 = nn.Linear(hidden_size, hidden_size) | 
					
						
						|  | self.fc3 = nn.Linear(hidden_size, output_size) | 
					
						
						|  | self.relu = nn.ReLU() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.relu(self.fc1(x)) | 
					
						
						|  | x = self.relu(self.fc2(x)) | 
					
						
						|  | x = self.fc3(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_frequencies(ip, model, iterations=100): | 
					
						
						|  |  | 
					
						
						|  | ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | frequencies = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for _ in range(iterations): | 
					
						
						|  |  | 
					
						
						|  | frequency = model(ip_tensor) | 
					
						
						|  | frequencies.append(frequency.item()) | 
					
						
						|  |  | 
					
						
						|  | return frequencies | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model = FrequencyMaskingNet() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ip_address = 192.168 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | masked_frequencies = generate_frequencies(ip_address, model) | 
					
						
						|  |  | 
					
						
						|  | print(masked_frequencies) | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import matplotlib.pyplot as plt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FrequencyMaskingNet(nn.Module): | 
					
						
						|  | def __init__(self, input_size=1, hidden_size=64, output_size=1): | 
					
						
						|  | super(FrequencyMaskingNet, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.fc1 = nn.Linear(input_size, hidden_size) | 
					
						
						|  | self.fc2 = nn.Linear(hidden_size, hidden_size) | 
					
						
						|  | self.fc3 = nn.Linear(hidden_size, output_size) | 
					
						
						|  | self.relu = nn.ReLU() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.relu(self.fc1(x)) | 
					
						
						|  | x = self.relu(self.fc2(x)) | 
					
						
						|  | x = self.fc3(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_frequencies(ip, model, iterations=100): | 
					
						
						|  |  | 
					
						
						|  | ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | frequencies = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for _ in range(iterations): | 
					
						
						|  |  | 
					
						
						|  | frequency = model(ip_tensor) | 
					
						
						|  | frequencies.append(frequency.item()) | 
					
						
						|  |  | 
					
						
						|  | return frequencies | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def plot_frequencies(frequencies): | 
					
						
						|  | plt.figure(figsize=(10, 4)) | 
					
						
						|  | plt.plot(frequencies, color='b', label="Masked Frequencies") | 
					
						
						|  | plt.title("Generated Frequency Waveform for IP Masking") | 
					
						
						|  | plt.xlabel("Iterations") | 
					
						
						|  | plt.ylabel("Frequency Amplitude") | 
					
						
						|  | plt.grid(True) | 
					
						
						|  | plt.legend() | 
					
						
						|  | plt.show() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model = FrequencyMaskingNet() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ip_address = 192.168 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | masked_frequencies = generate_frequencies(ip_address, model) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plot_frequencies(masked_frequencies) | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import matplotlib.pyplot as plt | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FrequencyMaskingNet(nn.Module): | 
					
						
						|  | def __init__(self, input_size=1, hidden_size=64, output_size=1): | 
					
						
						|  | super(FrequencyMaskingNet, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.fc1 = nn.Linear(input_size, hidden_size) | 
					
						
						|  | self.fc2 = nn.Linear(hidden_size, hidden_size) | 
					
						
						|  | self.fc3 = nn.Linear(hidden_size, output_size) | 
					
						
						|  | self.relu = nn.ReLU() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.relu(self.fc1(x)) | 
					
						
						|  | x = self.relu(self.fc2(x)) | 
					
						
						|  | x = self.fc3(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_frequencies(ip, model, iterations=100): | 
					
						
						|  | ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) | 
					
						
						|  | frequencies = [] | 
					
						
						|  |  | 
					
						
						|  | for _ in range(iterations): | 
					
						
						|  | frequency = model(ip_tensor) | 
					
						
						|  | frequencies.append(frequency.item()) | 
					
						
						|  |  | 
					
						
						|  | return frequencies | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_wealth_signal(iterations=100): | 
					
						
						|  |  | 
					
						
						|  | time = np.linspace(0, 10, iterations) | 
					
						
						|  | wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) | 
					
						
						|  | return wealth_signal | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def plot_frequencies(frequencies, wealth_signal): | 
					
						
						|  | plt.figure(figsize=(10, 4)) | 
					
						
						|  | plt.plot(frequencies, color='b', label="Masked Frequencies") | 
					
						
						|  | plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal") | 
					
						
						|  | plt.title("Generated Frequency Waveform with Wealth Signal") | 
					
						
						|  | plt.xlabel("Iterations") | 
					
						
						|  | plt.ylabel("Amplitude") | 
					
						
						|  | plt.grid(True) | 
					
						
						|  | plt.legend() | 
					
						
						|  | plt.show() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model = FrequencyMaskingNet() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ip_address = 192.168 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | masked_frequencies = generate_frequencies(ip_address, model) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | wealth_signal = generate_wealth_signal(len(masked_frequencies)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plot_frequencies(masked_frequencies, wealth_signal) | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import matplotlib.pyplot as plt | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FrequencyMaskingNet(nn.Module): | 
					
						
						|  | def __init__(self, input_size=1, hidden_size=64, output_size=1): | 
					
						
						|  | super(FrequencyMaskingNet, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.fc1 = nn.Linear(input_size, hidden_size) | 
					
						
						|  | self.fc2 = nn.Linear(hidden_size, hidden_size) | 
					
						
						|  | self.fc3 = nn.Linear(hidden_size, output_size) | 
					
						
						|  | self.relu = nn.ReLU() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = self.relu(self.fc1(x)) | 
					
						
						|  | x = self.relu(self.fc2(x)) | 
					
						
						|  | x = self.fc3(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_frequencies(ip, model, iterations=100): | 
					
						
						|  | ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) | 
					
						
						|  | frequencies = [] | 
					
						
						|  |  | 
					
						
						|  | for _ in range(iterations): | 
					
						
						|  | frequency = model(ip_tensor) | 
					
						
						|  | frequencies.append(frequency.item()) | 
					
						
						|  |  | 
					
						
						|  | return frequencies | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_wealth_signal(iterations=100): | 
					
						
						|  | time = np.linspace(0, 10, iterations) | 
					
						
						|  | wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) | 
					
						
						|  | return wealth_signal | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_encryption_waveform(iterations=100): | 
					
						
						|  | time = np.linspace(0, 10, iterations) | 
					
						
						|  |  | 
					
						
						|  | encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations) | 
					
						
						|  | return encryption_signal | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index): | 
					
						
						|  | plt.figure(figsize=(10, 4)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plt.plot(frequencies, color='b', label="Masked Frequencies") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)), | 
					
						
						|  | encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2) | 
					
						
						|  |  | 
					
						
						|  | plt.title("SecureWealth Transmittor") | 
					
						
						|  | plt.xlabel("Iterations") | 
					
						
						|  | plt.ylabel("Amplitude") | 
					
						
						|  | plt.grid(True) | 
					
						
						|  | plt.legend() | 
					
						
						|  | plt.show() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model = FrequencyMaskingNet() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ip_address = 192.168 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | masked_frequencies = generate_frequencies(ip_address, model) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | wealth_signal = generate_wealth_signal(len(masked_frequencies)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | target_reached_index = np.argmax(wealth_signal) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index) |