hyllus123 commited on
Commit
669f762
·
verified ·
1 Parent(s): 1ade150

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -143
README.md CHANGED
@@ -6,202 +6,163 @@ tags:
6
  - base_model:adapter:meta-llama/Llama-3.2-3B-Instruct
7
  - lora
8
  - transformers
 
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
 
 
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
-
24
 
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
 
33
- ### Model Sources [optional]
34
 
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
 
41
  ## Uses
42
 
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
  ### Direct Use
46
 
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
 
48
 
49
- [More Information Needed]
50
 
51
- ### Downstream Use [optional]
 
 
52
 
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
54
 
55
- [More Information Needed]
 
 
 
56
 
57
  ### Out-of-Scope Use
58
 
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
 
81
  ## Training Details
82
 
83
  ### Training Data
84
 
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
 
 
 
 
 
88
 
89
  ### Training Procedure
90
 
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
  #### Training Hyperparameters
99
 
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
 
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
 
134
- [More Information Needed]
 
 
135
 
136
- #### Summary
 
 
 
137
 
 
138
 
 
 
 
 
 
139
 
140
- ## Model Examination [optional]
 
141
 
142
- <!-- Relevant interpretability work for the model goes here -->
 
 
 
 
 
 
 
 
143
 
144
- [More Information Needed]
 
 
145
 
146
  ## Environmental Impact
147
 
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
 
158
- ## Technical Specifications [optional]
159
 
160
  ### Model Architecture and Objective
161
 
162
- [More Information Needed]
 
 
 
163
 
164
  ### Compute Infrastructure
165
 
166
- [More Information Needed]
167
-
168
  #### Hardware
169
-
170
- [More Information Needed]
171
 
172
  #### Software
 
 
 
 
173
 
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Authors [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Contact
203
-
204
- [More Information Needed]
205
- ### Framework versions
206
 
207
- - PEFT 0.17.1
 
 
 
 
6
  - base_model:adapter:meta-llama/Llama-3.2-3B-Instruct
7
  - lora
8
  - transformers
9
+ - configuration-management
10
+ - secrets-management
11
+ - devops
12
+ - multi-cloud
13
+ license: mit
14
+ language:
15
+ - en
16
  ---
17
 
18
+ # AnySecret Assistant
 
 
 
19
 
20
+ A specialized AI assistant for AnySecret configuration management, fine-tuned on Llama-3.2-3B-Instruct to help with multi-cloud secrets and parameters management.
21
 
22
  ## Model Details
23
 
24
  ### Model Description
25
 
26
+ This is a LoRA fine-tuned version of Llama-3.2-3B-Instruct, specifically trained to assist with AnySecret configuration management across AWS, GCP, Azure, and Kubernetes environments. The model can help with CLI commands, configuration setup, CI/CD integration, and Python SDK usage.
 
 
27
 
28
+ - **Developed by:** anysecret-io
29
+ - **Model type:** Causal Language Model (LoRA Adapter)
30
+ - **Language(s) (NLP):** English
31
+ - **License:** MIT
32
+ - **Finetuned from model:** meta-llama/Llama-3.2-3B-Instruct
 
 
33
 
34
+ ### Model Sources
35
 
36
+ - **Repository:** https://github.com/anysecret-io/anysecret
37
+ - **Documentation:** https://anysecret.io
38
+ - **Demo:** Coming soon
 
 
39
 
40
  ## Uses
41
 
 
 
42
  ### Direct Use
43
 
44
+ This model is designed to provide expert assistance with:
45
+ - AnySecret CLI commands and usage patterns
46
+ - Multi-cloud configuration (AWS, GCP, Azure, Kubernetes)
47
+ - Secrets vs parameters classification and management
48
+ - CI/CD pipeline integration
49
+ - Python SDK implementation guidance
50
 
51
+ ### Example Usage
52
 
53
+ ```python
54
+ from peft import PeftModel
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
 
57
+ base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
58
+ model = PeftModel.from_pretrained(base_model, "anysecret-io/anysecret-assistant")
59
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
60
 
61
+ prompt = "### Instruction:\nHow do I configure AnySecret for AWS?\n\n### Response:\n"
62
+ inputs = tokenizer(prompt, return_tensors="pt")
63
+ outputs = model.generate(**inputs, max_new_tokens=256)
64
+ ```
65
 
66
  ### Out-of-Scope Use
67
 
68
+ This model is specifically trained for AnySecret configuration management and may not perform well on:
69
+ - General programming questions unrelated to configuration management
70
+ - Other secrets management tools or platforms
71
+ - Security vulnerabilities or exploitation techniques
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  ## Training Details
74
 
75
  ### Training Data
76
 
77
+ The model was trained on 43 curated examples across 7 categories:
78
+ - **CLI Commands** (9 examples) - Command usage patterns
79
+ - **AWS Configuration** (6 examples) - AWS Secrets Manager integration
80
+ - **GCP Configuration** (6 examples) - Google Secret Manager setup
81
+ - **Azure Configuration** (6 examples) - Azure Key Vault integration
82
+ - **Kubernetes** (6 examples) - K8s secrets and ConfigMaps
83
+ - **CI/CD Integration** (5 examples) - GitHub Actions, Jenkins workflows
84
+ - **Python Integration** (5 examples) - SDK usage patterns
85
 
86
  ### Training Procedure
87
 
 
 
 
 
 
 
 
88
  #### Training Hyperparameters
89
 
90
+ - **Base Model:** meta-llama/Llama-3.2-3B-Instruct
91
+ - **LoRA Rank:** 16
92
+ - **LoRA Alpha:** 32
93
+ - **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
94
+ - **Learning Rate:** 2e-4
95
+ - **Batch Size:** 1 (with gradient accumulation)
96
+ - **Epochs:** 2-3
97
+ - **Training regime:** fp16 mixed precision with 4-bit quantization
 
 
 
 
 
 
 
98
 
99
+ ## How to Get Started with the Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
+ ```python
102
+ # Install requirements
103
+ pip install torch transformers peft
104
 
105
+ # Load and use the model
106
+ from peft import PeftModel
107
+ from transformers import AutoModelForCausalLM, AutoTokenizer
108
+ import torch
109
 
110
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
111
 
112
+ base_model = AutoModelForCausalLM.from_pretrained(
113
+ "meta-llama/Llama-3.2-3B-Instruct",
114
+ torch_dtype=torch.float16,
115
+ device_map="auto"
116
+ )
117
 
118
+ model = PeftModel.from_pretrained(base_model, "anysecret-io/anysecret-assistant")
119
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
120
 
121
+ def ask_anysecret(question):
122
+ prompt = f"### Instruction:\n{question}\n\n### Response:\n"
123
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
124
+
125
+ with torch.no_grad():
126
+ outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.1)
127
+
128
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
129
+ return response.split("### Response:\n")[-1].strip()
130
 
131
+ # Example usage
132
+ print(ask_anysecret("How do I set a secret using anysecret CLI?"))
133
+ ```
134
 
135
  ## Environmental Impact
136
 
137
+ - **Hardware Type:** NVIDIA RTX 3090 / A6000
138
+ - **Hours used:** ~2-4 hours per training run
139
+ - **Training Framework:** PyTorch with PEFT and BitsAndBytes
140
+ - **Quantization:** 4-bit NF4 for memory efficiency
 
 
 
 
 
141
 
142
+ ## Technical Specifications
143
 
144
  ### Model Architecture and Objective
145
 
146
+ - **Architecture:** Llama-3.2 with LoRA adapters
147
+ - **Objective:** Causal language modeling for instruction following
148
+ - **LoRA Configuration:** Rank 16, Alpha 32, targeting attention and MLP layers
149
+ - **Quantization:** 4-bit NF4 with double quantization
150
 
151
  ### Compute Infrastructure
152
 
 
 
153
  #### Hardware
154
+ - NVIDIA RTX 3090 (24GB VRAM) for 3B models
155
+ - NVIDIA A6000 (48GB VRAM) for 13B models
156
 
157
  #### Software
158
+ - PyTorch 2.0+
159
+ - Transformers 4.35+
160
+ - PEFT 0.6+
161
+ - BitsAndBytes 0.41+
162
 
163
+ ## Framework versions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
+ - PEFT 0.17.1
166
+ - Transformers 4.35.0
167
+ - PyTorch 2.0.0
168
+ - BitsAndBytes 0.41.0