--- language: - en metrics: - accuracy - AUC ROC - precision - recall tags: - biology - chemistry - therapeutic science - drug design - drug development - therapeutics license: bsd-2-clause datasets: - scvi-tools/DATASET-FOR-UNIT-TESTING-1 --- # scVI Single-cell variational inference (scVI) is a powerful tool for the probabilistic analysis of single-cell transcriptomics data. It uses deep generative models to address technical noise and batch effects, providing a robust framework for various downstream analysis tasks. To load the pre-trained model, use the Files and Versions tab files. # Code ```python from tdc_ml.multi_pred.anndata_dataset import DataLoader from tdc_ml import tdc_hf_interface adata = DataLoader("scvi_test_dataset", "./data", dataset_names=["scvi_test_dataset"], no_convert=True).adata scvi = tdc_hf_interface("scVI") model = scvi.load() output = model(adata) ``` # TDC_ML.scVI Source Code * https://github.com/apliko-xyz/PyTDC/blob/main/tdc/model_server/models/scvi.py * weights extracted from https://cellxgene.cziscience.com/census-models # PyTDC Citation ``` @inproceedings{ velez-arce2025pytdc, title={Py{TDC}: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models}, author={Alejandro Velez-Arce and Marinka Zitnik}, booktitle={Forty-second International Conference on Machine Learning}, year={2025}, url={https://openreview.net/forum?id=HV8vZDDoYc} } ``` ``` @inproceedings{ velez-arce2024signals, title={Signals in the Cells: Multimodal and Contextualized Machine Learning Foundations for Therapeutics}, author={Alejandro Velez-Arce and Xiang Lin and Kexin Huang and Michelle M Li and Wenhao Gao and Bradley Pentelute and Tianfan Fu and Manolis Kellis and Marinka Zitnik}, booktitle={NeurIPS 2024 Workshop on AI for New Drug Modalities}, year={2024}, url={https://openreview.net/forum?id=kL8dlYp6IM} } ``` ## References * Lopez, R., Regier, J., Cole, M., Jordan, M. I., & Yosef, N. (2018). Deep Generative Modeling for Single-cell Transcriptomics. Nature Methods, 15, 1053-1058. * Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Wu, K., Jayasuriya, M., Mehlman, E., Langevin, M., Liu, Y., Samaran, J., Misrachi, G., Nazaret, A., Clivio, O., Xu, C. A., Ashuach, T., Lotfollahi, M., Svensson, V., Beltrame, E., Talavera-López, C., ... Yosef, N. (2021). scvi-tools: a library for deep probabilistic analysis of single-cell omics data. bioRxiv. * CZ CELLxGENE Discover: A single-cell data platform for scalable exploration, analysis and modeling of aggregated data CZI Single-Cell Biology, et al. bioRxiv 2023.10.30; doi: https://doi.org/10.1101/2023.10.30.563174