Update README.md
Browse files
README.md
CHANGED
@@ -6,202 +6,163 @@ tags:
|
|
6 |
- base_model:adapter:meta-llama/Llama-3.2-3B-Instruct
|
7 |
- lora
|
8 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
14 |
-
|
15 |
|
|
|
16 |
|
17 |
## Model Details
|
18 |
|
19 |
### Model Description
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
- **Developed by:**
|
26 |
-
- **
|
27 |
-
- **
|
28 |
-
- **
|
29 |
-
- **
|
30 |
-
- **License:** [More Information Needed]
|
31 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
32 |
|
33 |
-
### Model Sources
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
- **
|
38 |
-
- **Paper [optional]:** [More Information Needed]
|
39 |
-
- **Demo [optional]:** [More Information Needed]
|
40 |
|
41 |
## Uses
|
42 |
|
43 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
44 |
-
|
45 |
### Direct Use
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
|
|
|
|
|
54 |
|
55 |
-
|
|
|
|
|
|
|
56 |
|
57 |
### Out-of-Scope Use
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
## Bias, Risks, and Limitations
|
64 |
-
|
65 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
66 |
-
|
67 |
-
[More Information Needed]
|
68 |
-
|
69 |
-
### Recommendations
|
70 |
-
|
71 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
72 |
-
|
73 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
74 |
-
|
75 |
-
## How to Get Started with the Model
|
76 |
-
|
77 |
-
Use the code below to get started with the model.
|
78 |
-
|
79 |
-
[More Information Needed]
|
80 |
|
81 |
## Training Details
|
82 |
|
83 |
### Training Data
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
### Training Procedure
|
90 |
|
91 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
92 |
-
|
93 |
-
#### Preprocessing [optional]
|
94 |
-
|
95 |
-
[More Information Needed]
|
96 |
-
|
97 |
-
|
98 |
#### Training Hyperparameters
|
99 |
|
100 |
-
- **
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
## Evaluation
|
109 |
-
|
110 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
111 |
-
|
112 |
-
### Testing Data, Factors & Metrics
|
113 |
-
|
114 |
-
#### Testing Data
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
[More Information Needed]
|
119 |
-
|
120 |
-
#### Factors
|
121 |
-
|
122 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
#### Metrics
|
127 |
-
|
128 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
### Results
|
133 |
|
134 |
-
|
|
|
|
|
135 |
|
136 |
-
|
|
|
|
|
|
|
137 |
|
|
|
138 |
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
|
|
141 |
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
|
|
|
|
145 |
|
146 |
## Environmental Impact
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
- **Hardware Type:** [More Information Needed]
|
153 |
-
- **Hours used:** [More Information Needed]
|
154 |
-
- **Cloud Provider:** [More Information Needed]
|
155 |
-
- **Compute Region:** [More Information Needed]
|
156 |
-
- **Carbon Emitted:** [More Information Needed]
|
157 |
|
158 |
-
## Technical Specifications
|
159 |
|
160 |
### Model Architecture and Objective
|
161 |
|
162 |
-
|
|
|
|
|
|
|
163 |
|
164 |
### Compute Infrastructure
|
165 |
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
#### Hardware
|
169 |
-
|
170 |
-
|
171 |
|
172 |
#### Software
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
## Citation [optional]
|
177 |
-
|
178 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
179 |
-
|
180 |
-
**BibTeX:**
|
181 |
-
|
182 |
-
[More Information Needed]
|
183 |
-
|
184 |
-
**APA:**
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
## Glossary [optional]
|
189 |
-
|
190 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## More Information [optional]
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## Model Card Authors [optional]
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
-
|
202 |
-
## Model Card Contact
|
203 |
-
|
204 |
-
[More Information Needed]
|
205 |
-
### Framework versions
|
206 |
|
207 |
-
- PEFT 0.17.1
|
|
|
|
|
|
|
|
6 |
- base_model:adapter:meta-llama/Llama-3.2-3B-Instruct
|
7 |
- lora
|
8 |
- transformers
|
9 |
+
- configuration-management
|
10 |
+
- secrets-management
|
11 |
+
- devops
|
12 |
+
- multi-cloud
|
13 |
+
license: mit
|
14 |
+
language:
|
15 |
+
- en
|
16 |
---
|
17 |
|
18 |
+
# AnySecret Assistant
|
|
|
|
|
|
|
19 |
|
20 |
+
A specialized AI assistant for AnySecret configuration management, fine-tuned on Llama-3.2-3B-Instruct to help with multi-cloud secrets and parameters management.
|
21 |
|
22 |
## Model Details
|
23 |
|
24 |
### Model Description
|
25 |
|
26 |
+
This is a LoRA fine-tuned version of Llama-3.2-3B-Instruct, specifically trained to assist with AnySecret configuration management across AWS, GCP, Azure, and Kubernetes environments. The model can help with CLI commands, configuration setup, CI/CD integration, and Python SDK usage.
|
|
|
|
|
27 |
|
28 |
+
- **Developed by:** anysecret-io
|
29 |
+
- **Model type:** Causal Language Model (LoRA Adapter)
|
30 |
+
- **Language(s) (NLP):** English
|
31 |
+
- **License:** MIT
|
32 |
+
- **Finetuned from model:** meta-llama/Llama-3.2-3B-Instruct
|
|
|
|
|
33 |
|
34 |
+
### Model Sources
|
35 |
|
36 |
+
- **Repository:** https://github.com/anysecret-io/anysecret
|
37 |
+
- **Documentation:** https://anysecret.io
|
38 |
+
- **Demo:** Coming soon
|
|
|
|
|
39 |
|
40 |
## Uses
|
41 |
|
|
|
|
|
42 |
### Direct Use
|
43 |
|
44 |
+
This model is designed to provide expert assistance with:
|
45 |
+
- AnySecret CLI commands and usage patterns
|
46 |
+
- Multi-cloud configuration (AWS, GCP, Azure, Kubernetes)
|
47 |
+
- Secrets vs parameters classification and management
|
48 |
+
- CI/CD pipeline integration
|
49 |
+
- Python SDK implementation guidance
|
50 |
|
51 |
+
### Example Usage
|
52 |
|
53 |
+
```python
|
54 |
+
from peft import PeftModel
|
55 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
56 |
|
57 |
+
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
|
58 |
+
model = PeftModel.from_pretrained(base_model, "anysecret-io/anysecret-assistant")
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
|
60 |
|
61 |
+
prompt = "### Instruction:\nHow do I configure AnySecret for AWS?\n\n### Response:\n"
|
62 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
63 |
+
outputs = model.generate(**inputs, max_new_tokens=256)
|
64 |
+
```
|
65 |
|
66 |
### Out-of-Scope Use
|
67 |
|
68 |
+
This model is specifically trained for AnySecret configuration management and may not perform well on:
|
69 |
+
- General programming questions unrelated to configuration management
|
70 |
+
- Other secrets management tools or platforms
|
71 |
+
- Security vulnerabilities or exploitation techniques
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
## Training Details
|
74 |
|
75 |
### Training Data
|
76 |
|
77 |
+
The model was trained on 43 curated examples across 7 categories:
|
78 |
+
- **CLI Commands** (9 examples) - Command usage patterns
|
79 |
+
- **AWS Configuration** (6 examples) - AWS Secrets Manager integration
|
80 |
+
- **GCP Configuration** (6 examples) - Google Secret Manager setup
|
81 |
+
- **Azure Configuration** (6 examples) - Azure Key Vault integration
|
82 |
+
- **Kubernetes** (6 examples) - K8s secrets and ConfigMaps
|
83 |
+
- **CI/CD Integration** (5 examples) - GitHub Actions, Jenkins workflows
|
84 |
+
- **Python Integration** (5 examples) - SDK usage patterns
|
85 |
|
86 |
### Training Procedure
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
#### Training Hyperparameters
|
89 |
|
90 |
+
- **Base Model:** meta-llama/Llama-3.2-3B-Instruct
|
91 |
+
- **LoRA Rank:** 16
|
92 |
+
- **LoRA Alpha:** 32
|
93 |
+
- **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
|
94 |
+
- **Learning Rate:** 2e-4
|
95 |
+
- **Batch Size:** 1 (with gradient accumulation)
|
96 |
+
- **Epochs:** 2-3
|
97 |
+
- **Training regime:** fp16 mixed precision with 4-bit quantization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
## How to Get Started with the Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
```python
|
102 |
+
# Install requirements
|
103 |
+
pip install torch transformers peft
|
104 |
|
105 |
+
# Load and use the model
|
106 |
+
from peft import PeftModel
|
107 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
108 |
+
import torch
|
109 |
|
110 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
111 |
|
112 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
113 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
114 |
+
torch_dtype=torch.float16,
|
115 |
+
device_map="auto"
|
116 |
+
)
|
117 |
|
118 |
+
model = PeftModel.from_pretrained(base_model, "anysecret-io/anysecret-assistant")
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
|
120 |
|
121 |
+
def ask_anysecret(question):
|
122 |
+
prompt = f"### Instruction:\n{question}\n\n### Response:\n"
|
123 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
124 |
+
|
125 |
+
with torch.no_grad():
|
126 |
+
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.1)
|
127 |
+
|
128 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
129 |
+
return response.split("### Response:\n")[-1].strip()
|
130 |
|
131 |
+
# Example usage
|
132 |
+
print(ask_anysecret("How do I set a secret using anysecret CLI?"))
|
133 |
+
```
|
134 |
|
135 |
## Environmental Impact
|
136 |
|
137 |
+
- **Hardware Type:** NVIDIA RTX 3090 / A6000
|
138 |
+
- **Hours used:** ~2-4 hours per training run
|
139 |
+
- **Training Framework:** PyTorch with PEFT and BitsAndBytes
|
140 |
+
- **Quantization:** 4-bit NF4 for memory efficiency
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
## Technical Specifications
|
143 |
|
144 |
### Model Architecture and Objective
|
145 |
|
146 |
+
- **Architecture:** Llama-3.2 with LoRA adapters
|
147 |
+
- **Objective:** Causal language modeling for instruction following
|
148 |
+
- **LoRA Configuration:** Rank 16, Alpha 32, targeting attention and MLP layers
|
149 |
+
- **Quantization:** 4-bit NF4 with double quantization
|
150 |
|
151 |
### Compute Infrastructure
|
152 |
|
|
|
|
|
153 |
#### Hardware
|
154 |
+
- NVIDIA RTX 3090 (24GB VRAM) for 3B models
|
155 |
+
- NVIDIA A6000 (48GB VRAM) for 13B models
|
156 |
|
157 |
#### Software
|
158 |
+
- PyTorch 2.0+
|
159 |
+
- Transformers 4.35+
|
160 |
+
- PEFT 0.6+
|
161 |
+
- BitsAndBytes 0.41+
|
162 |
|
163 |
+
## Framework versions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
- PEFT 0.17.1
|
166 |
+
- Transformers 4.35.0
|
167 |
+
- PyTorch 2.0.0
|
168 |
+
- BitsAndBytes 0.41.0
|