File size: 7,362 Bytes
3a95ddb
 
 
 
 
 
 
 
85a624f
 
 
 
 
 
 
 
 
3a95ddb
 
85a624f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a95ddb
85a624f
 
 
 
 
 
3a95ddb
85a624f
3a95ddb
85a624f
3a95ddb
85a624f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
---
base_model: codellama/CodeLlama-13b-Instruct-hf
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:codellama/CodeLlama-13b-Instruct-hf
- lora
- transformers
- configuration-management
- secrets-management
- devops
- multi-cloud
- codellama
license: mit
language:
- en
model_size: 13B
---

# AnySecret Assistant - 13B Model

The **largest and most capable** model in the AnySecret Assistant collection. Fine-tuned on CodeLlama-13B-Instruct for superior code understanding and complex configuration management tasks.

## 🎯 Model Overview

- **Base Model:** CodeLlama-13B-Instruct-hf
- **Parameters:** 13 billion
- **Model Type:** LoRA Adapter
- **Specialization:** Code-focused AnySecret configuration management
- **Memory Requirements:** 16-24GB (FP16), 7.8GB (GGUF Q4_K_M)

## πŸš€ Best Use Cases

This model excels at:
- βœ… **Complex Configuration Scenarios** - Multi-step, multi-cloud setups
- βœ… **Advanced Troubleshooting** - Debugging configuration issues
- βœ… **Code Generation** - Python SDK integration, custom scripts
- βœ… **Production Guidance** - Enterprise-grade deployment patterns
- βœ… **Architecture Design** - Comprehensive secrets management strategies

## πŸ“¦ Quick Start

### Option 1: Using Transformers + PEFT

```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load the 13B model
base_model = AutoModelForCausalLM.from_pretrained(
    "codellama/CodeLlama-13b-Instruct-hf",
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_4bit=True  # Recommended for consumer GPUs
)

model = PeftModel.from_pretrained(base_model, "anysecret-io/anysecret-assistant/13B")
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-13b-Instruct-hf")

def ask_anysecret_13b(question):
    prompt = f"### Instruction:\n{question}\n\n### Response:\n"
    inputs = tokenizer(prompt, return_tensors="pt")
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs, 
            max_new_tokens=512,  # More tokens for detailed responses
            temperature=0.1,
            do_sample=True,
            top_p=0.9
        )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response.split("### Response:\n")[-1].strip()

# Example: Complex multi-cloud setup
question = """
I need to set up AnySecret for a microservices architecture that spans:
- AWS EKS cluster with Secrets Manager
- GCP Cloud Run services with Secret Manager  
- Azure Container Instances with Key Vault
- CI/CD pipeline that can deploy to all three

Can you provide a comprehensive configuration strategy?
"""

print(ask_anysecret_13b(question))
```

### Option 2: Using 4-bit Quantization (Recommended)

```python
from transformers import BitsAndBytesConfig

# 4-bit quantization for efficient memory usage
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_use_double_quant=True
)

base_model = AutoModelForCausalLM.from_pretrained(
    "codellama/CodeLlama-13b-Instruct-hf",
    quantization_config=bnb_config,
    device_map="auto"
)

# Continue with PeftModel loading...
```

## πŸ’‘ Example Use Cases

### 1. Complex Multi-Cloud Architecture

```python
question = """
Design a secrets management strategy for a fintech application with:
- Microservices on AWS EKS
- Data pipeline on GCP Dataflow
- ML models on Azure ML
- Strict compliance requirements (SOC2, PCI-DSS)
- Automatic secret rotation every 30 days
"""
```

### 2. Advanced Python SDK Integration

```python
question = """
Show me how to implement a custom AnySecret provider that:
1. Integrates with HashiCorp Vault
2. Supports dynamic secret generation
3. Implements automatic retry with exponential backoff
4. Includes comprehensive error handling and logging
5. Is compatible with asyncio applications
"""
```

### 3. Enterprise CI/CD Pipeline

```python
question = """
Create a comprehensive CI/CD pipeline configuration that:
- Uses AnySecret across GitHub Actions, Jenkins, and GitLab CI
- Implements environment-specific secret promotion
- Includes automated testing of secret configurations
- Supports blue-green deployments with secret validation
- Has rollback capabilities for failed deployments
"""
```

## πŸ”§ Model Performance

### Benchmark Results (RTX 3090)

| Metric | Performance |
|--------|-------------|
| **Inference Speed** | ~15 tokens/sec (FP16) |
| **Quality Score** | 9.1/10 |
| **Memory Usage** | 24GB (FP16), 8GB (4-bit) |
| **Context Length** | 4096 tokens |
| **Response Quality** | Excellent for complex queries |

### Comparison with Other Sizes

| Feature | 3B | 7B | **13B** |
|---------|----|----|---------|
| Speed | ⭐⭐⭐ | ⭐⭐ | ⭐ |
| Quality | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ |
| Code Understanding | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ |
| Complex Reasoning | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ |
| Memory Requirement | Low | Medium | High |

## 🎯 Training Details

### Specialized Training Data

The 13B model was trained on additional complex scenarios:

- **Enterprise Patterns** (15 examples) - Large-scale deployment patterns
- **Advanced Troubleshooting** (10 examples) - Complex error scenarios  
- **Custom Integration** (10 examples) - Building custom providers
- **Performance Optimization** (8 examples) - Scaling and optimization
- **Security Hardening** (7 examples) - Advanced security configurations

### Training Configuration

- **LoRA Rank:** 16 (optimized for 13B parameters)
- **LoRA Alpha:** 32
- **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- **Learning Rate:** 2e-4 (with warm-up)
- **Training Epochs:** 3
- **Batch Size:** 1 with gradient accumulation steps: 16
- **Precision:** 4-bit quantization during training

## πŸš€ Deployment Recommendations

### For Development
```bash
# Use 4-bit quantization
python -c "
import torch
from transformers import BitsAndBytesConfig
# Quantized loading code here
"
```

### For Production
```dockerfile
# Docker deployment with optimizations
FROM nvidia/cuda:11.8-runtime-ubuntu22.04

# Install dependencies
RUN pip install torch transformers peft bitsandbytes

# Load model with optimizations
COPY model_loader.py /app/
CMD ["python", "/app/model_loader.py"]
```

### Hardware Requirements

| Deployment | GPU Memory | CPU Memory | Storage |
|------------|------------|------------|---------|
| **Development** | 8GB+ (quantized) | 16GB+ | 50GB |
| **Production** | 24GB+ (full precision) | 32GB+ | 100GB |
| **GGUF (CPU)** | Optional | 16GB+ | 8GB |

## πŸ”— Related Models

- **7B Model:** `anysecret-io/anysecret-assistant/7B` - Faster, still excellent quality
- **3B Model:** `anysecret-io/anysecret-assistant/3B` - Fastest inference
- **GGUF Version:** `anysecret-io/anysecret-assistant/13B-GGUF` - Optimized for CPU/edge

## πŸ“š Resources

- **Documentation:** https://docs.anysecret.io
- **GitHub:** https://github.com/anysecret-io/anysecret-lib  
- **Training Code:** https://github.com/anysecret-io/anysecret-llm
- **Issues:** https://github.com/anysecret-io/anysecret-lib/issues

## βš–οΈ License

MIT License - Free for commercial and non-commercial use.

---

**Note:** This model requires significant compute resources. For lighter workloads, consider the 7B or 3B variants.