diff --git "a/openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil" "b/openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil" --- "a/openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil" +++ "b/openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil" @@ -12,8 +12,8 @@ program(1.0) tensor var_28_validate_indices_0 = const()[name = tensor("op_28_validate_indices_0"), val = tensor(false)]; tensor embed_positions_weight_to_fp16 = const()[name = tensor("embed_positions_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39831680)))]; tensor cache_length_to_int16_dtype_0 = const()[name = tensor("cache_length_to_int16_dtype_0"), val = tensor("int16")]; - tensor cast_68 = cast(dtype = cache_length_to_int16_dtype_0, x = cache_length)[name = tensor("cast_68")]; - tensor var_28_cast_fp16_cast_int16 = gather(axis = var_28_axis_0, batch_dims = var_28_batch_dims_0, indices = cast_68, validate_indices = var_28_validate_indices_0, x = embed_positions_weight_to_fp16)[name = tensor("op_28_cast_fp16_cast_int16")]; + tensor cast_69 = cast(dtype = cache_length_to_int16_dtype_0, x = cache_length)[name = tensor("cast_69")]; + tensor var_28_cast_fp16_cast_int16 = gather(axis = var_28_axis_0, batch_dims = var_28_batch_dims_0, indices = cast_69, validate_indices = var_28_validate_indices_0, x = embed_positions_weight_to_fp16)[name = tensor("op_28_cast_fp16_cast_int16")]; tensor hidden_states_1_cast_fp16 = add(x = var_24_cast_fp16, y = var_28_cast_fp16_cast_int16)[name = tensor("hidden_states_1_cast_fp16")]; tensor var_42_axes_0 = const()[name = tensor("op_42_axes_0"), val = tensor([2])]; tensor var_42_cast_fp16 = expand_dims(axes = var_42_axes_0, x = hidden_states_1_cast_fp16)[name = tensor("op_42_cast_fp16")]; @@ -151,12 +151,12 @@ program(1.0) tensor mh_w_5_transpose_x_0 = const()[name = tensor("mh_w_5_transpose_x_0"), val = tensor(true)]; tensor mh_w_5_transpose_y_0 = const()[name = tensor("mh_w_5_transpose_y_0"), val = tensor(false)]; tensor mh_w_5_cast_fp16 = matmul(transpose_x = mh_w_5_transpose_x_0, transpose_y = mh_w_5_transpose_y_0, x = var_215_cast_fp16, y = var_217_cast_fp16)[name = tensor("mh_w_5_cast_fp16")]; - tensor var_220_cast_fp16 = softmax(axis = var_64, x = mh_w_5_cast_fp16)[name = tensor("op_220_cast_fp16")]; + tensor obj_13_cast_fp16 = softmax(axis = var_64, x = mh_w_5_cast_fp16)[name = tensor("obj_13_cast_fp16")]; tensor var_221 = const()[name = tensor("op_221"), val = tensor([1, 6, 64, -1])]; tensor var_222_cast_fp16 = reshape(shape = var_221, x = value_3_cast_fp16)[name = tensor("op_222_cast_fp16")]; tensor attn_3_transpose_x_0 = const()[name = tensor("attn_3_transpose_x_0"), val = tensor(false)]; tensor attn_3_transpose_y_0 = const()[name = tensor("attn_3_transpose_y_0"), val = tensor(true)]; - tensor attn_3_cast_fp16 = matmul(transpose_x = attn_3_transpose_x_0, transpose_y = attn_3_transpose_y_0, x = var_222_cast_fp16, y = var_220_cast_fp16)[name = tensor("attn_3_cast_fp16")]; + tensor attn_3_cast_fp16 = matmul(transpose_x = attn_3_transpose_x_0, transpose_y = attn_3_transpose_y_0, x = var_222_cast_fp16, y = obj_13_cast_fp16)[name = tensor("attn_3_cast_fp16")]; tensor var_225 = const()[name = tensor("op_225"), val = tensor([1, 384, 1, -1])]; tensor input_3_cast_fp16 = reshape(shape = var_225, x = attn_3_cast_fp16)[name = tensor("input_3_cast_fp16")]; tensor var_229 = const()[name = tensor("op_229"), val = tensor([1, 1])]; @@ -213,30 +213,30 @@ program(1.0) tensor denom_7_epsilon_0 = const()[name = tensor("denom_7_epsilon_0"), val = tensor(0x1.197998p-40)]; tensor denom_7_cast_fp16 = rsqrt(epsilon = denom_7_epsilon_0, x = var_305_cast_fp16)[name = tensor("denom_7_cast_fp16")]; tensor out_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = denom_7_cast_fp16)[name = tensor("out_7_cast_fp16")]; - tensor obj_13_gamma_0_to_fp16 = const()[name = tensor("obj_13_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44910656)))]; - tensor obj_13_beta_0_to_fp16 = const()[name = tensor("obj_13_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44911488)))]; - tensor obj_13_epsilon_0_to_fp16 = const()[name = tensor("obj_13_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor obj_13_cast_fp16 = batch_norm(beta = obj_13_beta_0_to_fp16, epsilon = obj_13_epsilon_0_to_fp16, gamma = obj_13_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_7_cast_fp16)[name = tensor("obj_13_cast_fp16")]; + tensor obj_15_gamma_0_to_fp16 = const()[name = tensor("obj_15_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44910656)))]; + tensor obj_15_beta_0_to_fp16 = const()[name = tensor("obj_15_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44911488)))]; + tensor obj_15_epsilon_0_to_fp16 = const()[name = tensor("obj_15_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor obj_15_cast_fp16 = batch_norm(beta = obj_15_beta_0_to_fp16, epsilon = obj_15_epsilon_0_to_fp16, gamma = obj_15_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_7_cast_fp16)[name = tensor("obj_15_cast_fp16")]; tensor var_320 = const()[name = tensor("op_320"), val = tensor([1, 1])]; tensor var_322 = const()[name = tensor("op_322"), val = tensor([1, 1])]; tensor query_5_pad_type_0 = const()[name = tensor("query_5_pad_type_0"), val = tensor("custom")]; tensor query_5_pad_0 = const()[name = tensor("query_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44912320)))]; tensor layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45207296)))]; - tensor query_5_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations = var_322, groups = var_285, pad = query_5_pad_0, pad_type = query_5_pad_type_0, strides = var_320, weight = layers_1_self_attn_q_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor("query_5_cast_fp16")]; + tensor query_5_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations = var_322, groups = var_285, pad = query_5_pad_0, pad_type = query_5_pad_type_0, strides = var_320, weight = layers_1_self_attn_q_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor("query_5_cast_fp16")]; tensor var_326 = const()[name = tensor("op_326"), val = tensor([1, 1])]; tensor var_328 = const()[name = tensor("op_328"), val = tensor([1, 1])]; tensor current_key_3_pad_type_0 = const()[name = tensor("current_key_3_pad_type_0"), val = tensor("custom")]; tensor current_key_3_pad_0 = const()[name = tensor("current_key_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45208128)))]; - tensor current_key_3_cast_fp16 = conv(dilations = var_328, groups = var_285, pad = current_key_3_pad_0, pad_type = current_key_3_pad_type_0, strides = var_326, weight = layers_1_self_attn_k_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor("current_key_3_cast_fp16")]; + tensor current_key_3_cast_fp16 = conv(dilations = var_328, groups = var_285, pad = current_key_3_pad_0, pad_type = current_key_3_pad_type_0, strides = var_326, weight = layers_1_self_attn_k_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor("current_key_3_cast_fp16")]; tensor var_333 = const()[name = tensor("op_333"), val = tensor([1, 1])]; tensor var_335 = const()[name = tensor("op_335"), val = tensor([1, 1])]; tensor current_value_3_pad_type_0 = const()[name = tensor("current_value_3_pad_type_0"), val = tensor("custom")]; tensor current_value_3_pad_0 = const()[name = tensor("current_value_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45503104)))]; tensor layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45798080)))]; - tensor current_value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = var_335, groups = var_285, pad = current_value_3_pad_0, pad_type = current_value_3_pad_type_0, strides = var_333, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor("current_value_3_cast_fp16")]; + tensor current_value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = var_335, groups = var_285, pad = current_value_3_pad_0, pad_type = current_value_3_pad_type_0, strides = var_333, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor("current_value_3_cast_fp16")]; tensor var_342_cast_fp16 = mul(x = current_key_3_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_342_cast_fp16")]; tensor var_344_cast_fp16 = mul(x = var_47_cast_fp16_1, y = var_129_cast_fp16)[name = tensor("op_344_cast_fp16")]; tensor key_5_cast_fp16 = add(x = var_342_cast_fp16, y = var_344_cast_fp16)[name = tensor("key_5_cast_fp16")]; @@ -263,12 +263,12 @@ program(1.0) tensor input_11_cast_fp16 = reshape(shape = var_369, x = attn_5_cast_fp16)[name = tensor("input_11_cast_fp16")]; tensor var_373 = const()[name = tensor("op_373"), val = tensor([1, 1])]; tensor var_375 = const()[name = tensor("op_375"), val = tensor([1, 1])]; - tensor obj_19_pad_type_0 = const()[name = tensor("obj_19_pad_type_0"), val = tensor("custom")]; - tensor obj_19_pad_0 = const()[name = tensor("obj_19_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor obj_21_pad_type_0 = const()[name = tensor("obj_21_pad_type_0"), val = tensor("custom")]; + tensor obj_21_pad_0 = const()[name = tensor("obj_21_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45798912)))]; tensor layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46093888)))]; - tensor obj_19_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_375, groups = var_285, pad = obj_19_pad_0, pad_type = obj_19_pad_type_0, strides = var_373, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor("obj_19_cast_fp16")]; - tensor inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_19_cast_fp16)[name = tensor("inputs_9_cast_fp16")]; + tensor obj_21_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_375, groups = var_285, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = var_373, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor("obj_21_cast_fp16")]; + tensor inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_21_cast_fp16)[name = tensor("inputs_9_cast_fp16")]; tensor var_385 = const()[name = tensor("op_385"), val = tensor([1])]; tensor channels_mean_9_cast_fp16 = reduce_mean(axes = var_385, keep_dims = var_286, x = inputs_9_cast_fp16)[name = tensor("channels_mean_9_cast_fp16")]; tensor zero_mean_9_cast_fp16 = sub(x = inputs_9_cast_fp16, y = channels_mean_9_cast_fp16)[name = tensor("zero_mean_9_cast_fp16")]; @@ -280,17 +280,17 @@ program(1.0) tensor denom_9_epsilon_0 = const()[name = tensor("denom_9_epsilon_0"), val = tensor(0x1.197998p-40)]; tensor denom_9_cast_fp16 = rsqrt(epsilon = denom_9_epsilon_0, x = var_392_cast_fp16)[name = tensor("denom_9_cast_fp16")]; tensor out_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = denom_9_cast_fp16)[name = tensor("out_9_cast_fp16")]; - tensor obj_21_gamma_0_to_fp16 = const()[name = tensor("obj_21_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46094720)))]; - tensor obj_21_beta_0_to_fp16 = const()[name = tensor("obj_21_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46095552)))]; - tensor obj_21_epsilon_0_to_fp16 = const()[name = tensor("obj_21_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor obj_21_cast_fp16 = batch_norm(beta = obj_21_beta_0_to_fp16, epsilon = obj_21_epsilon_0_to_fp16, gamma = obj_21_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_9_cast_fp16)[name = tensor("obj_21_cast_fp16")]; + tensor obj_23_gamma_0_to_fp16 = const()[name = tensor("obj_23_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46094720)))]; + tensor obj_23_beta_0_to_fp16 = const()[name = tensor("obj_23_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46095552)))]; + tensor obj_23_epsilon_0_to_fp16 = const()[name = tensor("obj_23_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor obj_23_cast_fp16 = batch_norm(beta = obj_23_beta_0_to_fp16, epsilon = obj_23_epsilon_0_to_fp16, gamma = obj_23_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_9_cast_fp16)[name = tensor("obj_23_cast_fp16")]; tensor var_407 = const()[name = tensor("op_407"), val = tensor([1, 1])]; tensor var_409 = const()[name = tensor("op_409"), val = tensor([1, 1])]; tensor query_7_pad_type_0 = const()[name = tensor("query_7_pad_type_0"), val = tensor("custom")]; tensor query_7_pad_0 = const()[name = tensor("query_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_1_encoder_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46096384)))]; tensor layers_1_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_1_encoder_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46391360)))]; - tensor query_7_cast_fp16 = conv(bias = layers_1_encoder_attn_q_proj_bias_to_fp16, dilations = var_409, groups = var_285, pad = query_7_pad_0, pad_type = query_7_pad_type_0, strides = var_407, weight = layers_1_encoder_attn_q_proj_weight_to_fp16, x = obj_21_cast_fp16)[name = tensor("query_7_cast_fp16")]; + tensor query_7_cast_fp16 = conv(bias = layers_1_encoder_attn_q_proj_bias_to_fp16, dilations = var_409, groups = var_285, pad = query_7_pad_0, pad_type = query_7_pad_type_0, strides = var_407, weight = layers_1_encoder_attn_q_proj_weight_to_fp16, x = obj_23_cast_fp16)[name = tensor("query_7_cast_fp16")]; tensor var_413 = const()[name = tensor("op_413"), val = tensor([1, 1])]; tensor var_415 = const()[name = tensor("op_415"), val = tensor([1, 1])]; tensor key_7_pad_type_0 = const()[name = tensor("key_7_pad_type_0"), val = tensor("custom")]; @@ -313,405 +313,483 @@ program(1.0) tensor mh_w_11_transpose_x_0 = const()[name = tensor("mh_w_11_transpose_x_0"), val = tensor(true)]; tensor mh_w_11_transpose_y_0 = const()[name = tensor("mh_w_11_transpose_y_0"), val = tensor(false)]; tensor mh_w_11_cast_fp16 = matmul(transpose_x = mh_w_11_transpose_x_0, transpose_y = mh_w_11_transpose_y_0, x = var_429_cast_fp16, y = var_431_cast_fp16)[name = tensor("mh_w_11_cast_fp16")]; - tensor var_434_cast_fp16 = softmax(axis = var_278, x = mh_w_11_cast_fp16)[name = tensor("op_434_cast_fp16")]; + tensor obj_27_cast_fp16 = softmax(axis = var_278, x = mh_w_11_cast_fp16)[name = tensor("obj_27_cast_fp16")]; tensor var_435 = const()[name = tensor("op_435"), val = tensor([1, 6, 64, -1])]; tensor var_436_cast_fp16 = reshape(shape = var_435, x = value_7_cast_fp16)[name = tensor("op_436_cast_fp16")]; tensor attn_7_transpose_x_0 = const()[name = tensor("attn_7_transpose_x_0"), val = tensor(false)]; tensor attn_7_transpose_y_0 = const()[name = tensor("attn_7_transpose_y_0"), val = tensor(true)]; - tensor attn_7_cast_fp16 = matmul(transpose_x = attn_7_transpose_x_0, transpose_y = attn_7_transpose_y_0, x = var_436_cast_fp16, y = var_434_cast_fp16)[name = tensor("attn_7_cast_fp16")]; + tensor attn_7_cast_fp16 = matmul(transpose_x = attn_7_transpose_x_0, transpose_y = attn_7_transpose_y_0, x = var_436_cast_fp16, y = obj_27_cast_fp16)[name = tensor("attn_7_cast_fp16")]; tensor var_439 = const()[name = tensor("op_439"), val = tensor([1, 384, 1, -1])]; tensor input_13_cast_fp16 = reshape(shape = var_439, x = attn_7_cast_fp16)[name = tensor("input_13_cast_fp16")]; tensor var_443 = const()[name = tensor("op_443"), val = tensor([1, 1])]; tensor var_445 = const()[name = tensor("op_445"), val = tensor([1, 1])]; - tensor obj_23_pad_type_0 = const()[name = tensor("obj_23_pad_type_0"), val = tensor("custom")]; - tensor obj_23_pad_0 = const()[name = tensor("obj_23_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor obj_25_pad_type_0 = const()[name = tensor("obj_25_pad_type_0"), val = tensor("custom")]; + tensor obj_25_pad_0 = const()[name = tensor("obj_25_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_1_encoder_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46982976)))]; tensor layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47277952)))]; - tensor obj_23_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = var_445, groups = var_285, pad = obj_23_pad_0, pad_type = obj_23_pad_type_0, strides = var_443, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor("obj_23_cast_fp16")]; - tensor inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_23_cast_fp16)[name = tensor("inputs_11_cast_fp16")]; - tensor var_451 = const()[name = tensor("op_451"), val = tensor([1])]; - tensor channels_mean_11_cast_fp16 = reduce_mean(axes = var_451, keep_dims = var_286, x = inputs_11_cast_fp16)[name = tensor("channels_mean_11_cast_fp16")]; + tensor obj_25_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = var_445, groups = var_285, pad = obj_25_pad_0, pad_type = obj_25_pad_type_0, strides = var_443, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor("obj_25_cast_fp16")]; + tensor inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_25_cast_fp16)[name = tensor("inputs_11_cast_fp16")]; + tensor var_454 = const()[name = tensor("op_454"), val = tensor([1])]; + tensor channels_mean_11_cast_fp16 = reduce_mean(axes = var_454, keep_dims = var_286, x = inputs_11_cast_fp16)[name = tensor("channels_mean_11_cast_fp16")]; tensor zero_mean_11_cast_fp16 = sub(x = inputs_11_cast_fp16, y = channels_mean_11_cast_fp16)[name = tensor("zero_mean_11_cast_fp16")]; tensor zero_mean_sq_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = zero_mean_11_cast_fp16)[name = tensor("zero_mean_sq_11_cast_fp16")]; - tensor var_455 = const()[name = tensor("op_455"), val = tensor([1])]; - tensor var_456_cast_fp16 = reduce_mean(axes = var_455, keep_dims = var_286, x = zero_mean_sq_11_cast_fp16)[name = tensor("op_456_cast_fp16")]; - tensor var_457_to_fp16 = const()[name = tensor("op_457_to_fp16"), val = tensor(0x1.5p-17)]; - tensor var_458_cast_fp16 = add(x = var_456_cast_fp16, y = var_457_to_fp16)[name = tensor("op_458_cast_fp16")]; + tensor var_458 = const()[name = tensor("op_458"), val = tensor([1])]; + tensor var_459_cast_fp16 = reduce_mean(axes = var_458, keep_dims = var_286, x = zero_mean_sq_11_cast_fp16)[name = tensor("op_459_cast_fp16")]; + tensor var_460_to_fp16 = const()[name = tensor("op_460_to_fp16"), val = tensor(0x1.5p-17)]; + tensor var_461_cast_fp16 = add(x = var_459_cast_fp16, y = var_460_to_fp16)[name = tensor("op_461_cast_fp16")]; tensor denom_11_epsilon_0 = const()[name = tensor("denom_11_epsilon_0"), val = tensor(0x1.197998p-40)]; - tensor denom_11_cast_fp16 = rsqrt(epsilon = denom_11_epsilon_0, x = var_458_cast_fp16)[name = tensor("denom_11_cast_fp16")]; + tensor denom_11_cast_fp16 = rsqrt(epsilon = denom_11_epsilon_0, x = var_461_cast_fp16)[name = tensor("denom_11_cast_fp16")]; tensor out_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = denom_11_cast_fp16)[name = tensor("out_11_cast_fp16")]; tensor input_15_gamma_0_to_fp16 = const()[name = tensor("input_15_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47278784)))]; tensor input_15_beta_0_to_fp16 = const()[name = tensor("input_15_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47279616)))]; tensor input_15_epsilon_0_to_fp16 = const()[name = tensor("input_15_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_15_cast_fp16 = batch_norm(beta = input_15_beta_0_to_fp16, epsilon = input_15_epsilon_0_to_fp16, gamma = input_15_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_11_cast_fp16)[name = tensor("input_15_cast_fp16")]; - tensor var_469 = const()[name = tensor("op_469"), val = tensor([1, 1])]; - tensor var_471 = const()[name = tensor("op_471"), val = tensor([1, 1])]; + tensor var_472 = const()[name = tensor("op_472"), val = tensor([1, 1])]; + tensor var_474 = const()[name = tensor("op_474"), val = tensor([1, 1])]; tensor input_17_pad_type_0 = const()[name = tensor("input_17_pad_type_0"), val = tensor("custom")]; tensor input_17_pad_0 = const()[name = tensor("input_17_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_fc1_weight_to_fp16 = const()[name = tensor("layers_1_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47280448)))]; tensor layers_1_fc1_bias_to_fp16 = const()[name = tensor("layers_1_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(48460160)))]; - tensor input_17_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations = var_471, groups = var_285, pad = input_17_pad_0, pad_type = input_17_pad_type_0, strides = var_469, weight = layers_1_fc1_weight_to_fp16, x = input_15_cast_fp16)[name = tensor("input_17_cast_fp16")]; + tensor input_17_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations = var_474, groups = var_285, pad = input_17_pad_0, pad_type = input_17_pad_type_0, strides = var_472, weight = layers_1_fc1_weight_to_fp16, x = input_15_cast_fp16)[name = tensor("input_17_cast_fp16")]; tensor input_19_mode_0 = const()[name = tensor("input_19_mode_0"), val = tensor("EXACT")]; tensor input_19_cast_fp16 = gelu(mode = input_19_mode_0, x = input_17_cast_fp16)[name = tensor("input_19_cast_fp16")]; - tensor var_477 = const()[name = tensor("op_477"), val = tensor([1, 1])]; - tensor var_479 = const()[name = tensor("op_479"), val = tensor([1, 1])]; + tensor var_480 = const()[name = tensor("op_480"), val = tensor([1, 1])]; + tensor var_482 = const()[name = tensor("op_482"), val = tensor([1, 1])]; tensor hidden_states_5_pad_type_0 = const()[name = tensor("hidden_states_5_pad_type_0"), val = tensor("custom")]; tensor hidden_states_5_pad_0 = const()[name = tensor("hidden_states_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_fc2_weight_to_fp16 = const()[name = tensor("layers_1_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(48463296)))]; tensor layers_1_fc2_bias_to_fp16 = const()[name = tensor("layers_1_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49643008)))]; - tensor hidden_states_5_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations = var_479, groups = var_285, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = var_477, weight = layers_1_fc2_weight_to_fp16, x = input_19_cast_fp16)[name = tensor("hidden_states_5_cast_fp16")]; + tensor hidden_states_5_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations = var_482, groups = var_285, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = var_480, weight = layers_1_fc2_weight_to_fp16, x = input_19_cast_fp16)[name = tensor("hidden_states_5_cast_fp16")]; tensor inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor("inputs_13_cast_fp16")]; - tensor var_492 = const()[name = tensor("op_492"), val = tensor(3)]; - tensor var_499 = const()[name = tensor("op_499"), val = tensor(1)]; - tensor var_500 = const()[name = tensor("op_500"), val = tensor(true)]; - tensor var_512 = const()[name = tensor("op_512"), val = tensor([1])]; - tensor channels_mean_13_cast_fp16 = reduce_mean(axes = var_512, keep_dims = var_500, x = inputs_13_cast_fp16)[name = tensor("channels_mean_13_cast_fp16")]; + tensor var_496 = const()[name = tensor("op_496"), val = tensor(3)]; + tensor var_503 = const()[name = tensor("op_503"), val = tensor(1)]; + tensor var_504 = const()[name = tensor("op_504"), val = tensor(true)]; + tensor var_516 = const()[name = tensor("op_516"), val = tensor([1])]; + tensor channels_mean_13_cast_fp16 = reduce_mean(axes = var_516, keep_dims = var_504, x = inputs_13_cast_fp16)[name = tensor("channels_mean_13_cast_fp16")]; tensor zero_mean_13_cast_fp16 = sub(x = inputs_13_cast_fp16, y = channels_mean_13_cast_fp16)[name = tensor("zero_mean_13_cast_fp16")]; tensor zero_mean_sq_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = zero_mean_13_cast_fp16)[name = tensor("zero_mean_sq_13_cast_fp16")]; - tensor var_516 = const()[name = tensor("op_516"), val = tensor([1])]; - tensor var_517_cast_fp16 = reduce_mean(axes = var_516, keep_dims = var_500, x = zero_mean_sq_13_cast_fp16)[name = tensor("op_517_cast_fp16")]; - tensor var_518_to_fp16 = const()[name = tensor("op_518_to_fp16"), val = tensor(0x1.5p-17)]; - tensor var_519_cast_fp16 = add(x = var_517_cast_fp16, y = var_518_to_fp16)[name = tensor("op_519_cast_fp16")]; + tensor var_520 = const()[name = tensor("op_520"), val = tensor([1])]; + tensor var_521_cast_fp16 = reduce_mean(axes = var_520, keep_dims = var_504, x = zero_mean_sq_13_cast_fp16)[name = tensor("op_521_cast_fp16")]; + tensor var_522_to_fp16 = const()[name = tensor("op_522_to_fp16"), val = tensor(0x1.5p-17)]; + tensor var_523_cast_fp16 = add(x = var_521_cast_fp16, y = var_522_to_fp16)[name = tensor("op_523_cast_fp16")]; tensor denom_13_epsilon_0 = const()[name = tensor("denom_13_epsilon_0"), val = tensor(0x1.197998p-40)]; - tensor denom_13_cast_fp16 = rsqrt(epsilon = denom_13_epsilon_0, x = var_519_cast_fp16)[name = tensor("denom_13_cast_fp16")]; + tensor denom_13_cast_fp16 = rsqrt(epsilon = denom_13_epsilon_0, x = var_523_cast_fp16)[name = tensor("denom_13_cast_fp16")]; tensor out_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = denom_13_cast_fp16)[name = tensor("out_13_cast_fp16")]; - tensor obj_25_gamma_0_to_fp16 = const()[name = tensor("obj_25_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49643840)))]; - tensor obj_25_beta_0_to_fp16 = const()[name = tensor("obj_25_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49644672)))]; - tensor obj_25_epsilon_0_to_fp16 = const()[name = tensor("obj_25_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor obj_25_cast_fp16 = batch_norm(beta = obj_25_beta_0_to_fp16, epsilon = obj_25_epsilon_0_to_fp16, gamma = obj_25_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_13_cast_fp16)[name = tensor("obj_25_cast_fp16")]; - tensor var_534 = const()[name = tensor("op_534"), val = tensor([1, 1])]; - tensor var_536 = const()[name = tensor("op_536"), val = tensor([1, 1])]; + tensor obj_29_gamma_0_to_fp16 = const()[name = tensor("obj_29_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49643840)))]; + tensor obj_29_beta_0_to_fp16 = const()[name = tensor("obj_29_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49644672)))]; + tensor obj_29_epsilon_0_to_fp16 = const()[name = tensor("obj_29_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor obj_29_cast_fp16 = batch_norm(beta = obj_29_beta_0_to_fp16, epsilon = obj_29_epsilon_0_to_fp16, gamma = obj_29_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_13_cast_fp16)[name = tensor("obj_29_cast_fp16")]; + tensor var_538 = const()[name = tensor("op_538"), val = tensor([1, 1])]; + tensor var_540 = const()[name = tensor("op_540"), val = tensor([1, 1])]; tensor query_9_pad_type_0 = const()[name = tensor("query_9_pad_type_0"), val = tensor("custom")]; tensor query_9_pad_0 = const()[name = tensor("query_9_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49645504)))]; tensor layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49940480)))]; - tensor query_9_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations = var_536, groups = var_499, pad = query_9_pad_0, pad_type = query_9_pad_type_0, strides = var_534, weight = layers_2_self_attn_q_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = tensor("query_9_cast_fp16")]; - tensor var_540 = const()[name = tensor("op_540"), val = tensor([1, 1])]; - tensor var_542 = const()[name = tensor("op_542"), val = tensor([1, 1])]; + tensor query_9_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations = var_540, groups = var_503, pad = query_9_pad_0, pad_type = query_9_pad_type_0, strides = var_538, weight = layers_2_self_attn_q_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor("query_9_cast_fp16")]; + tensor var_544 = const()[name = tensor("op_544"), val = tensor([1, 1])]; + tensor var_546 = const()[name = tensor("op_546"), val = tensor([1, 1])]; tensor current_key_5_pad_type_0 = const()[name = tensor("current_key_5_pad_type_0"), val = tensor("custom")]; tensor current_key_5_pad_0 = const()[name = tensor("current_key_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49941312)))]; - tensor current_key_5_cast_fp16 = conv(dilations = var_542, groups = var_499, pad = current_key_5_pad_0, pad_type = current_key_5_pad_type_0, strides = var_540, weight = layers_2_self_attn_k_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = tensor("current_key_5_cast_fp16")]; - tensor var_547 = const()[name = tensor("op_547"), val = tensor([1, 1])]; - tensor var_549 = const()[name = tensor("op_549"), val = tensor([1, 1])]; + tensor current_key_5_cast_fp16 = conv(dilations = var_546, groups = var_503, pad = current_key_5_pad_0, pad_type = current_key_5_pad_type_0, strides = var_544, weight = layers_2_self_attn_k_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor("current_key_5_cast_fp16")]; + tensor var_551 = const()[name = tensor("op_551"), val = tensor([1, 1])]; + tensor var_553 = const()[name = tensor("op_553"), val = tensor([1, 1])]; tensor current_value_5_pad_type_0 = const()[name = tensor("current_value_5_pad_type_0"), val = tensor("custom")]; tensor current_value_5_pad_0 = const()[name = tensor("current_value_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50236288)))]; tensor layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50531264)))]; - tensor current_value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = var_549, groups = var_499, pad = current_value_5_pad_0, pad_type = current_value_5_pad_type_0, strides = var_547, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = tensor("current_value_5_cast_fp16")]; - tensor var_556_cast_fp16 = mul(x = current_key_5_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_556_cast_fp16")]; - tensor var_558_cast_fp16 = mul(x = var_47_cast_fp16_2, y = var_129_cast_fp16)[name = tensor("op_558_cast_fp16")]; - tensor key_9_cast_fp16 = add(x = var_556_cast_fp16, y = var_558_cast_fp16)[name = tensor("key_9_cast_fp16")]; - tensor var_560_cast_fp16 = mul(x = current_value_5_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_560_cast_fp16")]; - tensor var_562_cast_fp16 = mul(x = var_54_cast_fp16_2, y = var_129_cast_fp16)[name = tensor("op_562_cast_fp16")]; - tensor value_9_cast_fp16 = add(x = var_560_cast_fp16, y = var_562_cast_fp16)[name = tensor("value_9_cast_fp16")]; - tensor var_565 = const()[name = tensor("op_565"), val = tensor([1, 6, 64, -1])]; - tensor var_566_cast_fp16 = reshape(shape = var_565, x = query_9_cast_fp16)[name = tensor("op_566_cast_fp16")]; - tensor var_567_to_fp16 = const()[name = tensor("op_567_to_fp16"), val = tensor(0x1p-3)]; - tensor var_568_cast_fp16 = mul(x = var_566_cast_fp16, y = var_567_to_fp16)[name = tensor("op_568_cast_fp16")]; + tensor current_value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = var_553, groups = var_503, pad = current_value_5_pad_0, pad_type = current_value_5_pad_type_0, strides = var_551, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor("current_value_5_cast_fp16")]; + tensor var_560_cast_fp16 = mul(x = current_key_5_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_560_cast_fp16")]; + tensor var_562_cast_fp16 = mul(x = var_47_cast_fp16_2, y = var_129_cast_fp16)[name = tensor("op_562_cast_fp16")]; + tensor key_9_cast_fp16 = add(x = var_560_cast_fp16, y = var_562_cast_fp16)[name = tensor("key_9_cast_fp16")]; + tensor var_564_cast_fp16 = mul(x = current_value_5_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_564_cast_fp16")]; + tensor var_566_cast_fp16 = mul(x = var_54_cast_fp16_2, y = var_129_cast_fp16)[name = tensor("op_566_cast_fp16")]; + tensor value_9_cast_fp16 = add(x = var_564_cast_fp16, y = var_566_cast_fp16)[name = tensor("value_9_cast_fp16")]; tensor var_569 = const()[name = tensor("op_569"), val = tensor([1, 6, 64, -1])]; - tensor var_570_cast_fp16 = reshape(shape = var_569, x = key_9_cast_fp16)[name = tensor("op_570_cast_fp16")]; + tensor var_570_cast_fp16 = reshape(shape = var_569, x = query_9_cast_fp16)[name = tensor("op_570_cast_fp16")]; + tensor var_571_to_fp16 = const()[name = tensor("op_571_to_fp16"), val = tensor(0x1p-3)]; + tensor var_572_cast_fp16 = mul(x = var_570_cast_fp16, y = var_571_to_fp16)[name = tensor("op_572_cast_fp16")]; + tensor var_573 = const()[name = tensor("op_573"), val = tensor([1, 6, 64, -1])]; + tensor var_574_cast_fp16 = reshape(shape = var_573, x = key_9_cast_fp16)[name = tensor("op_574_cast_fp16")]; tensor mh_w_13_transpose_x_0 = const()[name = tensor("mh_w_13_transpose_x_0"), val = tensor(true)]; tensor mh_w_13_transpose_y_0 = const()[name = tensor("mh_w_13_transpose_y_0"), val = tensor(false)]; - tensor mh_w_13_cast_fp16 = matmul(transpose_x = mh_w_13_transpose_x_0, transpose_y = mh_w_13_transpose_y_0, x = var_568_cast_fp16, y = var_570_cast_fp16)[name = tensor("mh_w_13_cast_fp16")]; + tensor mh_w_13_cast_fp16 = matmul(transpose_x = mh_w_13_transpose_x_0, transpose_y = mh_w_13_transpose_y_0, x = var_572_cast_fp16, y = var_574_cast_fp16)[name = tensor("mh_w_13_cast_fp16")]; tensor mh_w_15_cast_fp16 = add(x = mh_w_13_cast_fp16, y = var_147_cast_fp16)[name = tensor("mh_w_15_cast_fp16")]; - tensor var_578_cast_fp16 = softmax(axis = var_492, x = mh_w_15_cast_fp16)[name = tensor("op_578_cast_fp16")]; - tensor var_579 = const()[name = tensor("op_579"), val = tensor([1, 6, 64, -1])]; - tensor var_580_cast_fp16 = reshape(shape = var_579, x = value_9_cast_fp16)[name = tensor("op_580_cast_fp16")]; + tensor var_582_cast_fp16 = softmax(axis = var_496, x = mh_w_15_cast_fp16)[name = tensor("op_582_cast_fp16")]; + tensor var_583 = const()[name = tensor("op_583"), val = tensor([1, 6, 64, -1])]; + tensor var_584_cast_fp16 = reshape(shape = var_583, x = value_9_cast_fp16)[name = tensor("op_584_cast_fp16")]; tensor attn_9_transpose_x_0 = const()[name = tensor("attn_9_transpose_x_0"), val = tensor(false)]; tensor attn_9_transpose_y_0 = const()[name = tensor("attn_9_transpose_y_0"), val = tensor(true)]; - tensor attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_580_cast_fp16, y = var_578_cast_fp16)[name = tensor("attn_9_cast_fp16")]; - tensor var_583 = const()[name = tensor("op_583"), val = tensor([1, 384, 1, -1])]; - tensor input_21_cast_fp16 = reshape(shape = var_583, x = attn_9_cast_fp16)[name = tensor("input_21_cast_fp16")]; - tensor var_587 = const()[name = tensor("op_587"), val = tensor([1, 1])]; - tensor var_589 = const()[name = tensor("op_589"), val = tensor([1, 1])]; - tensor obj_31_pad_type_0 = const()[name = tensor("obj_31_pad_type_0"), val = tensor("custom")]; - tensor obj_31_pad_0 = const()[name = tensor("obj_31_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_584_cast_fp16, y = var_582_cast_fp16)[name = tensor("attn_9_cast_fp16")]; + tensor var_587 = const()[name = tensor("op_587"), val = tensor([1, 384, 1, -1])]; + tensor input_21_cast_fp16 = reshape(shape = var_587, x = attn_9_cast_fp16)[name = tensor("input_21_cast_fp16")]; + tensor var_591 = const()[name = tensor("op_591"), val = tensor([1, 1])]; + tensor var_593 = const()[name = tensor("op_593"), val = tensor([1, 1])]; + tensor obj_35_pad_type_0 = const()[name = tensor("obj_35_pad_type_0"), val = tensor("custom")]; + tensor obj_35_pad_0 = const()[name = tensor("obj_35_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50532096)))]; tensor layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50827072)))]; - tensor obj_31_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_589, groups = var_499, pad = obj_31_pad_0, pad_type = obj_31_pad_type_0, strides = var_587, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor("obj_31_cast_fp16")]; - tensor inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_31_cast_fp16)[name = tensor("inputs_15_cast_fp16")]; - tensor var_599 = const()[name = tensor("op_599"), val = tensor([1])]; - tensor channels_mean_15_cast_fp16 = reduce_mean(axes = var_599, keep_dims = var_500, x = inputs_15_cast_fp16)[name = tensor("channels_mean_15_cast_fp16")]; + tensor obj_35_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_593, groups = var_503, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = var_591, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor("obj_35_cast_fp16")]; + tensor inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_35_cast_fp16)[name = tensor("inputs_15_cast_fp16")]; + tensor var_603 = const()[name = tensor("op_603"), val = tensor([1])]; + tensor channels_mean_15_cast_fp16 = reduce_mean(axes = var_603, keep_dims = var_504, x = inputs_15_cast_fp16)[name = tensor("channels_mean_15_cast_fp16")]; tensor zero_mean_15_cast_fp16 = sub(x = inputs_15_cast_fp16, y = channels_mean_15_cast_fp16)[name = tensor("zero_mean_15_cast_fp16")]; tensor zero_mean_sq_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = zero_mean_15_cast_fp16)[name = tensor("zero_mean_sq_15_cast_fp16")]; - tensor var_603 = const()[name = tensor("op_603"), val = tensor([1])]; - tensor var_604_cast_fp16 = reduce_mean(axes = var_603, keep_dims = var_500, x = zero_mean_sq_15_cast_fp16)[name = tensor("op_604_cast_fp16")]; - tensor var_605_to_fp16 = const()[name = tensor("op_605_to_fp16"), val = tensor(0x1.5p-17)]; - tensor var_606_cast_fp16 = add(x = var_604_cast_fp16, y = var_605_to_fp16)[name = tensor("op_606_cast_fp16")]; + tensor var_607 = const()[name = tensor("op_607"), val = tensor([1])]; + tensor var_608_cast_fp16 = reduce_mean(axes = var_607, keep_dims = var_504, x = zero_mean_sq_15_cast_fp16)[name = tensor("op_608_cast_fp16")]; + tensor var_609_to_fp16 = const()[name = tensor("op_609_to_fp16"), val = tensor(0x1.5p-17)]; + tensor var_610_cast_fp16 = add(x = var_608_cast_fp16, y = var_609_to_fp16)[name = tensor("op_610_cast_fp16")]; tensor denom_15_epsilon_0 = const()[name = tensor("denom_15_epsilon_0"), val = tensor(0x1.197998p-40)]; - tensor denom_15_cast_fp16 = rsqrt(epsilon = denom_15_epsilon_0, x = var_606_cast_fp16)[name = tensor("denom_15_cast_fp16")]; + tensor denom_15_cast_fp16 = rsqrt(epsilon = denom_15_epsilon_0, x = var_610_cast_fp16)[name = tensor("denom_15_cast_fp16")]; tensor out_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = denom_15_cast_fp16)[name = tensor("out_15_cast_fp16")]; - tensor obj_33_gamma_0_to_fp16 = const()[name = tensor("obj_33_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50827904)))]; - tensor obj_33_beta_0_to_fp16 = const()[name = tensor("obj_33_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50828736)))]; - tensor obj_33_epsilon_0_to_fp16 = const()[name = tensor("obj_33_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor obj_33_cast_fp16 = batch_norm(beta = obj_33_beta_0_to_fp16, epsilon = obj_33_epsilon_0_to_fp16, gamma = obj_33_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_15_cast_fp16)[name = tensor("obj_33_cast_fp16")]; - tensor var_621 = const()[name = tensor("op_621"), val = tensor([1, 1])]; - tensor var_623 = const()[name = tensor("op_623"), val = tensor([1, 1])]; + tensor obj_37_gamma_0_to_fp16 = const()[name = tensor("obj_37_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50827904)))]; + tensor obj_37_beta_0_to_fp16 = const()[name = tensor("obj_37_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50828736)))]; + tensor obj_37_epsilon_0_to_fp16 = const()[name = tensor("obj_37_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor obj_37_cast_fp16 = batch_norm(beta = obj_37_beta_0_to_fp16, epsilon = obj_37_epsilon_0_to_fp16, gamma = obj_37_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_15_cast_fp16)[name = tensor("obj_37_cast_fp16")]; + tensor var_625 = const()[name = tensor("op_625"), val = tensor([1, 1])]; + tensor var_627 = const()[name = tensor("op_627"), val = tensor([1, 1])]; tensor query_11_pad_type_0 = const()[name = tensor("query_11_pad_type_0"), val = tensor("custom")]; tensor query_11_pad_0 = const()[name = tensor("query_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_2_encoder_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50829568)))]; tensor layers_2_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_2_encoder_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51124544)))]; - tensor query_11_cast_fp16 = conv(bias = layers_2_encoder_attn_q_proj_bias_to_fp16, dilations = var_623, groups = var_499, pad = query_11_pad_0, pad_type = query_11_pad_type_0, strides = var_621, weight = layers_2_encoder_attn_q_proj_weight_to_fp16, x = obj_33_cast_fp16)[name = tensor("query_11_cast_fp16")]; - tensor var_627 = const()[name = tensor("op_627"), val = tensor([1, 1])]; - tensor var_629 = const()[name = tensor("op_629"), val = tensor([1, 1])]; + tensor query_11_cast_fp16 = conv(bias = layers_2_encoder_attn_q_proj_bias_to_fp16, dilations = var_627, groups = var_503, pad = query_11_pad_0, pad_type = query_11_pad_type_0, strides = var_625, weight = layers_2_encoder_attn_q_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor("query_11_cast_fp16")]; + tensor var_631 = const()[name = tensor("op_631"), val = tensor([1, 1])]; + tensor var_633 = const()[name = tensor("op_633"), val = tensor([1, 1])]; tensor key_11_pad_type_0 = const()[name = tensor("key_11_pad_type_0"), val = tensor("custom")]; tensor key_11_pad_0 = const()[name = tensor("key_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_2_encoder_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51125376)))]; - tensor key_11_cast_fp16 = conv(dilations = var_629, groups = var_499, pad = key_11_pad_0, pad_type = key_11_pad_type_0, strides = var_627, weight = layers_2_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("key_11_cast_fp16")]; - tensor var_634 = const()[name = tensor("op_634"), val = tensor([1, 1])]; - tensor var_636 = const()[name = tensor("op_636"), val = tensor([1, 1])]; + tensor key_11_cast_fp16 = conv(dilations = var_633, groups = var_503, pad = key_11_pad_0, pad_type = key_11_pad_type_0, strides = var_631, weight = layers_2_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("key_11_cast_fp16")]; + tensor var_638 = const()[name = tensor("op_638"), val = tensor([1, 1])]; + tensor var_640 = const()[name = tensor("op_640"), val = tensor([1, 1])]; tensor value_11_pad_type_0 = const()[name = tensor("value_11_pad_type_0"), val = tensor("custom")]; tensor value_11_pad_0 = const()[name = tensor("value_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_2_encoder_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51420352)))]; tensor layers_2_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_2_encoder_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51715328)))]; - tensor value_11_cast_fp16 = conv(bias = layers_2_encoder_attn_v_proj_bias_to_fp16, dilations = var_636, groups = var_499, pad = value_11_pad_0, pad_type = value_11_pad_type_0, strides = var_634, weight = layers_2_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("value_11_cast_fp16")]; - tensor var_640 = const()[name = tensor("op_640"), val = tensor([1, 6, 64, -1])]; - tensor var_641_cast_fp16 = reshape(shape = var_640, x = query_11_cast_fp16)[name = tensor("op_641_cast_fp16")]; - tensor var_642_to_fp16 = const()[name = tensor("op_642_to_fp16"), val = tensor(0x1p-3)]; - tensor var_643_cast_fp16 = mul(x = var_641_cast_fp16, y = var_642_to_fp16)[name = tensor("op_643_cast_fp16")]; + tensor value_11_cast_fp16 = conv(bias = layers_2_encoder_attn_v_proj_bias_to_fp16, dilations = var_640, groups = var_503, pad = value_11_pad_0, pad_type = value_11_pad_type_0, strides = var_638, weight = layers_2_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("value_11_cast_fp16")]; tensor var_644 = const()[name = tensor("op_644"), val = tensor([1, 6, 64, -1])]; - tensor var_645_cast_fp16 = reshape(shape = var_644, x = key_11_cast_fp16)[name = tensor("op_645_cast_fp16")]; + tensor var_645_cast_fp16 = reshape(shape = var_644, x = query_11_cast_fp16)[name = tensor("op_645_cast_fp16")]; + tensor var_646_to_fp16 = const()[name = tensor("op_646_to_fp16"), val = tensor(0x1p-3)]; + tensor var_647_cast_fp16 = mul(x = var_645_cast_fp16, y = var_646_to_fp16)[name = tensor("op_647_cast_fp16")]; + tensor var_648 = const()[name = tensor("op_648"), val = tensor([1, 6, 64, -1])]; + tensor var_649_cast_fp16 = reshape(shape = var_648, x = key_11_cast_fp16)[name = tensor("op_649_cast_fp16")]; tensor mh_w_17_transpose_x_0 = const()[name = tensor("mh_w_17_transpose_x_0"), val = tensor(true)]; tensor mh_w_17_transpose_y_0 = const()[name = tensor("mh_w_17_transpose_y_0"), val = tensor(false)]; - tensor mh_w_17_cast_fp16 = matmul(transpose_x = mh_w_17_transpose_x_0, transpose_y = mh_w_17_transpose_y_0, x = var_643_cast_fp16, y = var_645_cast_fp16)[name = tensor("mh_w_17_cast_fp16")]; - tensor var_648_cast_fp16 = softmax(axis = var_492, x = mh_w_17_cast_fp16)[name = tensor("op_648_cast_fp16")]; - tensor var_649 = const()[name = tensor("op_649"), val = tensor([1, 6, 64, -1])]; - tensor var_650_cast_fp16 = reshape(shape = var_649, x = value_11_cast_fp16)[name = tensor("op_650_cast_fp16")]; + tensor mh_w_17_cast_fp16 = matmul(transpose_x = mh_w_17_transpose_x_0, transpose_y = mh_w_17_transpose_y_0, x = var_647_cast_fp16, y = var_649_cast_fp16)[name = tensor("mh_w_17_cast_fp16")]; + tensor obj_41_cast_fp16 = softmax(axis = var_496, x = mh_w_17_cast_fp16)[name = tensor("obj_41_cast_fp16")]; + tensor var_653 = const()[name = tensor("op_653"), val = tensor([1, 6, 64, -1])]; + tensor var_654_cast_fp16 = reshape(shape = var_653, x = value_11_cast_fp16)[name = tensor("op_654_cast_fp16")]; tensor attn_11_transpose_x_0 = const()[name = tensor("attn_11_transpose_x_0"), val = tensor(false)]; tensor attn_11_transpose_y_0 = const()[name = tensor("attn_11_transpose_y_0"), val = tensor(true)]; - tensor attn_11_cast_fp16 = matmul(transpose_x = attn_11_transpose_x_0, transpose_y = attn_11_transpose_y_0, x = var_650_cast_fp16, y = var_648_cast_fp16)[name = tensor("attn_11_cast_fp16")]; - tensor var_653 = const()[name = tensor("op_653"), val = tensor([1, 384, 1, -1])]; - tensor input_23_cast_fp16 = reshape(shape = var_653, x = attn_11_cast_fp16)[name = tensor("input_23_cast_fp16")]; - tensor var_657 = const()[name = tensor("op_657"), val = tensor([1, 1])]; - tensor var_659 = const()[name = tensor("op_659"), val = tensor([1, 1])]; - tensor obj_35_pad_type_0 = const()[name = tensor("obj_35_pad_type_0"), val = tensor("custom")]; - tensor obj_35_pad_0 = const()[name = tensor("obj_35_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor attn_11_cast_fp16 = matmul(transpose_x = attn_11_transpose_x_0, transpose_y = attn_11_transpose_y_0, x = var_654_cast_fp16, y = obj_41_cast_fp16)[name = tensor("attn_11_cast_fp16")]; + tensor var_657 = const()[name = tensor("op_657"), val = tensor([1, 384, 1, -1])]; + tensor input_23_cast_fp16 = reshape(shape = var_657, x = attn_11_cast_fp16)[name = tensor("input_23_cast_fp16")]; + tensor var_661 = const()[name = tensor("op_661"), val = tensor([1, 1])]; + tensor var_663 = const()[name = tensor("op_663"), val = tensor([1, 1])]; + tensor obj_39_pad_type_0 = const()[name = tensor("obj_39_pad_type_0"), val = tensor("custom")]; + tensor obj_39_pad_0 = const()[name = tensor("obj_39_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_2_encoder_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51716160)))]; tensor layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(52011136)))]; - tensor obj_35_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = var_659, groups = var_499, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = var_657, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor("obj_35_cast_fp16")]; - tensor inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_35_cast_fp16)[name = tensor("inputs_17_cast_fp16")]; - tensor var_665 = const()[name = tensor("op_665"), val = tensor([1])]; - tensor channels_mean_17_cast_fp16 = reduce_mean(axes = var_665, keep_dims = var_500, x = inputs_17_cast_fp16)[name = tensor("channels_mean_17_cast_fp16")]; + tensor obj_39_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = var_663, groups = var_503, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = var_661, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor("obj_39_cast_fp16")]; + tensor inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_39_cast_fp16)[name = tensor("inputs_17_cast_fp16")]; + tensor var_672 = const()[name = tensor("op_672"), val = tensor([1])]; + tensor channels_mean_17_cast_fp16 = reduce_mean(axes = var_672, keep_dims = var_504, x = inputs_17_cast_fp16)[name = tensor("channels_mean_17_cast_fp16")]; tensor zero_mean_17_cast_fp16 = sub(x = inputs_17_cast_fp16, y = channels_mean_17_cast_fp16)[name = tensor("zero_mean_17_cast_fp16")]; tensor zero_mean_sq_17_cast_fp16 = mul(x = zero_mean_17_cast_fp16, y = zero_mean_17_cast_fp16)[name = tensor("zero_mean_sq_17_cast_fp16")]; - tensor var_669 = const()[name = tensor("op_669"), val = tensor([1])]; - tensor var_670_cast_fp16 = reduce_mean(axes = var_669, keep_dims = var_500, x = zero_mean_sq_17_cast_fp16)[name = tensor("op_670_cast_fp16")]; - tensor var_671_to_fp16 = const()[name = tensor("op_671_to_fp16"), val = tensor(0x1.5p-17)]; - tensor var_672_cast_fp16 = add(x = var_670_cast_fp16, y = var_671_to_fp16)[name = tensor("op_672_cast_fp16")]; + tensor var_676 = const()[name = tensor("op_676"), val = tensor([1])]; + tensor var_677_cast_fp16 = reduce_mean(axes = var_676, keep_dims = var_504, x = zero_mean_sq_17_cast_fp16)[name = tensor("op_677_cast_fp16")]; + tensor var_678_to_fp16 = const()[name = tensor("op_678_to_fp16"), val = tensor(0x1.5p-17)]; + tensor var_679_cast_fp16 = add(x = var_677_cast_fp16, y = var_678_to_fp16)[name = tensor("op_679_cast_fp16")]; tensor denom_17_epsilon_0 = const()[name = tensor("denom_17_epsilon_0"), val = tensor(0x1.197998p-40)]; - tensor denom_17_cast_fp16 = rsqrt(epsilon = denom_17_epsilon_0, x = var_672_cast_fp16)[name = tensor("denom_17_cast_fp16")]; + tensor denom_17_cast_fp16 = rsqrt(epsilon = denom_17_epsilon_0, x = var_679_cast_fp16)[name = tensor("denom_17_cast_fp16")]; tensor out_17_cast_fp16 = mul(x = zero_mean_17_cast_fp16, y = denom_17_cast_fp16)[name = tensor("out_17_cast_fp16")]; tensor input_25_gamma_0_to_fp16 = const()[name = tensor("input_25_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(52011968)))]; tensor input_25_beta_0_to_fp16 = const()[name = tensor("input_25_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(52012800)))]; tensor input_25_epsilon_0_to_fp16 = const()[name = tensor("input_25_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_25_cast_fp16 = batch_norm(beta = input_25_beta_0_to_fp16, epsilon = input_25_epsilon_0_to_fp16, gamma = input_25_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_17_cast_fp16)[name = tensor("input_25_cast_fp16")]; - tensor var_683 = const()[name = tensor("op_683"), val = tensor([1, 1])]; - tensor var_685 = const()[name = tensor("op_685"), val = tensor([1, 1])]; + tensor var_690 = const()[name = tensor("op_690"), val = tensor([1, 1])]; + tensor var_692 = const()[name = tensor("op_692"), val = tensor([1, 1])]; tensor input_27_pad_type_0 = const()[name = tensor("input_27_pad_type_0"), val = tensor("custom")]; tensor input_27_pad_0 = const()[name = tensor("input_27_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_fc1_weight_to_fp16 = const()[name = tensor("layers_2_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(52013632)))]; tensor layers_2_fc1_bias_to_fp16 = const()[name = tensor("layers_2_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53193344)))]; - tensor input_27_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations = var_685, groups = var_499, pad = input_27_pad_0, pad_type = input_27_pad_type_0, strides = var_683, weight = layers_2_fc1_weight_to_fp16, x = input_25_cast_fp16)[name = tensor("input_27_cast_fp16")]; + tensor input_27_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations = var_692, groups = var_503, pad = input_27_pad_0, pad_type = input_27_pad_type_0, strides = var_690, weight = layers_2_fc1_weight_to_fp16, x = input_25_cast_fp16)[name = tensor("input_27_cast_fp16")]; tensor input_29_mode_0 = const()[name = tensor("input_29_mode_0"), val = tensor("EXACT")]; tensor input_29_cast_fp16 = gelu(mode = input_29_mode_0, x = input_27_cast_fp16)[name = tensor("input_29_cast_fp16")]; - tensor var_691 = const()[name = tensor("op_691"), val = tensor([1, 1])]; - tensor var_693 = const()[name = tensor("op_693"), val = tensor([1, 1])]; + tensor var_698 = const()[name = tensor("op_698"), val = tensor([1, 1])]; + tensor var_700 = const()[name = tensor("op_700"), val = tensor([1, 1])]; tensor hidden_states_7_pad_type_0 = const()[name = tensor("hidden_states_7_pad_type_0"), val = tensor("custom")]; tensor hidden_states_7_pad_0 = const()[name = tensor("hidden_states_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_fc2_weight_to_fp16 = const()[name = tensor("layers_2_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53196480)))]; tensor layers_2_fc2_bias_to_fp16 = const()[name = tensor("layers_2_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54376192)))]; - tensor hidden_states_7_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations = var_693, groups = var_499, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = var_691, weight = layers_2_fc2_weight_to_fp16, x = input_29_cast_fp16)[name = tensor("hidden_states_7_cast_fp16")]; + tensor hidden_states_7_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations = var_700, groups = var_503, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = var_698, weight = layers_2_fc2_weight_to_fp16, x = input_29_cast_fp16)[name = tensor("hidden_states_7_cast_fp16")]; tensor inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor("inputs_19_cast_fp16")]; - tensor var_706 = const()[name = tensor("op_706"), val = tensor(3)]; - tensor var_713 = const()[name = tensor("op_713"), val = tensor(1)]; - tensor var_714 = const()[name = tensor("op_714"), val = tensor(true)]; - tensor var_726 = const()[name = tensor("op_726"), val = tensor([1])]; - tensor channels_mean_19_cast_fp16 = reduce_mean(axes = var_726, keep_dims = var_714, x = inputs_19_cast_fp16)[name = tensor("channels_mean_19_cast_fp16")]; + tensor var_714 = const()[name = tensor("op_714"), val = tensor(3)]; + tensor var_721 = const()[name = tensor("op_721"), val = tensor(1)]; + tensor var_722 = const()[name = tensor("op_722"), val = tensor(true)]; + tensor var_734 = const()[name = tensor("op_734"), val = tensor([1])]; + tensor channels_mean_19_cast_fp16 = reduce_mean(axes = var_734, keep_dims = var_722, x = inputs_19_cast_fp16)[name = tensor("channels_mean_19_cast_fp16")]; tensor zero_mean_19_cast_fp16 = sub(x = inputs_19_cast_fp16, y = channels_mean_19_cast_fp16)[name = tensor("zero_mean_19_cast_fp16")]; tensor zero_mean_sq_19_cast_fp16 = mul(x = zero_mean_19_cast_fp16, y = zero_mean_19_cast_fp16)[name = tensor("zero_mean_sq_19_cast_fp16")]; - tensor var_730 = const()[name = tensor("op_730"), val = tensor([1])]; - tensor var_731_cast_fp16 = reduce_mean(axes = var_730, keep_dims = var_714, x = zero_mean_sq_19_cast_fp16)[name = tensor("op_731_cast_fp16")]; - tensor var_732_to_fp16 = const()[name = tensor("op_732_to_fp16"), val = tensor(0x1.5p-17)]; - tensor var_733_cast_fp16 = add(x = var_731_cast_fp16, y = var_732_to_fp16)[name = tensor("op_733_cast_fp16")]; + tensor var_738 = const()[name = tensor("op_738"), val = tensor([1])]; + tensor var_739_cast_fp16 = reduce_mean(axes = var_738, keep_dims = var_722, x = zero_mean_sq_19_cast_fp16)[name = tensor("op_739_cast_fp16")]; + tensor var_740_to_fp16 = const()[name = tensor("op_740_to_fp16"), val = tensor(0x1.5p-17)]; + tensor var_741_cast_fp16 = add(x = var_739_cast_fp16, y = var_740_to_fp16)[name = tensor("op_741_cast_fp16")]; tensor denom_19_epsilon_0 = const()[name = tensor("denom_19_epsilon_0"), val = tensor(0x1.197998p-40)]; - tensor denom_19_cast_fp16 = rsqrt(epsilon = denom_19_epsilon_0, x = var_733_cast_fp16)[name = tensor("denom_19_cast_fp16")]; + tensor denom_19_cast_fp16 = rsqrt(epsilon = denom_19_epsilon_0, x = var_741_cast_fp16)[name = tensor("denom_19_cast_fp16")]; tensor out_19_cast_fp16 = mul(x = zero_mean_19_cast_fp16, y = denom_19_cast_fp16)[name = tensor("out_19_cast_fp16")]; - tensor obj_37_gamma_0_to_fp16 = const()[name = tensor("obj_37_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54377024)))]; - tensor obj_37_beta_0_to_fp16 = const()[name = tensor("obj_37_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54377856)))]; - tensor obj_37_epsilon_0_to_fp16 = const()[name = tensor("obj_37_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor obj_37_cast_fp16 = batch_norm(beta = obj_37_beta_0_to_fp16, epsilon = obj_37_epsilon_0_to_fp16, gamma = obj_37_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_19_cast_fp16)[name = tensor("obj_37_cast_fp16")]; - tensor var_748 = const()[name = tensor("op_748"), val = tensor([1, 1])]; - tensor var_750 = const()[name = tensor("op_750"), val = tensor([1, 1])]; + tensor obj_43_gamma_0_to_fp16 = const()[name = tensor("obj_43_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54377024)))]; + tensor obj_43_beta_0_to_fp16 = const()[name = tensor("obj_43_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54377856)))]; + tensor obj_43_epsilon_0_to_fp16 = const()[name = tensor("obj_43_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor obj_43_cast_fp16 = batch_norm(beta = obj_43_beta_0_to_fp16, epsilon = obj_43_epsilon_0_to_fp16, gamma = obj_43_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_19_cast_fp16)[name = tensor("obj_43_cast_fp16")]; + tensor var_756 = const()[name = tensor("op_756"), val = tensor([1, 1])]; + tensor var_758 = const()[name = tensor("op_758"), val = tensor([1, 1])]; tensor query_13_pad_type_0 = const()[name = tensor("query_13_pad_type_0"), val = tensor("custom")]; tensor query_13_pad_0 = const()[name = tensor("query_13_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54378688)))]; tensor layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54673664)))]; - tensor query_13_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations = var_750, groups = var_713, pad = query_13_pad_0, pad_type = query_13_pad_type_0, strides = var_748, weight = layers_3_self_attn_q_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor("query_13_cast_fp16")]; - tensor var_754 = const()[name = tensor("op_754"), val = tensor([1, 1])]; - tensor var_756 = const()[name = tensor("op_756"), val = tensor([1, 1])]; + tensor query_13_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations = var_758, groups = var_721, pad = query_13_pad_0, pad_type = query_13_pad_type_0, strides = var_756, weight = layers_3_self_attn_q_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor("query_13_cast_fp16")]; + tensor var_762 = const()[name = tensor("op_762"), val = tensor([1, 1])]; + tensor var_764 = const()[name = tensor("op_764"), val = tensor([1, 1])]; tensor current_key_pad_type_0 = const()[name = tensor("current_key_pad_type_0"), val = tensor("custom")]; tensor current_key_pad_0 = const()[name = tensor("current_key_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54674496)))]; - tensor current_key_cast_fp16 = conv(dilations = var_756, groups = var_713, pad = current_key_pad_0, pad_type = current_key_pad_type_0, strides = var_754, weight = layers_3_self_attn_k_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor("current_key_cast_fp16")]; - tensor var_761 = const()[name = tensor("op_761"), val = tensor([1, 1])]; - tensor var_763 = const()[name = tensor("op_763"), val = tensor([1, 1])]; + tensor current_key_cast_fp16 = conv(dilations = var_764, groups = var_721, pad = current_key_pad_0, pad_type = current_key_pad_type_0, strides = var_762, weight = layers_3_self_attn_k_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor("current_key_cast_fp16")]; + tensor var_769 = const()[name = tensor("op_769"), val = tensor([1, 1])]; + tensor var_771 = const()[name = tensor("op_771"), val = tensor([1, 1])]; tensor current_value_pad_type_0 = const()[name = tensor("current_value_pad_type_0"), val = tensor("custom")]; tensor current_value_pad_0 = const()[name = tensor("current_value_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54969472)))]; tensor layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55264448)))]; - tensor current_value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = var_763, groups = var_713, pad = current_value_pad_0, pad_type = current_value_pad_type_0, strides = var_761, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor("current_value_cast_fp16")]; - tensor var_770_cast_fp16 = mul(x = current_key_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_770_cast_fp16")]; - tensor var_772_cast_fp16 = mul(x = var_47_cast_fp16_3, y = var_129_cast_fp16)[name = tensor("op_772_cast_fp16")]; - tensor key_13_cast_fp16 = add(x = var_770_cast_fp16, y = var_772_cast_fp16)[name = tensor("key_13_cast_fp16")]; - tensor var_774_cast_fp16 = mul(x = current_value_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_774_cast_fp16")]; - tensor var_776_cast_fp16 = mul(x = var_54_cast_fp16_3, y = var_129_cast_fp16)[name = tensor("op_776_cast_fp16")]; - tensor value_13_cast_fp16 = add(x = var_774_cast_fp16, y = var_776_cast_fp16)[name = tensor("value_13_cast_fp16")]; - tensor var_779 = const()[name = tensor("op_779"), val = tensor([1, 6, 64, -1])]; - tensor var_780_cast_fp16 = reshape(shape = var_779, x = query_13_cast_fp16)[name = tensor("op_780_cast_fp16")]; - tensor var_781_to_fp16 = const()[name = tensor("op_781_to_fp16"), val = tensor(0x1p-3)]; - tensor var_782_cast_fp16 = mul(x = var_780_cast_fp16, y = var_781_to_fp16)[name = tensor("op_782_cast_fp16")]; - tensor var_783 = const()[name = tensor("op_783"), val = tensor([1, 6, 64, -1])]; - tensor var_784_cast_fp16 = reshape(shape = var_783, x = key_13_cast_fp16)[name = tensor("op_784_cast_fp16")]; + tensor current_value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = var_771, groups = var_721, pad = current_value_pad_0, pad_type = current_value_pad_type_0, strides = var_769, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor("current_value_cast_fp16")]; + tensor var_778_cast_fp16 = mul(x = current_key_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_778_cast_fp16")]; + tensor var_780_cast_fp16 = mul(x = var_47_cast_fp16_3, y = var_129_cast_fp16)[name = tensor("op_780_cast_fp16")]; + tensor key_13_cast_fp16 = add(x = var_778_cast_fp16, y = var_780_cast_fp16)[name = tensor("key_13_cast_fp16")]; + tensor var_782_cast_fp16 = mul(x = current_value_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_782_cast_fp16")]; + tensor var_784_cast_fp16 = mul(x = var_54_cast_fp16_3, y = var_129_cast_fp16)[name = tensor("op_784_cast_fp16")]; + tensor value_13_cast_fp16 = add(x = var_782_cast_fp16, y = var_784_cast_fp16)[name = tensor("value_13_cast_fp16")]; + tensor var_787 = const()[name = tensor("op_787"), val = tensor([1, 6, 64, -1])]; + tensor var_788_cast_fp16 = reshape(shape = var_787, x = query_13_cast_fp16)[name = tensor("op_788_cast_fp16")]; + tensor var_789_to_fp16 = const()[name = tensor("op_789_to_fp16"), val = tensor(0x1p-3)]; + tensor var_790_cast_fp16 = mul(x = var_788_cast_fp16, y = var_789_to_fp16)[name = tensor("op_790_cast_fp16")]; + tensor var_791 = const()[name = tensor("op_791"), val = tensor([1, 6, 64, -1])]; + tensor var_792_cast_fp16 = reshape(shape = var_791, x = key_13_cast_fp16)[name = tensor("op_792_cast_fp16")]; tensor mh_w_19_transpose_x_0 = const()[name = tensor("mh_w_19_transpose_x_0"), val = tensor(true)]; tensor mh_w_19_transpose_y_0 = const()[name = tensor("mh_w_19_transpose_y_0"), val = tensor(false)]; - tensor mh_w_19_cast_fp16 = matmul(transpose_x = mh_w_19_transpose_x_0, transpose_y = mh_w_19_transpose_y_0, x = var_782_cast_fp16, y = var_784_cast_fp16)[name = tensor("mh_w_19_cast_fp16")]; + tensor mh_w_19_cast_fp16 = matmul(transpose_x = mh_w_19_transpose_x_0, transpose_y = mh_w_19_transpose_y_0, x = var_790_cast_fp16, y = var_792_cast_fp16)[name = tensor("mh_w_19_cast_fp16")]; tensor mh_w_21_cast_fp16 = add(x = mh_w_19_cast_fp16, y = var_147_cast_fp16)[name = tensor("mh_w_21_cast_fp16")]; - tensor var_792_cast_fp16 = softmax(axis = var_706, x = mh_w_21_cast_fp16)[name = tensor("op_792_cast_fp16")]; - tensor var_793 = const()[name = tensor("op_793"), val = tensor([1, 6, 64, -1])]; - tensor var_794_cast_fp16 = reshape(shape = var_793, x = value_13_cast_fp16)[name = tensor("op_794_cast_fp16")]; + tensor var_800_cast_fp16 = softmax(axis = var_714, x = mh_w_21_cast_fp16)[name = tensor("op_800_cast_fp16")]; + tensor var_801 = const()[name = tensor("op_801"), val = tensor([1, 6, 64, -1])]; + tensor var_802_cast_fp16 = reshape(shape = var_801, x = value_13_cast_fp16)[name = tensor("op_802_cast_fp16")]; tensor attn_13_transpose_x_0 = const()[name = tensor("attn_13_transpose_x_0"), val = tensor(false)]; tensor attn_13_transpose_y_0 = const()[name = tensor("attn_13_transpose_y_0"), val = tensor(true)]; - tensor attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_794_cast_fp16, y = var_792_cast_fp16)[name = tensor("attn_13_cast_fp16")]; - tensor var_797 = const()[name = tensor("op_797"), val = tensor([1, 384, 1, -1])]; - tensor input_31_cast_fp16 = reshape(shape = var_797, x = attn_13_cast_fp16)[name = tensor("input_31_cast_fp16")]; - tensor var_801 = const()[name = tensor("op_801"), val = tensor([1, 1])]; - tensor var_803 = const()[name = tensor("op_803"), val = tensor([1, 1])]; - tensor obj_43_pad_type_0 = const()[name = tensor("obj_43_pad_type_0"), val = tensor("custom")]; - tensor obj_43_pad_0 = const()[name = tensor("obj_43_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_802_cast_fp16, y = var_800_cast_fp16)[name = tensor("attn_13_cast_fp16")]; + tensor var_805 = const()[name = tensor("op_805"), val = tensor([1, 384, 1, -1])]; + tensor input_31_cast_fp16 = reshape(shape = var_805, x = attn_13_cast_fp16)[name = tensor("input_31_cast_fp16")]; + tensor var_809 = const()[name = tensor("op_809"), val = tensor([1, 1])]; + tensor var_811 = const()[name = tensor("op_811"), val = tensor([1, 1])]; + tensor obj_49_pad_type_0 = const()[name = tensor("obj_49_pad_type_0"), val = tensor("custom")]; + tensor obj_49_pad_0 = const()[name = tensor("obj_49_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55265280)))]; tensor layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55560256)))]; - tensor obj_43_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_803, groups = var_713, pad = obj_43_pad_0, pad_type = obj_43_pad_type_0, strides = var_801, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor("obj_43_cast_fp16")]; - tensor inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_43_cast_fp16)[name = tensor("inputs_21_cast_fp16")]; - tensor var_813 = const()[name = tensor("op_813"), val = tensor([1])]; - tensor channels_mean_21_cast_fp16 = reduce_mean(axes = var_813, keep_dims = var_714, x = inputs_21_cast_fp16)[name = tensor("channels_mean_21_cast_fp16")]; + tensor obj_49_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_811, groups = var_721, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = var_809, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor("obj_49_cast_fp16")]; + tensor inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_49_cast_fp16)[name = tensor("inputs_21_cast_fp16")]; + tensor var_821 = const()[name = tensor("op_821"), val = tensor([1])]; + tensor channels_mean_21_cast_fp16 = reduce_mean(axes = var_821, keep_dims = var_722, x = inputs_21_cast_fp16)[name = tensor("channels_mean_21_cast_fp16")]; tensor zero_mean_21_cast_fp16 = sub(x = inputs_21_cast_fp16, y = channels_mean_21_cast_fp16)[name = tensor("zero_mean_21_cast_fp16")]; tensor zero_mean_sq_21_cast_fp16 = mul(x = zero_mean_21_cast_fp16, y = zero_mean_21_cast_fp16)[name = tensor("zero_mean_sq_21_cast_fp16")]; - tensor var_817 = const()[name = tensor("op_817"), val = tensor([1])]; - tensor var_818_cast_fp16 = reduce_mean(axes = var_817, keep_dims = var_714, x = zero_mean_sq_21_cast_fp16)[name = tensor("op_818_cast_fp16")]; - tensor var_819_to_fp16 = const()[name = tensor("op_819_to_fp16"), val = tensor(0x1.5p-17)]; - tensor var_820_cast_fp16 = add(x = var_818_cast_fp16, y = var_819_to_fp16)[name = tensor("op_820_cast_fp16")]; + tensor var_825 = const()[name = tensor("op_825"), val = tensor([1])]; + tensor var_826_cast_fp16 = reduce_mean(axes = var_825, keep_dims = var_722, x = zero_mean_sq_21_cast_fp16)[name = tensor("op_826_cast_fp16")]; + tensor var_827_to_fp16 = const()[name = tensor("op_827_to_fp16"), val = tensor(0x1.5p-17)]; + tensor var_828_cast_fp16 = add(x = var_826_cast_fp16, y = var_827_to_fp16)[name = tensor("op_828_cast_fp16")]; tensor denom_21_epsilon_0 = const()[name = tensor("denom_21_epsilon_0"), val = tensor(0x1.197998p-40)]; - tensor denom_21_cast_fp16 = rsqrt(epsilon = denom_21_epsilon_0, x = var_820_cast_fp16)[name = tensor("denom_21_cast_fp16")]; + tensor denom_21_cast_fp16 = rsqrt(epsilon = denom_21_epsilon_0, x = var_828_cast_fp16)[name = tensor("denom_21_cast_fp16")]; tensor out_21_cast_fp16 = mul(x = zero_mean_21_cast_fp16, y = denom_21_cast_fp16)[name = tensor("out_21_cast_fp16")]; - tensor obj_45_gamma_0_to_fp16 = const()[name = tensor("obj_45_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55561088)))]; - tensor obj_45_beta_0_to_fp16 = const()[name = tensor("obj_45_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55561920)))]; - tensor obj_45_epsilon_0_to_fp16 = const()[name = tensor("obj_45_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; - tensor obj_45_cast_fp16 = batch_norm(beta = obj_45_beta_0_to_fp16, epsilon = obj_45_epsilon_0_to_fp16, gamma = obj_45_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_21_cast_fp16)[name = tensor("obj_45_cast_fp16")]; - tensor var_835 = const()[name = tensor("op_835"), val = tensor([1, 1])]; - tensor var_837 = const()[name = tensor("op_837"), val = tensor([1, 1])]; + tensor obj_51_gamma_0_to_fp16 = const()[name = tensor("obj_51_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55561088)))]; + tensor obj_51_beta_0_to_fp16 = const()[name = tensor("obj_51_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55561920)))]; + tensor obj_51_epsilon_0_to_fp16 = const()[name = tensor("obj_51_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor obj_51_cast_fp16 = batch_norm(beta = obj_51_beta_0_to_fp16, epsilon = obj_51_epsilon_0_to_fp16, gamma = obj_51_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_21_cast_fp16)[name = tensor("obj_51_cast_fp16")]; + tensor var_843 = const()[name = tensor("op_843"), val = tensor([1, 1])]; + tensor var_845 = const()[name = tensor("op_845"), val = tensor([1, 1])]; tensor query_pad_type_0 = const()[name = tensor("query_pad_type_0"), val = tensor("custom")]; tensor query_pad_0 = const()[name = tensor("query_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_3_encoder_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55562752)))]; tensor layers_3_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_3_encoder_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55857728)))]; - tensor query_cast_fp16 = conv(bias = layers_3_encoder_attn_q_proj_bias_to_fp16, dilations = var_837, groups = var_713, pad = query_pad_0, pad_type = query_pad_type_0, strides = var_835, weight = layers_3_encoder_attn_q_proj_weight_to_fp16, x = obj_45_cast_fp16)[name = tensor("query_cast_fp16")]; - tensor var_841 = const()[name = tensor("op_841"), val = tensor([1, 1])]; - tensor var_843 = const()[name = tensor("op_843"), val = tensor([1, 1])]; + tensor query_cast_fp16 = conv(bias = layers_3_encoder_attn_q_proj_bias_to_fp16, dilations = var_845, groups = var_721, pad = query_pad_0, pad_type = query_pad_type_0, strides = var_843, weight = layers_3_encoder_attn_q_proj_weight_to_fp16, x = obj_51_cast_fp16)[name = tensor("query_cast_fp16")]; + tensor var_849 = const()[name = tensor("op_849"), val = tensor([1, 1])]; + tensor var_851 = const()[name = tensor("op_851"), val = tensor([1, 1])]; tensor key_pad_type_0 = const()[name = tensor("key_pad_type_0"), val = tensor("custom")]; tensor key_pad_0 = const()[name = tensor("key_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_3_encoder_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55858560)))]; - tensor key_cast_fp16 = conv(dilations = var_843, groups = var_713, pad = key_pad_0, pad_type = key_pad_type_0, strides = var_841, weight = layers_3_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("key_cast_fp16")]; - tensor var_848 = const()[name = tensor("op_848"), val = tensor([1, 1])]; - tensor var_850 = const()[name = tensor("op_850"), val = tensor([1, 1])]; + tensor key_cast_fp16 = conv(dilations = var_851, groups = var_721, pad = key_pad_0, pad_type = key_pad_type_0, strides = var_849, weight = layers_3_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("key_cast_fp16")]; + tensor var_856 = const()[name = tensor("op_856"), val = tensor([1, 1])]; + tensor var_858 = const()[name = tensor("op_858"), val = tensor([1, 1])]; tensor value_pad_type_0 = const()[name = tensor("value_pad_type_0"), val = tensor("custom")]; tensor value_pad_0 = const()[name = tensor("value_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_3_encoder_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56153536)))]; tensor layers_3_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_3_encoder_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56448512)))]; - tensor value_cast_fp16 = conv(bias = layers_3_encoder_attn_v_proj_bias_to_fp16, dilations = var_850, groups = var_713, pad = value_pad_0, pad_type = value_pad_type_0, strides = var_848, weight = layers_3_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("value_cast_fp16")]; - tensor var_854 = const()[name = tensor("op_854"), val = tensor([1, 6, 64, -1])]; - tensor var_855_cast_fp16 = reshape(shape = var_854, x = query_cast_fp16)[name = tensor("op_855_cast_fp16")]; - tensor var_856_to_fp16 = const()[name = tensor("op_856_to_fp16"), val = tensor(0x1p-3)]; - tensor var_857_cast_fp16 = mul(x = var_855_cast_fp16, y = var_856_to_fp16)[name = tensor("op_857_cast_fp16")]; - tensor var_858 = const()[name = tensor("op_858"), val = tensor([1, 6, 64, -1])]; - tensor var_859_cast_fp16 = reshape(shape = var_858, x = key_cast_fp16)[name = tensor("op_859_cast_fp16")]; + tensor value_cast_fp16 = conv(bias = layers_3_encoder_attn_v_proj_bias_to_fp16, dilations = var_858, groups = var_721, pad = value_pad_0, pad_type = value_pad_type_0, strides = var_856, weight = layers_3_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("value_cast_fp16")]; + tensor var_862 = const()[name = tensor("op_862"), val = tensor([1, 6, 64, -1])]; + tensor var_863_cast_fp16 = reshape(shape = var_862, x = query_cast_fp16)[name = tensor("op_863_cast_fp16")]; + tensor var_864_to_fp16 = const()[name = tensor("op_864_to_fp16"), val = tensor(0x1p-3)]; + tensor var_865_cast_fp16 = mul(x = var_863_cast_fp16, y = var_864_to_fp16)[name = tensor("op_865_cast_fp16")]; + tensor var_866 = const()[name = tensor("op_866"), val = tensor([1, 6, 64, -1])]; + tensor var_867_cast_fp16 = reshape(shape = var_866, x = key_cast_fp16)[name = tensor("op_867_cast_fp16")]; tensor mh_w_transpose_x_0 = const()[name = tensor("mh_w_transpose_x_0"), val = tensor(true)]; tensor mh_w_transpose_y_0 = const()[name = tensor("mh_w_transpose_y_0"), val = tensor(false)]; - tensor mh_w_cast_fp16 = matmul(transpose_x = mh_w_transpose_x_0, transpose_y = mh_w_transpose_y_0, x = var_857_cast_fp16, y = var_859_cast_fp16)[name = tensor("mh_w_cast_fp16")]; - tensor var_862_cast_fp16 = softmax(axis = var_706, x = mh_w_cast_fp16)[name = tensor("op_862_cast_fp16")]; - tensor var_863 = const()[name = tensor("op_863"), val = tensor([1, 6, 64, -1])]; - tensor var_864_cast_fp16 = reshape(shape = var_863, x = value_cast_fp16)[name = tensor("op_864_cast_fp16")]; + tensor mh_w_cast_fp16 = matmul(transpose_x = mh_w_transpose_x_0, transpose_y = mh_w_transpose_y_0, x = var_865_cast_fp16, y = var_867_cast_fp16)[name = tensor("mh_w_cast_fp16")]; + tensor obj_55_cast_fp16 = softmax(axis = var_714, x = mh_w_cast_fp16)[name = tensor("obj_55_cast_fp16")]; + tensor var_871 = const()[name = tensor("op_871"), val = tensor([1, 6, 64, -1])]; + tensor var_872_cast_fp16 = reshape(shape = var_871, x = value_cast_fp16)[name = tensor("op_872_cast_fp16")]; tensor attn_transpose_x_0 = const()[name = tensor("attn_transpose_x_0"), val = tensor(false)]; tensor attn_transpose_y_0 = const()[name = tensor("attn_transpose_y_0"), val = tensor(true)]; - tensor attn_cast_fp16 = matmul(transpose_x = attn_transpose_x_0, transpose_y = attn_transpose_y_0, x = var_864_cast_fp16, y = var_862_cast_fp16)[name = tensor("attn_cast_fp16")]; - tensor var_867 = const()[name = tensor("op_867"), val = tensor([1, 384, 1, -1])]; - tensor input_33_cast_fp16 = reshape(shape = var_867, x = attn_cast_fp16)[name = tensor("input_33_cast_fp16")]; - tensor var_871 = const()[name = tensor("op_871"), val = tensor([1, 1])]; - tensor var_873 = const()[name = tensor("op_873"), val = tensor([1, 1])]; - tensor obj_47_pad_type_0 = const()[name = tensor("obj_47_pad_type_0"), val = tensor("custom")]; - tensor obj_47_pad_0 = const()[name = tensor("obj_47_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor attn_cast_fp16 = matmul(transpose_x = attn_transpose_x_0, transpose_y = attn_transpose_y_0, x = var_872_cast_fp16, y = obj_55_cast_fp16)[name = tensor("attn_cast_fp16")]; + tensor var_875 = const()[name = tensor("op_875"), val = tensor([1, 384, 1, -1])]; + tensor input_33_cast_fp16 = reshape(shape = var_875, x = attn_cast_fp16)[name = tensor("input_33_cast_fp16")]; + tensor var_879 = const()[name = tensor("op_879"), val = tensor([1, 1])]; + tensor var_881 = const()[name = tensor("op_881"), val = tensor([1, 1])]; + tensor obj_53_pad_type_0 = const()[name = tensor("obj_53_pad_type_0"), val = tensor("custom")]; + tensor obj_53_pad_0 = const()[name = tensor("obj_53_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_3_encoder_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56449344)))]; tensor layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56744320)))]; - tensor obj_47_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = var_873, groups = var_713, pad = obj_47_pad_0, pad_type = obj_47_pad_type_0, strides = var_871, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor("obj_47_cast_fp16")]; - tensor inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_47_cast_fp16)[name = tensor("inputs_23_cast_fp16")]; - tensor var_879 = const()[name = tensor("op_879"), val = tensor([1])]; - tensor channels_mean_23_cast_fp16 = reduce_mean(axes = var_879, keep_dims = var_714, x = inputs_23_cast_fp16)[name = tensor("channels_mean_23_cast_fp16")]; + tensor obj_53_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = var_881, groups = var_721, pad = obj_53_pad_0, pad_type = obj_53_pad_type_0, strides = var_879, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor("obj_53_cast_fp16")]; + tensor inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_53_cast_fp16)[name = tensor("inputs_23_cast_fp16")]; + tensor var_890 = const()[name = tensor("op_890"), val = tensor([1])]; + tensor channels_mean_23_cast_fp16 = reduce_mean(axes = var_890, keep_dims = var_722, x = inputs_23_cast_fp16)[name = tensor("channels_mean_23_cast_fp16")]; tensor zero_mean_23_cast_fp16 = sub(x = inputs_23_cast_fp16, y = channels_mean_23_cast_fp16)[name = tensor("zero_mean_23_cast_fp16")]; tensor zero_mean_sq_23_cast_fp16 = mul(x = zero_mean_23_cast_fp16, y = zero_mean_23_cast_fp16)[name = tensor("zero_mean_sq_23_cast_fp16")]; - tensor var_883 = const()[name = tensor("op_883"), val = tensor([1])]; - tensor var_884_cast_fp16 = reduce_mean(axes = var_883, keep_dims = var_714, x = zero_mean_sq_23_cast_fp16)[name = tensor("op_884_cast_fp16")]; - tensor var_885_to_fp16 = const()[name = tensor("op_885_to_fp16"), val = tensor(0x1.5p-17)]; - tensor var_886_cast_fp16 = add(x = var_884_cast_fp16, y = var_885_to_fp16)[name = tensor("op_886_cast_fp16")]; + tensor var_894 = const()[name = tensor("op_894"), val = tensor([1])]; + tensor var_895_cast_fp16 = reduce_mean(axes = var_894, keep_dims = var_722, x = zero_mean_sq_23_cast_fp16)[name = tensor("op_895_cast_fp16")]; + tensor var_896_to_fp16 = const()[name = tensor("op_896_to_fp16"), val = tensor(0x1.5p-17)]; + tensor var_897_cast_fp16 = add(x = var_895_cast_fp16, y = var_896_to_fp16)[name = tensor("op_897_cast_fp16")]; tensor denom_23_epsilon_0 = const()[name = tensor("denom_23_epsilon_0"), val = tensor(0x1.197998p-40)]; - tensor denom_23_cast_fp16 = rsqrt(epsilon = denom_23_epsilon_0, x = var_886_cast_fp16)[name = tensor("denom_23_cast_fp16")]; + tensor denom_23_cast_fp16 = rsqrt(epsilon = denom_23_epsilon_0, x = var_897_cast_fp16)[name = tensor("denom_23_cast_fp16")]; tensor out_23_cast_fp16 = mul(x = zero_mean_23_cast_fp16, y = denom_23_cast_fp16)[name = tensor("out_23_cast_fp16")]; tensor input_35_gamma_0_to_fp16 = const()[name = tensor("input_35_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56745152)))]; tensor input_35_beta_0_to_fp16 = const()[name = tensor("input_35_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56745984)))]; tensor input_35_epsilon_0_to_fp16 = const()[name = tensor("input_35_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_35_cast_fp16 = batch_norm(beta = input_35_beta_0_to_fp16, epsilon = input_35_epsilon_0_to_fp16, gamma = input_35_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_23_cast_fp16)[name = tensor("input_35_cast_fp16")]; - tensor var_897 = const()[name = tensor("op_897"), val = tensor([1, 1])]; - tensor var_899 = const()[name = tensor("op_899"), val = tensor([1, 1])]; + tensor var_908 = const()[name = tensor("op_908"), val = tensor([1, 1])]; + tensor var_910 = const()[name = tensor("op_910"), val = tensor([1, 1])]; tensor input_37_pad_type_0 = const()[name = tensor("input_37_pad_type_0"), val = tensor("custom")]; tensor input_37_pad_0 = const()[name = tensor("input_37_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_fc1_weight_to_fp16 = const()[name = tensor("layers_3_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56746816)))]; tensor layers_3_fc1_bias_to_fp16 = const()[name = tensor("layers_3_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57926528)))]; - tensor input_37_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations = var_899, groups = var_713, pad = input_37_pad_0, pad_type = input_37_pad_type_0, strides = var_897, weight = layers_3_fc1_weight_to_fp16, x = input_35_cast_fp16)[name = tensor("input_37_cast_fp16")]; + tensor input_37_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations = var_910, groups = var_721, pad = input_37_pad_0, pad_type = input_37_pad_type_0, strides = var_908, weight = layers_3_fc1_weight_to_fp16, x = input_35_cast_fp16)[name = tensor("input_37_cast_fp16")]; tensor input_mode_0 = const()[name = tensor("input_mode_0"), val = tensor("EXACT")]; tensor input_cast_fp16 = gelu(mode = input_mode_0, x = input_37_cast_fp16)[name = tensor("input_cast_fp16")]; - tensor var_905 = const()[name = tensor("op_905"), val = tensor([1, 1])]; - tensor var_907 = const()[name = tensor("op_907"), val = tensor([1, 1])]; + tensor var_916 = const()[name = tensor("op_916"), val = tensor([1, 1])]; + tensor var_918 = const()[name = tensor("op_918"), val = tensor([1, 1])]; tensor hidden_states_9_pad_type_0 = const()[name = tensor("hidden_states_9_pad_type_0"), val = tensor("custom")]; tensor hidden_states_9_pad_0 = const()[name = tensor("hidden_states_9_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_fc2_weight_to_fp16 = const()[name = tensor("layers_3_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57929664)))]; tensor layers_3_fc2_bias_to_fp16 = const()[name = tensor("layers_3_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(59109376)))]; - tensor hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_907, groups = var_713, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_905, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor("hidden_states_9_cast_fp16")]; + tensor hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_918, groups = var_721, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_916, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor("hidden_states_9_cast_fp16")]; tensor inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor("inputs_cast_fp16")]; - tensor var_917 = const()[name = tensor("op_917"), val = tensor(true)]; - tensor var_921 = const()[name = tensor("op_921"), val = tensor([1])]; - tensor channels_mean_cast_fp16 = reduce_mean(axes = var_921, keep_dims = var_917, x = inputs_cast_fp16)[name = tensor("channels_mean_cast_fp16")]; + tensor var_929 = const()[name = tensor("op_929"), val = tensor(true)]; + tensor var_933 = const()[name = tensor("op_933"), val = tensor([1])]; + tensor channels_mean_cast_fp16 = reduce_mean(axes = var_933, keep_dims = var_929, x = inputs_cast_fp16)[name = tensor("channels_mean_cast_fp16")]; tensor zero_mean_cast_fp16 = sub(x = inputs_cast_fp16, y = channels_mean_cast_fp16)[name = tensor("zero_mean_cast_fp16")]; tensor zero_mean_sq_cast_fp16 = mul(x = zero_mean_cast_fp16, y = zero_mean_cast_fp16)[name = tensor("zero_mean_sq_cast_fp16")]; - tensor var_925 = const()[name = tensor("op_925"), val = tensor([1])]; - tensor var_926_cast_fp16 = reduce_mean(axes = var_925, keep_dims = var_917, x = zero_mean_sq_cast_fp16)[name = tensor("op_926_cast_fp16")]; - tensor var_927_to_fp16 = const()[name = tensor("op_927_to_fp16"), val = tensor(0x1.5p-17)]; - tensor var_928_cast_fp16 = add(x = var_926_cast_fp16, y = var_927_to_fp16)[name = tensor("op_928_cast_fp16")]; + tensor var_937 = const()[name = tensor("op_937"), val = tensor([1])]; + tensor var_938_cast_fp16 = reduce_mean(axes = var_937, keep_dims = var_929, x = zero_mean_sq_cast_fp16)[name = tensor("op_938_cast_fp16")]; + tensor var_939_to_fp16 = const()[name = tensor("op_939_to_fp16"), val = tensor(0x1.5p-17)]; + tensor var_940_cast_fp16 = add(x = var_938_cast_fp16, y = var_939_to_fp16)[name = tensor("op_940_cast_fp16")]; tensor denom_epsilon_0 = const()[name = tensor("denom_epsilon_0"), val = tensor(0x1.197998p-40)]; - tensor denom_cast_fp16 = rsqrt(epsilon = denom_epsilon_0, x = var_928_cast_fp16)[name = tensor("denom_cast_fp16")]; + tensor denom_cast_fp16 = rsqrt(epsilon = denom_epsilon_0, x = var_940_cast_fp16)[name = tensor("denom_cast_fp16")]; tensor out_cast_fp16 = mul(x = zero_mean_cast_fp16, y = denom_cast_fp16)[name = tensor("out_cast_fp16")]; tensor hidden_states_gamma_0_to_fp16 = const()[name = tensor("hidden_states_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(59110208)))]; tensor hidden_states_beta_0_to_fp16 = const()[name = tensor("hidden_states_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(59111040)))]; tensor hidden_states_epsilon_0_to_fp16 = const()[name = tensor("hidden_states_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor hidden_states_cast_fp16 = batch_norm(beta = hidden_states_beta_0_to_fp16, epsilon = hidden_states_epsilon_0_to_fp16, gamma = hidden_states_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_cast_fp16)[name = tensor("hidden_states_cast_fp16")]; - tensor var_938_axes_0 = const()[name = tensor("op_938_axes_0"), val = tensor([2])]; - tensor var_938_cast_fp16 = squeeze(axes = var_938_axes_0, x = hidden_states_cast_fp16)[name = tensor("op_938_cast_fp16")]; - tensor var_941_perm_0 = const()[name = tensor("op_941_perm_0"), val = tensor([0, 2, 1])]; + tensor var_950_axes_0 = const()[name = tensor("op_950_axes_0"), val = tensor([2])]; + tensor var_950_cast_fp16 = squeeze(axes = var_950_axes_0, x = hidden_states_cast_fp16)[name = tensor("op_950_cast_fp16")]; + tensor var_953_perm_0 = const()[name = tensor("op_953_perm_0"), val = tensor([0, 2, 1])]; tensor linear_0_bias_0_to_fp16 = const()[name = tensor("linear_0_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(59111872)))]; - tensor transpose_0 = transpose(perm = var_941_perm_0, x = var_938_cast_fp16)[name = tensor("transpose_0")]; + tensor transpose_0 = transpose(perm = var_953_perm_0, x = var_950_cast_fp16)[name = tensor("transpose_0")]; tensor logits = linear(bias = linear_0_bias_0_to_fp16, weight = embed_tokens_weight_to_fp16, x = transpose_0)[name = tensor("linear_0_cast_fp16")]; - tensor var_945 = const()[name = tensor("op_945"), val = tensor(1)]; - tensor obj_51_interleave_0 = const()[name = tensor("obj_51_interleave_0"), val = tensor(false)]; - tensor key_cache_updates = concat(axis = var_945, interleave = obj_51_interleave_0, values = (current_key_1_cast_fp16, current_key_3_cast_fp16, current_key_5_cast_fp16, current_key_cast_fp16))[name = tensor("obj_51_cast_fp16")]; - tensor var_948 = const()[name = tensor("op_948"), val = tensor(1)]; - tensor obj_interleave_0 = const()[name = tensor("obj_interleave_0"), val = tensor(false)]; - tensor value_cache_updates = concat(axis = var_948, interleave = obj_interleave_0, values = (current_value_1_cast_fp16, current_value_3_cast_fp16, current_value_5_cast_fp16, current_value_cast_fp16))[name = tensor("obj_cast_fp16")]; - } -> (logits, key_cache_updates, value_cache_updates); + tensor var_957 = const()[name = tensor("op_957"), val = tensor(1)]; + tensor obj_59_interleave_0 = const()[name = tensor("obj_59_interleave_0"), val = tensor(false)]; + tensor key_cache_updates = concat(axis = var_957, interleave = obj_59_interleave_0, values = (current_key_1_cast_fp16, current_key_3_cast_fp16, current_key_5_cast_fp16, current_key_cast_fp16))[name = tensor("obj_59_cast_fp16")]; + tensor var_960 = const()[name = tensor("op_960"), val = tensor(1)]; + tensor obj_61_interleave_0 = const()[name = tensor("obj_61_interleave_0"), val = tensor(false)]; + tensor value_cache_updates = concat(axis = var_960, interleave = obj_61_interleave_0, values = (current_value_1_cast_fp16, current_value_3_cast_fp16, current_value_5_cast_fp16, current_value_cast_fp16))[name = tensor("obj_61_cast_fp16")]; + tensor var_971_begin_0 = const()[name = tensor("op_971_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_971_end_0 = const()[name = tensor("op_971_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_971_end_mask_0 = const()[name = tensor("op_971_end_mask_0"), val = tensor([true, false, true, true])]; + tensor var_971_cast_fp16 = slice_by_index(begin = var_971_begin_0, end = var_971_end_0, end_mask = var_971_end_mask_0, x = obj_27_cast_fp16)[name = tensor("op_971_cast_fp16")]; + tensor var_974_begin_0 = const()[name = tensor("op_974_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_974_end_0 = const()[name = tensor("op_974_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_974_end_mask_0 = const()[name = tensor("op_974_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_974_squeeze_mask_0 = const()[name = tensor("op_974_squeeze_mask_0"), val = tensor([false, false, true, false])]; + tensor var_974_cast_fp16 = slice_by_index(begin = var_974_begin_0, end = var_974_end_0, end_mask = var_974_end_mask_0, squeeze_mask = var_974_squeeze_mask_0, x = var_971_cast_fp16)[name = tensor("op_974_cast_fp16")]; + tensor var_989_begin_0 = const()[name = tensor("op_989_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_989_end_0 = const()[name = tensor("op_989_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_989_end_mask_0 = const()[name = tensor("op_989_end_mask_0"), val = tensor([true, false, true, true])]; + tensor var_989_cast_fp16 = slice_by_index(begin = var_989_begin_0, end = var_989_end_0, end_mask = var_989_end_mask_0, x = obj_41_cast_fp16)[name = tensor("op_989_cast_fp16")]; + tensor var_992_begin_0 = const()[name = tensor("op_992_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_992_end_0 = const()[name = tensor("op_992_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_992_end_mask_0 = const()[name = tensor("op_992_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_992_squeeze_mask_0 = const()[name = tensor("op_992_squeeze_mask_0"), val = tensor([false, false, true, false])]; + tensor var_992_cast_fp16 = slice_by_index(begin = var_992_begin_0, end = var_992_end_0, end_mask = var_992_end_mask_0, squeeze_mask = var_992_squeeze_mask_0, x = var_989_cast_fp16)[name = tensor("op_992_cast_fp16")]; + tensor var_1007_begin_0 = const()[name = tensor("op_1007_begin_0"), val = tensor([0, 5, 0, 0])]; + tensor var_1007_end_0 = const()[name = tensor("op_1007_end_0"), val = tensor([1, 6, 1, 1500])]; + tensor var_1007_end_mask_0 = const()[name = tensor("op_1007_end_mask_0"), val = tensor([true, false, true, true])]; + tensor var_1007_cast_fp16 = slice_by_index(begin = var_1007_begin_0, end = var_1007_end_0, end_mask = var_1007_end_mask_0, x = obj_41_cast_fp16)[name = tensor("op_1007_cast_fp16")]; + tensor var_1010_begin_0 = const()[name = tensor("op_1010_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1010_end_0 = const()[name = tensor("op_1010_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_1010_end_mask_0 = const()[name = tensor("op_1010_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1010_squeeze_mask_0 = const()[name = tensor("op_1010_squeeze_mask_0"), val = tensor([false, false, true, false])]; + tensor var_1010_cast_fp16 = slice_by_index(begin = var_1010_begin_0, end = var_1010_end_0, end_mask = var_1010_end_mask_0, squeeze_mask = var_1010_squeeze_mask_0, x = var_1007_cast_fp16)[name = tensor("op_1010_cast_fp16")]; + tensor var_1025_begin_0 = const()[name = tensor("op_1025_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1025_end_0 = const()[name = tensor("op_1025_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_1025_end_mask_0 = const()[name = tensor("op_1025_end_mask_0"), val = tensor([true, false, true, true])]; + tensor var_1025_cast_fp16 = slice_by_index(begin = var_1025_begin_0, end = var_1025_end_0, end_mask = var_1025_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1025_cast_fp16")]; + tensor var_1028_begin_0 = const()[name = tensor("op_1028_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1028_end_0 = const()[name = tensor("op_1028_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_1028_end_mask_0 = const()[name = tensor("op_1028_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1028_squeeze_mask_0 = const()[name = tensor("op_1028_squeeze_mask_0"), val = tensor([false, false, true, false])]; + tensor var_1028_cast_fp16 = slice_by_index(begin = var_1028_begin_0, end = var_1028_end_0, end_mask = var_1028_end_mask_0, squeeze_mask = var_1028_squeeze_mask_0, x = var_1025_cast_fp16)[name = tensor("op_1028_cast_fp16")]; + tensor var_1043_begin_0 = const()[name = tensor("op_1043_begin_0"), val = tensor([0, 1, 0, 0])]; + tensor var_1043_end_0 = const()[name = tensor("op_1043_end_0"), val = tensor([1, 2, 1, 1500])]; + tensor var_1043_end_mask_0 = const()[name = tensor("op_1043_end_mask_0"), val = tensor([true, false, true, true])]; + tensor var_1043_cast_fp16 = slice_by_index(begin = var_1043_begin_0, end = var_1043_end_0, end_mask = var_1043_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1043_cast_fp16")]; + tensor var_1046_begin_0 = const()[name = tensor("op_1046_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1046_end_0 = const()[name = tensor("op_1046_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_1046_end_mask_0 = const()[name = tensor("op_1046_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1046_squeeze_mask_0 = const()[name = tensor("op_1046_squeeze_mask_0"), val = tensor([false, false, true, false])]; + tensor var_1046_cast_fp16 = slice_by_index(begin = var_1046_begin_0, end = var_1046_end_0, end_mask = var_1046_end_mask_0, squeeze_mask = var_1046_squeeze_mask_0, x = var_1043_cast_fp16)[name = tensor("op_1046_cast_fp16")]; + tensor var_1061_begin_0 = const()[name = tensor("op_1061_begin_0"), val = tensor([0, 2, 0, 0])]; + tensor var_1061_end_0 = const()[name = tensor("op_1061_end_0"), val = tensor([1, 3, 1, 1500])]; + tensor var_1061_end_mask_0 = const()[name = tensor("op_1061_end_mask_0"), val = tensor([true, false, true, true])]; + tensor var_1061_cast_fp16 = slice_by_index(begin = var_1061_begin_0, end = var_1061_end_0, end_mask = var_1061_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1061_cast_fp16")]; + tensor var_1064_begin_0 = const()[name = tensor("op_1064_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1064_end_0 = const()[name = tensor("op_1064_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_1064_end_mask_0 = const()[name = tensor("op_1064_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1064_squeeze_mask_0 = const()[name = tensor("op_1064_squeeze_mask_0"), val = tensor([false, false, true, false])]; + tensor var_1064_cast_fp16 = slice_by_index(begin = var_1064_begin_0, end = var_1064_end_0, end_mask = var_1064_end_mask_0, squeeze_mask = var_1064_squeeze_mask_0, x = var_1061_cast_fp16)[name = tensor("op_1064_cast_fp16")]; + tensor var_1079_begin_0 = const()[name = tensor("op_1079_begin_0"), val = tensor([0, 3, 0, 0])]; + tensor var_1079_end_0 = const()[name = tensor("op_1079_end_0"), val = tensor([1, 4, 1, 1500])]; + tensor var_1079_end_mask_0 = const()[name = tensor("op_1079_end_mask_0"), val = tensor([true, false, true, true])]; + tensor var_1079_cast_fp16 = slice_by_index(begin = var_1079_begin_0, end = var_1079_end_0, end_mask = var_1079_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1079_cast_fp16")]; + tensor var_1082_begin_0 = const()[name = tensor("op_1082_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1082_end_0 = const()[name = tensor("op_1082_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_1082_end_mask_0 = const()[name = tensor("op_1082_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1082_squeeze_mask_0 = const()[name = tensor("op_1082_squeeze_mask_0"), val = tensor([false, false, true, false])]; + tensor var_1082_cast_fp16 = slice_by_index(begin = var_1082_begin_0, end = var_1082_end_0, end_mask = var_1082_end_mask_0, squeeze_mask = var_1082_squeeze_mask_0, x = var_1079_cast_fp16)[name = tensor("op_1082_cast_fp16")]; + tensor var_1097_begin_0 = const()[name = tensor("op_1097_begin_0"), val = tensor([0, 4, 0, 0])]; + tensor var_1097_end_0 = const()[name = tensor("op_1097_end_0"), val = tensor([1, 5, 1, 1500])]; + tensor var_1097_end_mask_0 = const()[name = tensor("op_1097_end_mask_0"), val = tensor([true, false, true, true])]; + tensor var_1097_cast_fp16 = slice_by_index(begin = var_1097_begin_0, end = var_1097_end_0, end_mask = var_1097_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1097_cast_fp16")]; + tensor var_1100_begin_0 = const()[name = tensor("op_1100_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1100_end_0 = const()[name = tensor("op_1100_end_0"), val = tensor([1, 1, 1, 1500])]; + tensor var_1100_end_mask_0 = const()[name = tensor("op_1100_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1100_squeeze_mask_0 = const()[name = tensor("op_1100_squeeze_mask_0"), val = tensor([false, false, true, false])]; + tensor var_1100_cast_fp16 = slice_by_index(begin = var_1100_begin_0, end = var_1100_end_0, end_mask = var_1100_end_mask_0, squeeze_mask = var_1100_squeeze_mask_0, x = var_1097_cast_fp16)[name = tensor("op_1100_cast_fp16")]; + tensor var_1107 = const()[name = tensor("op_1107"), val = tensor(1)]; + tensor var_1108_interleave_0 = const()[name = tensor("op_1108_interleave_0"), val = tensor(false)]; + tensor var_1108_cast_fp16 = concat(axis = var_1107, interleave = var_1108_interleave_0, values = (var_974_cast_fp16, var_992_cast_fp16, var_1010_cast_fp16, var_1028_cast_fp16, var_1046_cast_fp16, var_1064_cast_fp16, var_1082_cast_fp16, var_1100_cast_fp16))[name = tensor("op_1108_cast_fp16")]; + tensor var_1110 = const()[name = tensor("op_1110"), val = tensor([1])]; + tensor var_1111 = const()[name = tensor("op_1111"), val = tensor(false)]; + tensor alignment_heads_weights = reduce_mean(axes = var_1110, keep_dims = var_1111, x = var_1108_cast_fp16)[name = tensor("obj_cast_fp16")]; + } -> (logits, key_cache_updates, value_cache_updates, alignment_heads_weights); } \ No newline at end of file