Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- train_results.json +8 -0
- trainer_state.json +147 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: google/gemma-3-4b-pt
|
3 |
+
library_name: transformers
|
4 |
+
model_name: gemma-3-4b-anomaly-detector
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for gemma-3-4b-anomaly-detector
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [google/gemma-3-4b-pt](https://huggingface.co/google/gemma-3-4b-pt).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="arefrazavi/gemma-3-4b-anomaly-detector", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.15.2
|
38 |
+
- Transformers: 4.50.0.dev0
|
39 |
+
- Pytorch: 2.6.0
|
40 |
+
- Datasets: 3.4.1
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 3.043890401016545e+17,
|
3 |
+
"train_loss": 0.2311508838485622,
|
4 |
+
"train_runtime": 4878.1888,
|
5 |
+
"train_samples": 7954,
|
6 |
+
"train_samples_per_second": 5.225,
|
7 |
+
"train_steps_per_second": 0.326
|
8 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 3.043890401016545e+17,
|
3 |
+
"train_loss": 0.2311508838485622,
|
4 |
+
"train_runtime": 4878.1888,
|
5 |
+
"train_samples": 7954,
|
6 |
+
"train_samples_per_second": 5.225,
|
7 |
+
"train_steps_per_second": 0.326
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 9.940438871473354,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1590,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.6269592476489029,
|
13 |
+
"grad_norm": 0.4195554256439209,
|
14 |
+
"learning_rate": 0.0002,
|
15 |
+
"loss": 0.6385,
|
16 |
+
"step": 100
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 1.250783699059561,
|
20 |
+
"grad_norm": 0.3866879343986511,
|
21 |
+
"learning_rate": 0.0002,
|
22 |
+
"loss": 0.4144,
|
23 |
+
"step": 200
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 1.877742946708464,
|
27 |
+
"grad_norm": 0.34548789262771606,
|
28 |
+
"learning_rate": 0.0002,
|
29 |
+
"loss": 0.3602,
|
30 |
+
"step": 300
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 2.501567398119122,
|
34 |
+
"grad_norm": 0.40215349197387695,
|
35 |
+
"learning_rate": 0.0002,
|
36 |
+
"loss": 0.3016,
|
37 |
+
"step": 400
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 3.1253918495297803,
|
41 |
+
"grad_norm": 0.4264250099658966,
|
42 |
+
"learning_rate": 0.0002,
|
43 |
+
"loss": 0.2818,
|
44 |
+
"step": 500
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 3.7523510971786833,
|
48 |
+
"grad_norm": 0.38338279724121094,
|
49 |
+
"learning_rate": 0.0002,
|
50 |
+
"loss": 0.2397,
|
51 |
+
"step": 600
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 4.376175548589342,
|
55 |
+
"grad_norm": 0.4163173735141754,
|
56 |
+
"learning_rate": 0.0002,
|
57 |
+
"loss": 0.2157,
|
58 |
+
"step": 700
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 5.0,
|
62 |
+
"grad_norm": 0.644266664981842,
|
63 |
+
"learning_rate": 0.0002,
|
64 |
+
"loss": 0.2047,
|
65 |
+
"step": 800
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 5.6269592476489025,
|
69 |
+
"grad_norm": 0.4428400695323944,
|
70 |
+
"learning_rate": 0.0002,
|
71 |
+
"loss": 0.1671,
|
72 |
+
"step": 900
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 6.250783699059561,
|
76 |
+
"grad_norm": 0.3752143383026123,
|
77 |
+
"learning_rate": 0.0002,
|
78 |
+
"loss": 0.1598,
|
79 |
+
"step": 1000
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 6.877742946708464,
|
83 |
+
"grad_norm": 0.40711358189582825,
|
84 |
+
"learning_rate": 0.0002,
|
85 |
+
"loss": 0.1446,
|
86 |
+
"step": 1100
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 7.501567398119122,
|
90 |
+
"grad_norm": 0.45269152522087097,
|
91 |
+
"learning_rate": 0.0002,
|
92 |
+
"loss": 0.1257,
|
93 |
+
"step": 1200
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 8.12539184952978,
|
97 |
+
"grad_norm": 0.5310996174812317,
|
98 |
+
"learning_rate": 0.0002,
|
99 |
+
"loss": 0.1216,
|
100 |
+
"step": 1300
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 8.752351097178684,
|
104 |
+
"grad_norm": 0.3715245723724365,
|
105 |
+
"learning_rate": 0.0002,
|
106 |
+
"loss": 0.109,
|
107 |
+
"step": 1400
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 9.376175548589341,
|
111 |
+
"grad_norm": 0.4838401973247528,
|
112 |
+
"learning_rate": 0.0002,
|
113 |
+
"loss": 0.1009,
|
114 |
+
"step": 1500
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 9.940438871473354,
|
118 |
+
"step": 1590,
|
119 |
+
"total_flos": 3.043890401016545e+17,
|
120 |
+
"train_loss": 0.2311508838485622,
|
121 |
+
"train_runtime": 4878.1888,
|
122 |
+
"train_samples_per_second": 5.225,
|
123 |
+
"train_steps_per_second": 0.326
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"logging_steps": 100,
|
127 |
+
"max_steps": 1590,
|
128 |
+
"num_input_tokens_seen": 0,
|
129 |
+
"num_train_epochs": 10,
|
130 |
+
"save_steps": 500,
|
131 |
+
"stateful_callbacks": {
|
132 |
+
"TrainerControl": {
|
133 |
+
"args": {
|
134 |
+
"should_epoch_stop": false,
|
135 |
+
"should_evaluate": false,
|
136 |
+
"should_log": false,
|
137 |
+
"should_save": true,
|
138 |
+
"should_training_stop": true
|
139 |
+
},
|
140 |
+
"attributes": {}
|
141 |
+
}
|
142 |
+
},
|
143 |
+
"total_flos": 3.043890401016545e+17,
|
144 |
+
"train_batch_size": 8,
|
145 |
+
"trial_name": null,
|
146 |
+
"trial_params": null
|
147 |
+
}
|