--- base_model: codellama/CodeLlama-13b-Instruct-hf library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:codellama/CodeLlama-13b-Instruct-hf - lora - transformers - configuration-management - secrets-management - devops - multi-cloud - codellama license: mit language: - en model_size: 13B --- # AnySecret Assistant - 13B Model The **largest and most capable** model in the AnySecret Assistant collection. Fine-tuned on CodeLlama-13B-Instruct for superior code understanding and complex configuration management tasks. ## 🎯 Model Overview - **Base Model:** CodeLlama-13B-Instruct-hf - **Parameters:** 13 billion - **Model Type:** LoRA Adapter - **Specialization:** Code-focused AnySecret configuration management - **Memory Requirements:** 16-24GB (FP16), 7.8GB (GGUF Q4_K_M) ## 🚀 Best Use Cases This model excels at: - ✅ **Complex Configuration Scenarios** - Multi-step, multi-cloud setups - ✅ **Advanced Troubleshooting** - Debugging configuration issues - ✅ **Code Generation** - Python SDK integration, custom scripts - ✅ **Production Guidance** - Enterprise-grade deployment patterns - ✅ **Architecture Design** - Comprehensive secrets management strategies ## 📦 Quick Start ### Option 1: Using Transformers + PEFT ```python from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the 13B model base_model = AutoModelForCausalLM.from_pretrained( "codellama/CodeLlama-13b-Instruct-hf", torch_dtype=torch.float16, device_map="auto", load_in_4bit=True # Recommended for consumer GPUs ) model = PeftModel.from_pretrained(base_model, "anysecret-io/anysecret-assistant/13B") tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-13b-Instruct-hf") def ask_anysecret_13b(question): prompt = f"### Instruction:\n{question}\n\n### Response:\n" inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=512, # More tokens for detailed responses temperature=0.1, do_sample=True, top_p=0.9 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response.split("### Response:\n")[-1].strip() # Example: Complex multi-cloud setup question = """ I need to set up AnySecret for a microservices architecture that spans: - AWS EKS cluster with Secrets Manager - GCP Cloud Run services with Secret Manager - Azure Container Instances with Key Vault - CI/CD pipeline that can deploy to all three Can you provide a comprehensive configuration strategy? """ print(ask_anysecret_13b(question)) ``` ### Option 2: Using 4-bit Quantization (Recommended) ```python from transformers import BitsAndBytesConfig # 4-bit quantization for efficient memory usage bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True ) base_model = AutoModelForCausalLM.from_pretrained( "codellama/CodeLlama-13b-Instruct-hf", quantization_config=bnb_config, device_map="auto" ) # Continue with PeftModel loading... ``` ## 💡 Example Use Cases ### 1. Complex Multi-Cloud Architecture ```python question = """ Design a secrets management strategy for a fintech application with: - Microservices on AWS EKS - Data pipeline on GCP Dataflow - ML models on Azure ML - Strict compliance requirements (SOC2, PCI-DSS) - Automatic secret rotation every 30 days """ ``` ### 2. Advanced Python SDK Integration ```python question = """ Show me how to implement a custom AnySecret provider that: 1. Integrates with HashiCorp Vault 2. Supports dynamic secret generation 3. Implements automatic retry with exponential backoff 4. Includes comprehensive error handling and logging 5. Is compatible with asyncio applications """ ``` ### 3. Enterprise CI/CD Pipeline ```python question = """ Create a comprehensive CI/CD pipeline configuration that: - Uses AnySecret across GitHub Actions, Jenkins, and GitLab CI - Implements environment-specific secret promotion - Includes automated testing of secret configurations - Supports blue-green deployments with secret validation - Has rollback capabilities for failed deployments """ ``` ## 🔧 Model Performance ### Benchmark Results (RTX 3090) | Metric | Performance | |--------|-------------| | **Inference Speed** | ~15 tokens/sec (FP16) | | **Quality Score** | 9.1/10 | | **Memory Usage** | 24GB (FP16), 8GB (4-bit) | | **Context Length** | 4096 tokens | | **Response Quality** | Excellent for complex queries | ### Comparison with Other Sizes | Feature | 3B | 7B | **13B** | |---------|----|----|---------| | Speed | ⭐⭐⭐ | ⭐⭐ | ⭐ | | Quality | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ | | Code Understanding | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ | | Complex Reasoning | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐⭐ | | Memory Requirement | Low | Medium | High | ## 🎯 Training Details ### Specialized Training Data The 13B model was trained on additional complex scenarios: - **Enterprise Patterns** (15 examples) - Large-scale deployment patterns - **Advanced Troubleshooting** (10 examples) - Complex error scenarios - **Custom Integration** (10 examples) - Building custom providers - **Performance Optimization** (8 examples) - Scaling and optimization - **Security Hardening** (7 examples) - Advanced security configurations ### Training Configuration - **LoRA Rank:** 16 (optimized for 13B parameters) - **LoRA Alpha:** 32 - **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj - **Learning Rate:** 2e-4 (with warm-up) - **Training Epochs:** 3 - **Batch Size:** 1 with gradient accumulation steps: 16 - **Precision:** 4-bit quantization during training ## 🚀 Deployment Recommendations ### For Development ```bash # Use 4-bit quantization python -c " import torch from transformers import BitsAndBytesConfig # Quantized loading code here " ``` ### For Production ```dockerfile # Docker deployment with optimizations FROM nvidia/cuda:11.8-runtime-ubuntu22.04 # Install dependencies RUN pip install torch transformers peft bitsandbytes # Load model with optimizations COPY model_loader.py /app/ CMD ["python", "/app/model_loader.py"] ``` ### Hardware Requirements | Deployment | GPU Memory | CPU Memory | Storage | |------------|------------|------------|---------| | **Development** | 8GB+ (quantized) | 16GB+ | 50GB | | **Production** | 24GB+ (full precision) | 32GB+ | 100GB | | **GGUF (CPU)** | Optional | 16GB+ | 8GB | ## 🔗 Related Models - **7B Model:** `anysecret-io/anysecret-assistant/7B` - Faster, still excellent quality - **3B Model:** `anysecret-io/anysecret-assistant/3B` - Fastest inference - **GGUF Version:** `anysecret-io/anysecret-assistant/13B-GGUF` - Optimized for CPU/edge ## 📚 Resources - **Documentation:** https://docs.anysecret.io - **GitHub:** https://github.com/anysecret-io/anysecret-lib - **Training Code:** https://github.com/anysecret-io/anysecret-llm - **Issues:** https://github.com/anysecret-io/anysecret-lib/issues ## ⚖️ License MIT License - Free for commercial and non-commercial use. --- **Note:** This model requires significant compute resources. For lighter workloads, consider the 7B or 3B variants.