File size: 4,239 Bytes
47e2429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
library_name: peft
tags:
- axolotl
- base_model:adapter:/cache/models/samoline--77ac7486-9606-42a1-a847-be5998bb133c
- lora
- transformers
pipeline_tag: text-generation
base_model: samoline/77ac7486-9606-42a1-a847-be5998bb133c
model-index:
- name: app/checkpoints/73fe8c66-6860-4437-8f6b-c2a2e7738ffa/5781d468-8ce5-440d-8888-8e49c6b018ef
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.12.0.dev0`
```yaml
adapter: lora
base_model: samoline/77ac7486-9606-42a1-a847-be5998bb133c
bf16: true
chat_template: llama3
cosine_min_lr_ratio: 0.3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 73fe8c66-6860-4437-8f6b-c2a2e7738ffa_train_data.json
ds_type: json
format: custom
path: /workspace/axolotl/data
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
ddp: true
debug: null
deepspeed: null
device_map: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
group_by_length: true
hub_model_id: null
hub_private_repo: false
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: null
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 30
micro_batch_size: 28
mlflow_experiment_name: /workspace/axolotl/data/73fe8c66-6860-4437-8f6b-c2a2e7738ffa_train_data.json
model_card: false
model_type: AutoModelForCausalLM
num_epochs: 200
optimizer: adamw_bnb_8bit
output_dir: /app/checkpoints/73fe8c66-6860-4437-8f6b-c2a2e7738ffa/5781d468-8ce5-440d-8888-8e49c6b018ef
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
push_every_save: true
push_to_hub: true
resume_from_checkpoint: null
rl: null
s2_attention: null
sample_packing: true
save_steps: 100
save_strategy: steps
save_total_limit: 1
saves_per_epoch: 0
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trl: null
trust_remote_code: false
use_liger: true
val_set_size: 0.0
wandb_mode: offline
wandb_name: 73fe8c66-6860-4437-8f6b-c2a2e7738ffa_5781d468-8ce5-440d-8888-8e49c6b018ef
wandb_project: Gradients-On-Demand
wandb_run: null
wandb_runid: 73fe8c66-6860-4437-8f6b-c2a2e7738ffa_5781d468-8ce5-440d-8888-8e49c6b018ef
warmup_steps: 30
weight_decay: 0
xformers_attention: null
```
</details><br>
# app/checkpoints/73fe8c66-6860-4437-8f6b-c2a2e7738ffa/5781d468-8ce5-440d-8888-8e49c6b018ef
This model was trained from scratch on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 28
- eval_batch_size: 28
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 30
### Training results
### Framework versions
- PEFT 0.17.0
- Transformers 4.54.1
- Pytorch 2.7.1+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4 |