Safetensors
mental-health
student-focused
chatbot
File size: 1,768 Bytes
84327ef
 
 
 
 
 
 
 
 
 
 
 
b7e51f7
 
 
 
84327ef
b7e51f7
 
 
84327ef
 
b7e51f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84327ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: apache-2.0
datasets:
- arafatanam/Mental-Health-Couseling
- arafatanam/Student-Mental-Health-Counseling-10K
base_model:
- unsloth/mistral-7b-instruct-v0.3-bnb-4bit
tags:
- mental-health
- student-focused
- chatbot
---
# Mistral-7B-Instruct Fine-Tuned for Mental Health Counseling

## Model Overview

This is a fine-tuned version of [`unsloth/mistral-7b-instruct-v0.3-bnb-4bit`](https://huggingface.co/unsloth/mistral-7b-instruct-v0.3-bnb-4bit), designed for mental health counseling. It enhances response quality in mental health discussions, providing empathetic and well-structured replies.

## Dataset

- **Amod/mental_health_counseling_conversations** (cleaned version: [`arafatanam/Mental-Health-Counseling`](https://huggingface.co/datasets/arafatanam/Mental-Health-Counseling)) - **2752 rows**
- **chillies/student-mental-health-counseling-vn** (translated version: [`arafatanam/Student-Mental-Health-Counseling-10K`](https://huggingface.co/datasets/arafatanam/Student-Mental-Health-Counseling-10K)) - **7500 rows**
- **Total dataset size**: 10,252 rows

## Training Details

- **Hardware**: Kaggle Notebooks (GPU T4 x2)
- **Fine-tuning framework**: `Unsloth` with `LoRA`
- **Training settings**:
  - `max_seq_length = 512`
  - `batch_size = 8`
  - `gradient_accumulation_steps = 4`
  - `num_train_epochs = 2`
  - `learning_rate = 5e-5`
  - `optimizer = adamw_8bit`
  - `lr_scheduler = cosine`

## Training Results

- **Final training loss**: `1.0042`
- **Total steps**: `640`
- **Trainable parameters**: `0.60%` of the model`
- **Validation loss**: `0.978`
- **Evaluation metric** (perplexity): `2.85`

## Usage

This model is best suited for:

- Mental health chatbots
- Virtual therapy applications
- Mental health support and response generation