--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b-it tags: - axolotl - base_model:adapter:unsloth/gemma-2-9b-it - lora - transformers pipeline_tag: text-generation model-index: - name: aaa11d48-5e00-412c-87c9-a7c1af871ad1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.0.dev0` ```yaml adapter: lora base_model: unsloth/gemma-2-9b-it bf16: true chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - d448a61308037b87_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' ddp: true debug: null deepspeed: null device_map: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false group_by_length: true hub_model_id: apriasmoro/aaa11d48-5e00-412c-87c9-a7c1af871ad1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 1.8e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 4921 micro_batch_size: 32 mlflow_experiment_name: /tmp/d448a61308037b87_train_data.json model_card: false model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null rl: null s2_attention: null sample_packing: true save_steps: 100 save_total_limit: 10 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trl: null trust_remote_code: false val_set_size: 0.0 wandb_name: 4f4d290b-9b59-490f-b851-1e6024f693b7 wandb_project: Gradients-On-Demand wandb_run: apriasmoro wandb_runid: 4f4d290b-9b59-490f-b851-1e6024f693b7 warmup_steps: 200 weight_decay: 0 xformers_attention: null ```

# aaa11d48-5e00-412c-87c9-a7c1af871ad1 This model is a fine-tuned version of [unsloth/gemma-2-9b-it](https://huggingface.co/unsloth/gemma-2-9b-it) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.8e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - training_steps: 4921 ### Training results ### Framework versions - PEFT 0.16.0 - Transformers 4.53.2 - Pytorch 2.7.1+cu128 - Datasets 4.0.0 - Tokenizers 0.21.2